ROMAN BONDAGE IN GRAPHS

NADER JAFARI RAD 1

Department of Mathematics
Shahrood University of Technology
Shahrood, Iran

and

School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. Box 19395–5746, Tehran, Iran

e-mail: n.jafarirad@shahroodut.ac.ir

AND

LUTZ VOLKMAN

Lehrstuhl II für Mathematik
RWTH Aachen University
Templergraben 55, D–52056 Aachen, Germany

e-mail: volkm@math2.rwth-aachen.de

Abstract

A Roman dominating function on a graph G is a function $f : V(G) \to \{0, 1, 2\}$ satisfying the condition that every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of a Roman dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number, $\gamma_R(G)$, of G is the minimum weight of a Roman dominating function on G. In this paper, we define the Roman bondage $b_R(G)$ of a graph G with maximum degree at least two to be the minimum cardinality of all sets $E' \subseteq E(G)$ for which $\gamma_R(G - E') > \gamma_R(G)$. We determine the Roman bondage number in several classes of graphs and give some sharp bounds.

1The research of first author was in part supported by a grant from IPM (No. 89050040).
1. Terminology and Introduction

Let $G = (V(G), E(G))$ be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_G(v)$, or just $N(v)$, and its closed neighborhood by $N_G[v] = N[v]$. For a vertex set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. The degree $\deg(x)$ of a vertex x denotes the number of neighbors of x in G, and $\Delta(G)$ is the maximum degree of G. Also the eccentricity, $\text{ecc}(x)$, of a vertex x is maximum distance of the vertices of G from x. A set of vertices S in G is a dominating set, if $N[S] = V(G)$. The domination number, $\gamma(G)$, of G is the minimum cardinality of a dominating set of G. If S is a subset of $V(G)$, then we denote by $G[S]$ the subgraph of G induced by S. For notation and graph theory terminology in general we follow [6].

With K_n we denote the complete graph on n vertices and with C_n the cycle of length n. For two positive integers m, n, the complete bipartite graph $K_{m,n}$ is the graph with partition $V(G) = V_1 \cup V_2$ such that $|V_1| = m$, $|V_2| = n$ and such that $G[V_i]$ has no edge for $i = 1, 2$, and every two vertices belonging to different partition sets are adjacent to each other.

For a graph G, let $f : V(G) \to \{0, 1, 2\}$ be a function, and let $(V_0; V_1; V_2)$ be the ordered partition of $V(G)$ induced by f, where $V_i = \{v \in V(G) : f(v) = i\}$ and for $i = 0, 1, 2$. There is a $1 - 1$ correspondence between the functions $f : V(G) \to \{0, 1, 2\}$ and the ordered partition $(V_0; V_1; V_2)$ of $V(G)$. So we will write $f = (V_0; V_1; V_2)$.

A function $f : V(G) \to \{0, 1, 2\}$ is a Roman dominating function (or just RDF) if every vertex u for which $f(u) = 0$ is adjacent to at least one vertex v for which $f(v) = 2$. The weight of a Roman dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is the minimum weight of a Roman dominating function on G. A function $f = (V_0; V_1; V_2)$ is called a γ_{R}-function (or $\gamma_{R}(G)$-function when we want to refer f to G), if it is a Roman dominating function and $f(V(G)) = \gamma_{R}(G)$, [2, 7, 8].

The bondage number $b(G)$ of a nonempty graph G is the minimum cardinality among all sets of edges $E' \subseteq E(G)$ for which $\gamma(G - E') > \gamma(G)$.
This concept was introduced by Bauer, Harary, Nieminen and Suffel in [1], and has been further studied for example in [4, 5, 9]. For more information on this topic we refer the reader to the survey article by Dunbar, Haynes, Teschner and Volkmann [3].

In this paper we study bondage by considering a variation based on Roman domination. The Roman bondage number $\gamma_R(G)$ of a graph G is the cardinality of a smallest set of edges $E' \subseteq E(G)$ for which $\gamma_R(G - E') > \gamma_R(G)$.

We note that if G is a connected graph on two vertices, then $G \cong K_2$ and $\gamma_R(G) = 2$. If $e \in E(G)$, then $G - e \cong K_2$ and thus $\gamma_R(G - e) = \gamma_R(G)$. Therefore the Roman bondage number is only defined for a graph G with maximum degree at least two.

We recall that a leaf in a graph G is a vertex of degree one, and a support vertex is the vertex which is adjacent to a leaf.

2. Upper Bounds

Theorem 1. If G is a graph, and xyz a path of length 2 in G, then

(1) $b_R(G) \leq \text{deg}(x) + \text{deg}(y) + \text{deg}(z) - 3 - |N(x) \cap N(y)|$.

If x and z are adjacent, then

(2) $b_R(G) \leq \text{deg}(x) + \text{deg}(y) + \text{deg}(z) - 4 - |N(x) \cap N(y)|$.

Proof. Let H be the graph obtained from G by removing the edges incident with x, y or z with exception of yz and all edges between y and $N(x) \cap N(y)$. In H, the vertex x is isolated, z is a leaf and y is adjacent to z and all neighbors of y in H, if any, lie in $N_G(x)$.

Let $f = (V_0, V_1, V_2)$ be a $\gamma_R(H)$-function. Then $x \in V_1$ and, without loss of generality, $z \in V_0 \cup V_1$.

If $z \in V_0$, then $y \in V_2$ and therefore $(V_0 \cup \{z\}, V_1 - \{z\}, V_2)$ is a RDF on G of weight less than f, and (1) as well as (2) are proved.

Now assume that $z \in V_1$. If $y \in V_1$, then $(V_0 \cup \{z\}, V_1 - \{y, z\}, V_2 \cup \{y\})$ is also $\gamma_R(H)$-function, and we are in the situation discussed in the previous case. However, if $y \in V_0$, then there exists a vertex $w \in N_G(x) \cap N_G(y)$ such that $w \in V_2$. Since w is a neighbor of x in G, $(V_0 \cup \{x\}, V_1 - \{x\}, V_2)$ is a RDF on G of weight less than f, and again (1) and (2) are proved. □
Applying Theorem 1 on a path \(xyz \) such that one of the vertices \(x, y \) or \(z \) has minimum degree, we obtain the next result immediately.

Corollary 2. If \(G \) is a connected graph of order \(n \geq 3 \), then

\[
b_R(G) \leq \delta(G) + 2\Delta(G) - 3.
\]

Our next upper bound involves the *edge-connectivity* \(\lambda(G) \), which is the fewest number of edges whose removal from a connected graph \(G \) creates two components. Since \(\lambda(G) \leq \delta(G) \), the next theorem is an extension of Corollary 2.

Observation 3. If \(E \) is an edge cut set in a graph \(G \) smaller than \(b_R(G) \), then \(\gamma_R(G) \) equals the sum of all \(\gamma_R(G_i) \) where \(G_i \) emerge by removing \(E \).

Theorem 4. If \(G \) is a connected graph of order \(n \geq 3 \), then

\[
b_R(G) \leq \lambda(G) + 2\Delta(G) - 3.
\]

Proof. Let \(\lambda = \lambda(G) \), and let \(E = \{e_1, e_2, \ldots, e_\lambda\} \) be a set of edges whose removal disconnects \(G \). Say \(e_1 = ab \), and let \(H_a \) and \(H_b \) denote the components of \(G - E \) containing \(a \) and \(b \), respectively. By Corollary 2 we may assume that \(H_a \) and \(H_b \) are non-trivial. Let \(a_1 \in V(H_a) \) adjacent to \(a \) and \(b_1 \in V(H_b) \) adjacent to \(b \), and let \(F_{a,a_1} \) and \(F_{b,b_1} \) denote the edges of \(G \) incident with \(a \) or \(a_1 \) with exception of \(aa_1 \) and \(b \) or \(b_1 \) with exception of \(bb_1 \), respectively. Suppose on the contrary that \(b_R(G) > \lambda(G) + 2\Delta(G) - 3 \). Noting that \(|E| = \lambda < b_R(G)|\), we observe that \(\gamma_R(G) = \gamma_R(H_a) + \gamma_R(H_b) \). Since

\[
|F_{a,a_1} \cup E| \leq deg_G(a) + deg_G(a_1) + \lambda - 3 \leq 2\Delta(G) + \lambda - 3 < b_R(G),
\]

we deduce that \(\gamma_R(G) = \gamma(H_a - \{a, a_1\}) + 2 + \gamma_R(H_b) \). Similarly, since

\[
|F_{b,b_1} \cup E| \leq deg_G(b) + deg_G(b_1) + \lambda - 3 \leq 2\Delta(G) + \lambda - 3 < b_R(G),
\]

we deduce that \(\gamma_R(G) = \gamma_R(H_b - \{b, b_1\}) + 2 + \gamma_R(H_a) \). Altogether we obtain

\[
2\gamma_R(G) = \gamma_R(H_a - \{a, a_1\}) + 2 + \gamma_R(H_b) + \gamma_R(H_b - \{b, b_1\}) + 2 + \gamma_R(H_a) = \gamma_R(H_a - \{a, a_1\}) + 4 + \gamma_R(H_b - \{b, b_1\}) + \gamma_R(G)
\]
and thus \(\gamma_R(G) = \gamma_R(H_a - \{a, a_1\}) + 4 + \gamma_R(H_b - \{b, b_1\}) \). This is obviously a contradiction, since

\[
\gamma_R(G) \leq \gamma_R(H_a - \{a, a_1\}) + \gamma_R(a_1bb_1) + \gamma_R(H_b - \{b, b_1\}) \\
\leq \gamma_R(H_a - \{a, a_1\}) + 3 + \gamma_R(H_b - \{b, b_1\}).
\]

Observation 5. If a graph \(G \) has a vertex \(v \) such that \(\gamma_R(G - v) \geq \gamma_R(G) \), then \(b_R(G) \leq \Delta(G) \).

Proof. Let \(E \) be the edge set incident with \(v \). It follows that \(\gamma_R(G - E) > \gamma_R(G) \), and the result is proved.

3. Exact Values of \(b_R(G) \)

In this section we determine the Roman bondage number for several classes of graphs.

Theorem 6. If \(G \) is a graph of order \(n \geq 3 \) with exactly \(k \geq 1 \) vertices of degree \(n - 1 \), then \(b_R(G) = \lceil \frac{k}{2} \rceil \).

Proof. Since \(k \geq 1 \), we note that \(\gamma_R(G) = 2 \). First let \(E_1 \subseteq E(G) \) be an arbitrary subset of edges such that \(|E_1| < \lceil \frac{k}{2} \rceil \), and let \(G' = G - E_1 \). It is evident that there is a vertex \(v \) in \(G' \) such that \(deg_G(v) = deg_{G'}(v) = n - 1 \), and so \(\gamma_R(G') = \gamma_R(G) = 2 \). This shows that \(b_R(G) \geq \frac{k}{2} \).

If \(v_1, v_2, \ldots, v_k \in V(G) \) are the vertices of degree \(n - 1 \), then the subgraph \(F \) induced by the vertices \(v_1, v_2, \ldots, v_k \) is isomorphic to the complete graph \(K_k \).

If \(k \) is even, then let \(H_1 \) be the graph obtained from \(G \) by removing \(\frac{k}{2} \) independent edges from \(F \). Then \(\Delta(H_1) = n - 2 \) and thus \(\gamma_R(H_1) = 3 \). This implies \(b_R(G) \leq \frac{k}{2} \).

If \(k \) is odd, then let \(H_2 \) be the graph obtained from \(G \) by removing \(\frac{k-1}{2} \) independent edges from \(F \). Then there exists exactly one vertex, say \(v_k \in V(H_2) \) such that \(deg_{H_2}(v_k) = n - 1 \). Let \(H_3 \) be the graph obtained from \(H_2 \) by removing an arbitrary edge incident with \(v_k \). Then \(\Delta(H_3) = n - 2 \) and so \(\gamma_R(H_3) = 3 \). This implies \(b_R(G) \leq \frac{k}{2} \).

Combining the obtained inequalities, we deduce that \(b_R(G) = \lceil \frac{k}{2} \rceil \), and the proof is complete.

Corollary 7. If \(n \geq 3 \), then \(b_R(K_n) = \lceil \frac{n}{2} \rceil \).
Lemma 8 [2]. For the classes of paths P_n and cycles C_n,

$$\gamma_R(P_n) = \gamma_R(C_n) = \left\lceil \frac{2n}{3} \right\rceil.$$

Theorem 9. For $n \geq 3$,

$$b_R(P_n) = \begin{cases}
2 & \text{if } n \equiv 2 \pmod{3}, \\
1 & \text{otherwise}.
\end{cases}$$

Proof. Let $P_n = v_1v_2 \ldots v_n$. Corollary 2 yields to $b_R(P_n) \leq 2$. First assume that $n = 3k$. Lemma 8 implies that $\gamma_R(P_n) = 2k$ and $\gamma_R(P_n - v_1v_2) = 1 + \gamma_R(P_{n-1}) = 1 + 2k$ and thus $b_R(P_n) = 1$. Next assume that $n = 3k + 1$. According to Lemma 8, we have $\gamma_R(P_n) = 2k + 1$ and $\gamma_R(P_n - v_2v_3) = 2 + \gamma_R(P_{n-2}) = 2 + 2k$ and so $b_R(P_n) = 1$. It remains to assume that $n = 3k + 2$. By Lemma 8, $\gamma_R(P_n) = 2k + 2$. If e is an arbitrary edge of P_n, then $P_n - e$ consists of two paths P_1 and P_2 of order n_1 and n_2, respectively, such that $n_1 + n_2 = n$ and $\gamma_R(P_n - e) = \gamma_R(P_1) + \gamma_R(P_2)$. Now there are integers k_1 and k_2 such that $n_1 = 3k_1, n_2 = 3k_2 + 2$ or $n_1 = 3k_1 + 1, n_2 = 3k_2 + 1$ or $n_1 = 3k_1 + 2, n_2 = 3k_2$ and $k_1 + k_2 = k$. In the first case we deduce from Lemma 8 that

$$\gamma_R(P_n - e) = \gamma_R(P_1) + \gamma_R(P_2)$$

$$= \left\lceil \frac{6k_1}{3} \right\rceil + \left\lceil \frac{6k_2 + 4}{3} \right\rceil$$

$$= 2k_1 + 2k_2 + 2 = 2k + 2 = \gamma_R(P_n).$$

This implies that $b_R(P_n) \geq 2$ in the first case, and because of $b_R(P_n) \leq 2$ we obtain $b_R(P_n) = 2$. The remaining two cases are similar and are therefore omitted.

Theorem 10. For $n \geq 3$,

$$b_R(C_n) = \begin{cases}
3 & \text{if } n \equiv 2 \pmod{3}, \\
2 & \text{otherwise}.
\end{cases}$$

Proof. Let $C_n = v_1v_2 \ldots v_nv_1$. Corollary 2 leads to $b_R(C_n) \leq 3$. If e is an arbitrary edge of C_n, then $C_n - e = P_n$. Hence Lemma 8 shows that $b_R(C_n) \geq 2$. We distinguish three cases.
Assume that $n = 3k$. Lemma 8 implies that $\gamma_R(C_n) = 2k$ and $\gamma_R(C_n - \{v_1v_2, v_2v_3\}) = 1 + 2k$ and thus $b_R(C_n) = 2$.

Assume that $n = 3k + 1$. Lemma 8 implies that $\gamma_R(C_n) = 2k + 1$ and $\gamma_R(C_n - \{v_1v_2, v_2v_3\}) = 2 + 2k$ and thus $b_R(C_n) = 2$.

Assume that $n = 3k + 2$. By Lemma 8, $\gamma_R(C_n) = 2k + 2$. If e_1 and e_2 are two arbitrary edges of C_n, then $C_n - \{e_1, e_2\}$ consists of two paths P_1 and P_2 of order n_1 and n_2 such that $n_1 + n_2 = n$ and $\gamma_R(C_n - \{e_1, e_2\}) = \gamma_R(P_1) + \gamma_R(P_2)$. Now there are integers k_1 and k_2 such that $n_1 = 3k_1, n_2 = 3k_2 + 2$ or $n_1 = 3k_1 + 1, n_2 = 3k_2 + 1$ or $n_1 = 3k_1 + 2, n_2 = 3k_2 + 2$ and $k_1 + k_2 = k$. In the second case we deduce from Lemma 8 that

$$\gamma_R(C_n - \{e_1, e_2\}) = \gamma_R(P_1) + \gamma_R(P_2)$$

$$= \left\lceil \frac{6k_1 + 2}{3} \right\rceil + \left\lceil \frac{6k_2 + 2}{3} \right\rceil$$

$$= 2k_1 + 1 + 2k_2 + 1 = 2k + 2 = \gamma_R(C_n).$$

Because of $b_R(C_n) \leq 3$, this leads to $b_R(C_n) = 3$ in this case. The remaining two cases are similar and are therefore omitted.

Theorem 11. If m and n are integers such that $1 \leq m \leq n$ and $n \geq 2$, then $b_R(K_{m,n}) = m$, with exception of the case $m = n = 3$. In addition, $b_R(K_{3,3}) = 4$.

Proof. Let $G = K_{m,n}$. First notice that if $m = 1$, then G is a star and $\gamma_R(G - e) = 3 > 2 = \gamma_R(G)$ for any edge e, and hence $b_R(G) = 1 = m$.

Assume next that $m = 2$. If $n = 2$, then the desired result follows from Theorem 10. If $n \geq 3$, then $\gamma_R(G - e) = \gamma_R(G) = 3$ for any edge e. But if e_1 and e_2 are two edges incident to a vertex of degree two, then $\gamma_R(G - \{e_1, e_2\}) = 4$ and thus $b_R(G) = 2 = m$.

Finally assume that $m \geq 3$. Let X and Y be the two partite sets with $|X| = m$ and $|Y| = n$. If E is a set of edges with $|E| < m$ and $G_1 = G - E$, then there are two vertices $x \in X$ and $y \in Y$ such that $N_{G_1}(x) = Y$ and $N_{G_1}(y) = X$. It follows that $\gamma_R(G_1) = 4 = \gamma_R(G)$ and thus $b_R(G) \geq m$. However, if we remove all edges incident to a vertex $y \in Y$, then we obtain a graph G_2 such that $\gamma_R(G_2) = 5$ when $n \geq 4$. This shows that $b_R(G) = m$ when $n \geq 4$. Finally, let $X = \{x_1, x_2, x_3\}$ and $Y = \{y_1, y_2, y_3\}$ be the partite sets of $K_{3,3}$. Let E be a subset of edges such that $\gamma_R(K_{3,3} - E) > \gamma_R(K_{3,3}) = 4$. Assume that $|E| < 4$, and without loss of generality assume that $|E| = 3$. Let $E = \{e_1, e_2, e_3\}$. If no two
edges of E have a common end point, then we may assume, without loss of generality, that $e_i = x_i y_i$ for $i = 1, 2, 3$. Then $\gamma_R(K_{3,3} - E) = 4$ and $(\{x_2, y_2, x_3, y_3\}, \emptyset, \{x_1, y_1\})$ is a γ_R-function for $K_{3,3} - E$, a contradiction. Thus we assume, without loss of generality, that $e_1 = x_1 y_1$ and $e_2 = x_1 y_2$. If $e_3 = x_2 y_3$, then $\gamma_R(K_{3,3} - E) = 4$, and $(\{y_1, y_2, y_3\}, \{x_1, x_2\}, \{x_3\})$ is a γ_R-function for $K_{3,3} - E$, a contradiction. Thus $e_3 \neq x_1 y_3$. Similarly, this case produces a contradiction. We conclude that $b_R(K_{3,3}) \geq 4$. On the other hand $\gamma_R(K_{3,3} - \{x_1 y_2, x_2 y_3, y_1 x_2, y_1 x_3\}) = 5 > \gamma_R(K_{3,3})$. Hence, $b_R(K_{3,3}) = 4$.

4. Trees and Unicyclic Graphs

Lemma 12. If a graph G has a support vertex v of degree at least three such that all of its neighbors except one is a leaf, then $b_R(G) \leq 2$.

Proof. Let $N(v) = \{v_1, v_2, \ldots, v_k\}$ such that $\deg(v_k) \geq 2$. Applying (1) on the path $v_1 v_2$ in the case $\deg(v) = k = 3$, we obtain $b_R(G) \leq 2$ immediately.

Assume now that $\deg(v) = k \geq 4$. Let $f = (V_0; V_1; V_2)$ be a γ_R-function of $G - v_1$. It follows that $v_1 \in V_1$ and, without loss of generality, that $v \in V_2$. Therefore $(V_0 \cup \{v_1\}, V_1 - \{v_1\}; V_2)$ is a RDF on G of weight $\gamma_R(G) - 1$, and thus $b_R(G) = 1$.

Theorem 13. For any tree T with at least three vertices, $b_R(T) \leq 3$.

Proof. If T has a support vertex v of degree at least three such that all of its neighbors except one is a leaf, then $b_R(T) \leq 2$ by Lemma 12. So assume that for any support vertex v either $\deg(v) = 2$ or v has at least two neighbors which are no leaves. Let $P = v_1 v_2 \ldots v_k$ be a longest path of T. By the assumption, $\deg_T(v_2) = 2$. If $\deg_T(v_3) \leq 3$, then (1) with the path $v_1 v_2 v_3$ shows that $b_R(T) \leq 3$.

Assume now that $\deg_T(v_3) \geq 4$. Suppose to the contrary that $b_R(T) > 3$. So $\gamma_R(T - \{v_2 v_3, v_3 v_4\}) = \gamma_R(T)$. Let $f = (V_0; V_1; V_2)$ be a γ_R-function on $T - \{v_2 v_3, v_3 v_4\}$. Then $f(v_1) + f(v_2) = 2$. If $v_3 \in V_1$, then

$$((V_0 - \{v_1, v_2\}) \cup \{v_1, v_3\}; V_1 - \{v_3\}; (V_2 - \{v_1, v_2\}) \cup \{v_2\})$$

is a RDF on T of weight less than $\gamma_R(T)$. This contradiction implies that $v_3 \notin V_1$. Similarly, $v_3 \notin V_2$. So $v_3 \in V_0$. We deduce that there is a vertex
Let \(w_1 \in N_{V(T - \{v_2v_3,v_3v_4\})}(v_3) \cap V_2 \). If \(w_1 \) is a leaf, then

\[
((V_0 - \{v_1,v_2\}) \cup \{w_1,v_2\}; (V_1 - \{v_1,v_2\}) \cup \{v_1\}; (V_2 - \{v_1,v_2\}) \cup \{v_3\})
\]
is a RDF on \(T \) of weight less than \(\gamma_R(T) \), a contradiction. It follows that \(w_1 \) is a support vertex with \(\deg_T(w_1) = 2 \). Let \(u_1 \) be a leaf adjacent to \(w_1 \). By the assumption, \(\gamma_R(T - \{v_2v_3,v_3v_4,v_1v_3\}) = \gamma_R(T) \). Let \(g \) be a \(\gamma_R \)-function on \(T - \{v_2v_3,v_3v_4,v_1v_3\} \). If \(g(v_3) = 1 \), then we replace \(g(v_3) \) by 0, \(g(v_2) \) by 2 and \(g(v_1) \) by 0 to obtain a RDF on \(T \) of weight less than \(\gamma_R(G) \), a contradiction. Similarly, we observe that \(g(v_3) \neq 2 \). So \(g(v_3) = 0 \).

We deduce that there is a vertex \(w_2 \in N_{T - \{v_2v_3,v_3v_4,v_1v_3\}}(v_3) \) such that \(g(w_2) = 2 \). We can easily see that \(w_2 \) is a support vertex with \(\deg_T(w_2) = 2 \). Let \(u_2 \) be the leaf adjacent to \(w_2 \).

Now we consider the forest \(T - \{v_2v_3,v_3w_1,v_3w_2\} \). Our assumption implies that \(\gamma_R(T - \{v_2v_3,v_3w_1,v_3w_2\}) = \gamma_R(T) \). Let \(h \) be a \(\gamma_R \)-function on \(T - \{v_2v_3,v_3w_1,v_3w_2\} \). Then

\[
h(v_1) + h(v_2) = h(w_1) + h(u_1) = h(w_2) + h(u_2) = 2.
\]

We replace \(g(v_3) \) by 2, \(g(v_2), g(w_1), g(w_2) \) by 0, and \(g(v_1), g(u_1), g(u_2) \) by 1, to obtain a RDF on \(T \) of weight less than \(\gamma_R(T) \), a contradiction. Hence \(b_R(T) \leq 3 \), and the proof is complete.

The following figure shows that the bound of Theorem 13 is sharp. It is a simple matter to verify that \(b_R(H) = 3 \).

\[
\begin{array}{c}
\text{\includegraphics[width=0.5\textwidth]{graph.png}}
\end{array}
\]

In the next theorem we give a sharp upper bound for Roman bondage number in unicyclic graphs.

Theorem 14. For any unicyclic graph \(G \), \(b_R(G) \leq 4 \), and this bound is sharp.
Proof. Let G be a unicyclic graph, and let C be the unique cycle of G. If $G = C$, then by Theorem 10, $b_R(G) \leq 3$. Assume that $G \neq C$. Let $v_1 - v_2 - \cdots - v_k$ be the longest path where v_1 is a leaf and $\{v_1, v_2, \ldots, v_k\} \cap V(C) = \{v_k\}$. Let $V(C) = \{u_1, u_2, \ldots, u_t\}$, where $u_1 = v_k$ and $N_C(v_k) = \{u_2, u_t\}$. If $b_R(G) \leq 2$, then we have done. So suppose that $b_R(G) \geq 3$.

First assume that $k \geq 4$. By Lemma 12, $deg(v_2) = 2$. If $deg(v_3) \leq 4$, then $b_R(G) \leq 4$. So we assume that $deg(v_3) \geq 5$. Let A be the set of all leaves of G at distance 2 from v_3 except the leaves adjacent to v_4. Let e_1, e_2, e_3 be three edges incident with v_3 with $\{e_1, e_2, e_3\} \cap \{v_2v_3, v_3v_4\} = \emptyset$. We show that $\gamma_R(G - \{v_2v_3, e_1, e_2, e_3\}) > \gamma_R(G)$. Suppose to the contrary that $\gamma_R(G - \{v_2v_3, e_1, e_2, e_3\}) = \gamma_R(G)$. Let f be a γ_R-function for $G - \{v_2v_3, e_1, e_2, e_3\}$. It follows that $g : V(G) \rightarrow \{0, 1, 2\}$ defined by $g(v_3) = 2$, $g(x) = 0$ if $x \in N(v_3)$, $g(x) = 1$ if $x \in A$, and $g(x) = f(x)$ if $x \notin N[V_3] \cup A$, is a RDF for G with weight less than $\gamma_R(G)$. This contradiction implies that $\gamma_R(G - \{v_2v_3, e_1, e_2, e_3\}) > \gamma_R(G)$, and so $b_R(G) \leq 4$.

Now suppose that $k \leq 3$. For $k = 2$, it is straightforward to verify that if $deg(v_2) \geq 4$, then $\gamma_R(G - \{v_1v_2, u_1u_2\}) > \gamma_R(G)$. Suppose that $deg(v_2) = 3$. As an immediately result $deg(u_i) \leq 3$ for $i = 1, 2, \ldots, t$. Again we can easily see that for $deg(u_2) = 2$, $\gamma_R(G - \{v_2v_2, v_2u_2, v_2u_3\}) > \gamma_R(G)$, and for $deg(u_2) = 3$, $\gamma_R(G - \{v_2u_2, v_2u_3, u_2u_3\}) > \gamma_R(G)$. Thus $b_R(G) \leq 3$. It remains to suppose that $k = 3$. By Lemma 12, $deg(v_2) = 2$. If $deg(v_3) \leq 4$, then (1) with the path $v_1v_2v_3$ shows that $b_R(G) \leq 4$. So suppose that $deg(v_3) \geq 5$. This time $\gamma_R(G - \{v_2v_3, v_3x, v_3y\}) > \gamma_R(G)$, where $\{x, y\} \cap \{u_2, u_1, v_2\} = \emptyset$. We deduce that $b_R(G) \leq 3$.

To see the sharpness, let G be a graph obtained from any cycle C_n on $n \geq 3$ vertices by identifying every vertex of C_n with the central vertex of a path P_3. It is straightforward to verify that $\gamma_R(G) = 4n$, and $b_R(G) = 4$.

We close the paper with the following problem.

Problem 15. Determine the trees T with $\gamma_R(T) = 1$, $\gamma_R(T) = 2$ and $\gamma_R(T) = 3$.

Acknowledgement

We would like to thank the referees for their careful review of our manuscript and some helpful suggestions.
Roman Bondage in Graphs

References

Received 14 June 2010
Revised 23 November 2010
Accepted 23 November 2010