CLIQUE GRAPH REPRESENTATIONS
OF PTOLEMAIC GRAPHS

Terry A. McKee

Department of Mathematics and Statistics
Wright State University
Dayton, Ohio 45435, USA

Abstract

A graph is ptolemaic if and only if it is both chordal and distance-hereditary. Thus, a ptolemaic graph G has two kinds of intersection graph representations: one from being chordal, and the other from being distance-hereditary. The first of these, called a clique tree representation, is easily generated from the clique graph of G (the intersection graph of the maximal complete subgraphs of G). The second intersection graph representation can also be generated from the clique graph, as a very special case of the main result: The maximal P_n-free connected induced subgraphs of the p-clique graph of a ptolemaic graph G correspond in a natural way to the maximal P_{n+1}-free induced subgraphs of G in which every two nonadjacent vertices are connected by at least p internally disjoint paths.

Keywords: Ptolemaic graph, clique graph, chordal graph, clique tree, graph representation.

2010 Mathematics Subject Classification: 05C62, 05C75.

1. Basic Concepts

For any graph G, denote the family of all maxcliques of G—meaning the inclusion-maximal complete subgraphs of G—as $\mathcal{C}(G)$, and denote the family of all inclusion-maximal induced connected subgraphs of G that are cographs—meaning they contain no induced path of length three—as $\mathcal{CC}(G)$.
(Of course \(\mathcal{C}(G) \) can be equivalently described as the family of all maximal induced subgraphs of \(G \) that contain no induced path of length two.)

Let \(\Omega(\mathcal{C}(G)) \) [respectively, \(\Omega(\mathcal{CC}(G)) \)] denote the *clique intersection graph* [or the *CC intersection graph*] of \(G \), meaning the intersection graph that has the members of \(\mathcal{C}(G) \) [or \(\mathcal{CC}(G) \)] as nodes, with two nodes adjacent if and only if their vertex sets have nonempty intersection. Let \(\Omega^w(\mathcal{C}(G)) \) and \(\Omega^w(\mathcal{CC}(G)) \) denote their weighted counterparts where, for \(S, S' \) in \(\mathcal{C}(G) \) or in \(\mathcal{CC}(G) \), the weight of the edge \(SS' \) equals \(|V(S) \cap V(S')| \). Figure 1 shows an example.

For each \(p \geq 1 \), the *\(p \)-clique graph* \(K_p(G) \) of \(G \) is the graph that has the maxcliques of \(G \) as nodes, with two nodes \(Q \) and \(Q' \) adjacent in \(K_p(G) \) if and only if \(|V(Q) \cap V(Q')| \geq p \); see [6, section 6.1]. In other words, \(K_p(G) \) is the graph that is formed by the edges of \(\Omega^w(\mathcal{C}(G)) \) that have weight \(p \) or more. The *clique graph* of \(G \) is \(K_1(G) \), typically abbreviated as \(K(G) \); see [9]. For instance, \(K(G) \) for the graph \(G \) in Figure 1 is \(\Omega^w(\mathcal{C}(G)) \) without the edge weights; Figure 2 shows \(K_2(G) \) for the same \(G \).

A graph is *chordal* if every cycle of length four or more has a *chord* (meaning an edge that joins two vertices of the cycle that are not consecutive along the cycle). Among many characterizations in [3, 6], a graph \(G \) is
Clique Graph Representations of Ptolemaic Graphs

Figure 2. The 2-clique graph \(K_2(G) \) of the graph \(G \) in Figure 1.

A set \(S \subset V(G) \) is a vertex separator of a graph \(G \) if there are vertices \(v, w \) that are in a common component of \(G \) but different components of the subgraph induced by \(V(G) - S \); such an \(S \) is also called a \(v, w \)-separator. If \(G \) is chordal with a clique tree \(T \), then the inclusion-minimal vertex separators of \(G \) correspond exactly to \(V(Q) \setminus V(Q') \) where \(QQ' \) is an edge \(T \); see [6, section 2.1] for details.

A graph \(G \) is distance-hereditary if the distance between vertices in a connected induced subgraph of \(G \) always equals their distance in \(G \). Equivalently, \(G \) is distance-hereditary if and only if, for every \(v, w \in V(G) \), all the induced \(v \)-to-\(w \) paths in \(G \) have the same length; see [3]. A graph \(G \) is distance-hereditary if and only if \(G \) has a CC tree \(T \), where \(T \) is a spanning tree of \((\mathcal{C}(G)) \) such that each subgraph \(T_v \) (defined the same as for clique
trees) is a subtree of T. Again, \mathcal{CC} trees are the maximum spanning trees of $\Omega^w(\mathcal{CC}(G))$; see [3, 5, 7] for details of all this. The graph shown in Figure 1 is distance-hereditary, and Figure 3 shows its \mathcal{CC} tree (which is unique in this example).

Let P_n and C_n denote, respectively, a path or cycle with n vertices. Let $v \sim w$ denote that vertices v and w are adjacent, and let $N(v) = \{ x : v \sim x \in V(G) \}$. Define a gem to be a graph that consists of a cycle of length five together with two chords with a common endpoint. For any graph H, a graph G is said to be H-free if G has no induced subgraph isomorphic to H. For any graph G with induced subgraph H and vertex $v \in V(G) - V(H)$, let H^+v denote the subgraph of G induced by $V(H) \cup \{ v \}$.

A graph is ptolemaic if it is both chordal and distance-hereditary; see [3, 4] for history and details. Being ptolemaic is equivalent to being both gem-free and chordal, and also to being both C_4-free and distance-hereditary. Ptolemaic graphs therefore have two kinds of tree representations: both a clique tree because of being chordal, and a \mathcal{CC} tree because of being distance-hereditary. Corollary 5 will show how the clique graph of a ptolemaic graph G also determines $\mathcal{CC}(G)$ and thereby the \mathcal{CC} trees of G. But first, Theorem 1 will further characterize ptolemaic graphs and Theorem 4 will show how subgraphs of a ptolemaic graph G can be identified in the clique graph of G.

Theorem 1. Each of the following is equivalent to a chordal graph G being ptolemaic:

1. \(\text{(1.1)} \) Every edge in $K(G)$ is contained in some clique tree for G.
2. \(\text{(1.2)} \) For every $p \geq 1$, every induced path in $K_p(G)$ is contained in some clique tree for G.

Proof. From [4, Theorem 2.4], a graph G is ptolemaic if and only if every nonempty intersection of two maxcliques of G is an inclusion-minimal vertex separator of G. Recalling that the inclusion-minimal vertex separators of G correspond exactly to the edges of a clique tree for G, and that every maximum spanning tree of $\Omega^w(\mathcal{CC}(G))$ is a clique tree for G, it follows that being ptolemaic is equivalent to condition (1.1). Also, the $p = 1$ case of (1.2) implies (1.1).

To finish the proof, suppose G is ptolemaic, condition (1.1) holds, and $p \geq 1$ [toward proving condition (1.2)]. Let $\mathcal{C}(G) = \{ Q_1, \ldots, Q_c \}$ where $\Pi = Q_1, \ldots, Q_n$ is an induced path in $K_p(G)$, and let

$$\mu = \max\{|V(Q_i) \cap V(Q_j)| : 1 \leq i < j \leq n\}.$$
Using (1.1), let T_2 be a clique tree that contains the edge Q_1Q_2. Each node Q_i of T_2—equivalently, each maxclique Q_i of G—with $i \notin \{1, 2\}$ will contain a vertex $v_i \notin V(Q_1) \cup V(Q_2)$. Form a new graph G_2 from G by creating a set S_2 of $\mu - |V(Q_1) \cap V(Q_2)| + 1$ new vertices that are adjacent precisely to each other and to the vertices in $Q_1 \cup Q_2$. For $i \in \{1, 2\}$, let Q_i^2 be the subgraph induced by $V(Q_i) \cup S_2$ in G_2; for $i \notin \{1, 2\}$, let $Q_i^2 = Q_i$. The maxcliques of G_2 will be precisely Q_1^2, Q_2^2 (since each $N(v_i) \cap S_2 = \emptyset$).

To show that G_2 is chordal, suppose C were a chordless cycle of G_2 with length four or more such that C contained a vertex $s \in S_2$ [arguing by contradiction]. Then C would consist of edges sq_1 and sq_2 with $q_1 \in V(Q_1) - V(Q_2)$ and $q_2 \in V(Q_2) - V(Q_1)$, together with an induced q_1-to-q_2 path π within G. Because Q_1Q_2 is an edge of the clique tree T_2, the set $V(Q_1) \cap V(Q_2)$ will be a q_1,q_2-separator, and so the path π must contain an internal vertex $w \in V(Q_1) \cap V(Q_2)$, making $w \sim s$ [contradicting that C was chordless].

To show that G_2 is gem-free, suppose $\{a, b, c, d, e, a\}$ induced a gem in G_2 [arguing by contradiction], where a, b, c, d, e, a is a cycle that has exactly the two chords be and ce. If $a \in S_2$, then $a, b, e \in V(Q_1^2)$ where $i \in \{1, 2\}$ and $c, d \notin V(Q_i^2)$; then there would exist a $v \in V(Q_i)$ with $c \not\sim v \not\sim d$, which would make $\{v, b, c, d, e\}$ induce a gem in G [contradicting that G is ptolemaic]. The case $d \in S_2$ is similar. If $b \in S_2$, then (without loss of generality) vertex a is in $Q_1 - Q_2$, vertex c is in $Q_2 - Q_1$, vertex d is not in $Q_1 \cup Q_2$, and vertices b and e are in $Q_1 \cap Q_2$; then there would exist a $v \in V(Q_1) \cap V(Q_2) - \{e\}$, which would make $\{a, v, c, d, e\}$ induce a gem in G [contradicting that G is ptolemaic]. The case $c \in S_2$ is similar. Note that $e \notin S_2$, since e is in at least three maxcliques of G.

Therefore, G_2 is ptolemaic.

Repeat the G_2 construction to form new ptolemaic graphs G_i—from G_{i-1} using $\mu - |V(Q_{i-1}) \cap V(Q_i)| + 1$ new vertices adjacent precisely to each other and to the vertices in $V(Q_{i-1}) \cup V(Q_i)$—whenever $3 \le i \le n$. The final ptolemaic graph G_n will have maxcliques Q_1^n, \ldots, Q_c^n that contain Q_1, \ldots, Q_c respectively, where Q_1^n, \ldots, Q_c^n forms an induced path Π_n of maximum-weight edges of $K_{\mu+1}(G_n)$. Let T_n be a maximum spanning tree of $\Omega^\gamma(C(G_n))$ that contains Π_n. This T_n will be a clique tree for G_n and, by suppressing all the vertices in $V(G_n) - V(G)$, this T_n will correspond to a clique tree of G that contains the edges of Π.

The following consequence of Theorem 1 will be used several times in Section 2.
Lemma 2. If G is ptolemaic with $p \geq 1$ and $n \geq 2$ and if Q_1, \ldots, Q_n is an induced path in $K_p(G)$, then there exist $v_0, \ldots, v_n \in V(G)$ such that $v_0 \in V(Q_j)$ exactly when $j = 1$, each $1 \leq i \leq n - 1$ has $e_i \in V(Q_j)$ exactly when $j \in \{i, i + 1\}$, and $v_n \in V(Q_j)$ exactly when $j = n$.

Proof. Suppose G is ptolemaic with $p \geq 1$ and $n \geq 2$, suppose $\Pi = Q_1, \ldots, Q_n$ is an induced path in $K_p(G)$ and, within this proof, identify each Q_i with $V(Q_i)$. Therefore $|i - j| = 1$ implies $|Q_i \cap Q_j| \geq p$ and $|i - j| > 1$ implies $|Q_i \cap Q_j| < p$. The existence of the desired $v_0 \in Q_1$ and $v_n \in Q_n$ follows from $Q_1 \not\subseteq Q_2$ and $Q_n \not\subseteq Q_{n-1}$ (since maxcliques of any graph have incomparable vertex sets). The existence of the desired $v_1 \in Q_1 \cap Q_2 - Q_3$ follows from $Q_1 \cap Q_2 \not\subseteq Q_2 \cap Q_3$ (since $|Q_1 \cap Q_3| < p$); the existence of $v_{n-1} \in Q_n \cap Q_{n-1} - Q_{n-2}$ follows similarly.

Suppose $1 < i < n - 1$ [toward showing the existence of $v_i \in (Q_i \cap Q_{i+1}) - (Q_{i-1} \cup Q_{i+2})$]. Suppose instead that $Q_i \cap Q_{i+1} \subseteq Q_{i-1} \cup Q_{i+2}$ [arguing by contradiction]. By Theorem 1, Π is a path in some clique tree T for G. Because Π is an induced path, the three cardinality-p sets $Q_{i-1} \cap Q_i$, $Q_i \cap Q_{i+1}$, and $Q_{i+1} \cap Q_{i+2}$ are pairwise unequal, and so there exist $v \in Q_{i-1} \cap Q_i + Q_{i+1} - Q_{i-1}$ and $w \in Q_i \cap Q_{i+1} - Q_{i+2}$ (and so $w \in Q_{i-1}$, since $Q_i \cap Q_{i+1} \subseteq Q_{i-1} \cup Q_{i+2}$). There would also exist $t \in Q_{i-1} - Q_i$, $u \in Q_{i-1} \cap Q_i - Q_{i+1}$, and $x \in Q_{i+1} \cap Q_{i+2} - Q_i$ (just as for the $i = 0, 1, n - 1$ cases, respectively, but now for the path $Q_{i-1}, Q_i, Q_{i+1}, Q_{i+2}$). So $\{t, u, w\}$, $\{u, v, w\}$, and $\{v, w, x\}$ would induce triangles (inside Q_{i-1}, Q_i and Q_{i+1} respectively), and $u \not\sim x \not\sim t \not\sim v$ (for instance, $u \not\sim x$ since u and x are not in a common maxclique, using that T is a clique tree for G). But then $\{t, u, v, w, x\}$ would induce a gem in G [contradicting that G is ptolemaic].

2. Representing Subgraphs of G within $K(G)$

For each $p \geq 1$ and $n \geq 2$, let $\langle G, p, n \rangle$ denote the family of all induced subgraphs of G that are maximal with respect to both being P_n-free and having every two nonadjacent vertices connected by at least p internally-disjoint paths (such paths form what is sometimes called a p-skein). That second condition is equivalent to the subgraph being either p-connected or complete. For example, $\langle G, 1, 2 \rangle = V(G)$, $\langle G, 1, 3 \rangle = C(G)$, and $\langle G, 1, 4 \rangle = CC(G)$, while $\langle G, 2, 4 \rangle$ consists of the 2-connected members of $CC(G)$ together with any bridges (edges that are not in cycles) and isolated vertices.
If H is a connected induced subgraph of $K(G)$ and H is a connected induced subgraph of G, then say that H represents H in G if H is induced by the vertices that are in the union of the maxcliques of G that correspond to the nodes of H. In Figure 1 for instance, the path H of $K(G)$ induced by the nodes $ghjk$, jkm, and mn represents the subgraph H of G that is induced by $\{g, h, j, k, m, n\}$. Every connected induced subgraph H of $K(G)$ clearly represents a connected induced subgraph H of G with $H \cong K(H)$, but not conversely: for instance, $V(H) = \{e, h, k\}$ is not even a union of maxcliques of G.

Given a family $\text{FAM}_{K(G)}$ of connected induced subgraphs of $K(G)$ and a family FAM_G of connected induced subgraphs of G, say that the members of $\text{FAM}_{K(G)}$ represent precisely the members of FAM_G if every $H \in \text{FAM}_{K(G)}$ represents an $H \in \text{FAM}_G$ and every $H \in \text{FAM}_G$ is represented by some $H \in \text{FAM}_{K(G)}$. For instance, the nodes of $K(G)$ always represent precisely the maxcliques of G.

Theorem 4 will look at certain kinds of subgraphs of the clique graph of a ptolemaic graph G and at the kinds of subgraphs of G that they represent. For instance, Corollary 5 will show that the maxcliques of the clique graph of a ptolemaic graph G represent precisely the members of $\mathcal{C}(G)$. Theorem 4 will use the following lemma.

Lemma 3. If G is ptolemaic with $p \geq 1$ and $n \geq 2$ and if $H \in \langle G, p, n \rangle$, then $\mathcal{C}(H) \subseteq \mathcal{C}(G)$.

Proof. Suppose G is ptolemaic (and so chordal and distance-hereditary) with $p \geq 1$ and $n \geq 2$, and suppose $H \in \langle G, p, n \rangle$ and $Q \in \mathcal{C}(H) - \mathcal{C}(G)$ [arguing by contradiction]: so there exists $v \in V(G) - V(H)$ with $Q \subseteq N(v)$. The maximality of H from being in $\langle G, p, n \rangle$ implies that $H^+v \notin \langle G, p, n \rangle$, and so H must be p-connected (as opposed to H being complete with $|V(H)| = |V(Q)| \leq p$). Also, H must be chordal (since G is), and so H will have a clique tree T. Since H is p-connected, every edge Q_iQ_j of T will have $|V(Q_i) \cap V(Q_j)| \geq p$ (since $V(Q_i) \cap V(Q_j)$ will be a minimal vertex separator in G), and so every node Q_1 of T will have $|V(Q_i)| \geq p$. In particular, $|V(Q)| \geq p$, which makes H^+v also p-connected. Hence, $H^+v \notin \langle G, p, n \rangle$ implies that there must exist an induced path $\pi = v_1, \ldots, v_n$ in G that has $v \in V(\pi) \subseteq V(H) \cup \{v\}$.

Vertex v cannot be an interior vertex of π—otherwise $\{v_1, v_n\} \subseteq V(H)$ and $H \in \langle G, p, n \rangle$ would imply there is an induced v_1-to-v_n path within H shorter than π [contradicting that G is distance-hereditary].
Without loss of generality, say $v = v_1$ and suppose for the moment that $v_2 \notin V(Q)$. Note that $v_1 \notin V(Q)$ for $i \geq 3$ (since $V(Q) \subset N(v)$ and π induced implies such v_1 not adjacent to v_1). Because $v_2 \notin V(Q)$ and Q is a maxclique of G, there is a $q \in V(Q)$ such that $v_2 \sim q \sim v_1$. Note that $v_i \sim q$ for $i \geq 3$ [otherwise some q, v_1, \ldots, v_i, q would be an induced cycle in G with length $i + 1 \geq 4$, contradicting that G is chordal]. So q, v_1, \ldots, v_n is an induced q-to-v_n-path of length n in G. But $H \in \langle G, p, n \rangle$ would imply there is an induced q-to-v_n-path within H of length less than n [again contradicting that G is distance-hereditary].

Thus $v_2 \in V(Q)$. As before, $v_i \notin V(Q)$ for $i \geq 3$. Because $v_3 \notin V(Q)$, there is a $q \in V(Q)$ such that $v_3 \sim q \sim v_2$. Note that $v_i \sim q$ when $i \geq 4$ (otherwise some q, v_2, \ldots, v_i, q would be an induced cycle in G with length $n = i \geq 4$). But then q, v_2, \ldots, v_n would form an induced P_n in H [contradicting $H \in \langle G, p, n \rangle$].

Theorem 4. If G is ptolemaic with $p \geq 1$ and $n \geq 2$, then the subgraphs of $K(G)$ in $\langle K_p(G), 1, n \rangle$ represent precisely the subgraphs of G in $\langle G, p, n+1 \rangle$.

Before proving Theorem 4, it will be helpful to illustrate it using Figure 1 and Figure 2: When $p = 2$ and $n = 3$, the six $\mathcal{H} \in \langle K_2(G), 1, 3 \rangle$—these are the six maxcliques of $K_2(G)$—represent the six subgraphs of G that are induced by \{a, b, c, d, e, g, h\}, \{g, h, j, k, l, m\}, \{d, e, g, h, j, k\}, \{f, g\}, \{i, j\}, and \{m, n\}, and these are precisely the six subgraphs $H \in \langle G, 2, 4 \rangle$. When $p = 2$ and $n = 4$, the subgraph $\mathcal{H} \in \langle K_2(G), 1, 4 \rangle$ that is induced by the four nodes degh, ghjk, jkl, and jkm represents the subgraph $H \in \langle G, 2, 5 \rangle$ that is induced by $\{d, e, g, h, j, k, l, m\}$. When $p = 3$ and $n = 3$, the maxclique $\mathcal{H} \in \langle K_3(G), 1, 3 \rangle$ that is formed by the edge between abde and acde represents the subgraph $H \in \langle G, 3, 4 \rangle$ that is induced by $\{a, b, c, d, e\}$.

Proof. Suppose G is ptolemaic (and so chordal and distance-hereditary) with $p \geq 1$ and $n \geq 2$.

First suppose $\mathcal{H} \in \langle K_p(G), 1, n \rangle$ and \mathcal{H} represents a subgraph H of G. To show $H \in \langle G, p, n+1 \rangle$ requires showing three things: (i) that H is P_{n+1}-free, (ii) that every two nonadjacent vertices of H are connected by at least p internally-disjoint paths of H, and (iii) the maximality of H with respect to (i) and (ii). Within this proof, identify each maxclique Q with $V(Q)$.

To show (i), suppose instead that $\pi = v_1, v_2, \ldots, v_{n+1}$ is an induced path in H [arguing by contradiction]. Observe that $\mathcal{H} \in \langle K_p(G), 1, n \rangle$ is a subgraph of an induced subgraph $\mathcal{H}^* \in \langle K(G), 1, n \rangle$ on the same node-set as
For each $i \in \{1, 2, \ldots, n-1\}$, let Q_i be a maxclique of G that is a node of \mathcal{H}^* such that $Q_i \cap V(\pi) = \{v_i, v_{i+1}\}$. Note that $|i-j| = 1$ implies $Q_i \cap Q_j \neq \emptyset$ (because $v_i \in Q_i \cap Q_{i+1}$). If $|i-j| > 1$ and $x \in Q_i \cap Q_j$, then x will be adjacent to v_i and v_{i+1} (because $x \in Q_i$), to v_j and v_{j+1} (because $x \in Q_j$), and to every $v_{i'}$ with $i + 1 < i' < j$ (since π being induced implies that such $x_{i,j}$ would be the only possible chords in the cycle formed by edges from $E(\pi) \cup \{x_{i+1,j}, x_{j+1,i}\}$ in the chordal graph G). Therefore $|i-j| > 1$ implies $Q_i \cap Q_j = \emptyset$ (because if $x \in Q_i \cap Q_j$, then $\{x, v_i, v_{i+1}, v_{i+2}, v_{i+3}\}$ would induce a gem in G [contradicting that G is distance-hereditary]). Thus Q_1, \ldots, Q_n would be an induced path in \mathcal{H}^* [contradicting $\mathcal{H}^* \not\in \langle K(G), 1, n \rangle$].

To show (ii), suppose v and w are nonadjacent vertices of H and suppose $\Pi = Q_1, \ldots, Q_t$ is an induced path in \mathcal{H} (so $|i-j| = 1$ implies $|Q_i \cap Q_j| \geq p$ and $|i-j| > 1$ implies $|Q_i \cap Q_j| < p$) with $v \in Q_1 - Q_2$ and $w \in Q_t - Q_{t-1}$. By Theorem 1, Π is a subpath of some clique tree for G. Therefore if $i < j < k$ and $x \in Q_i \cap Q_k$, then $x \in Q_j$. Hence, for each $1 \leq i \leq t - 1$, it is possible to pick distinct vertices $x_{(i,1), \ldots, x_{(i,p)}} \in Q_i \cap Q_{i+1}$ such that $x_{(i,j)} \neq x_{(i',j')}$ whenever $j \neq j'$. (It is possible that $x_{(i,j)} = x_{(i',j')}$. Thus for $1 \leq j \leq p$, each set $\{v, x_{(1,j), \ldots, x_{(t,j), w}}\}$ will then contain the vertices of a v-to-w path π_j in H with $2 \leq |E(\pi_j)| \leq l$ such that π_j and $\pi_{j'}$ are internally disjoint whenever $j \neq j'$.)

To show (iii), suppose that H is a proper induced subgraph of $H' \in \langle G, p, n + 1 \rangle$ [arguing by contradiction]. Specifically, suppose there exists a $v \in V(H') - V(H)$. Note that $H \not\subseteq N(v)$ in H', by the maximality of H' from being in $\langle G, p, n + 1 \rangle$. Thus there exists a $w \in V(H)$ with $v \not\sim w$. Let π_1, \ldots, π_p be internally-disjoint induced v-to-w paths in H', and let u_i be the neighbor of v along each π_i. Whenever $u_i \neq u_j$, the edge $u_i u_j$ must be a chord of the cycle $E(\pi_i) \cup E(\pi_j)$ (because G is chordal and π_i and π_j are induced paths). Thus $\{u_1, \ldots, u_p\}$ will induce a complete subgraph of G. Let Q' be a maxclique of H' and so a node of \mathcal{H}'—that contains $\{u_1, \ldots, u_p, v\}$. Note that $v \not\in V(H)$ implies that Q' is not a node of \mathcal{H}. Since there also exists a maxclique of H and so a node of \mathcal{H}—that contains $\{u_1, \ldots, u_p\}$ (but not v), \mathcal{H}^+Q' will also be a connected subgraph of $K_p(G)$. The maximality of \mathcal{H} from being in $\langle K_p(G), 1, n \rangle$ implies that \mathcal{H}^+Q' is not P_p-free, and so there must be an induced path Q_1, Q_2, \ldots, Q_n of $K_p(G)$ in \mathcal{H}^+Q' with $Q' = Q_i$ where $1 \leq i \leq n$. By Lemma 2, there would then exist an induced path $v_0, v_1, v_2, \ldots, v_n$ in H' [contradicting $H' \not\in \langle G, p, n + 1 \rangle$].
of maxcliques of G. Let \mathcal{H}^+ be the connected subgraph of $K(G)$ that is induced by the nodes that correspond to those maxcliques of G whose union is H—so \mathcal{H}^+ represents H. Let \mathcal{H} be the subgraph of $K_p(G)$ induced by the nodes of \mathcal{H}^+. Then \mathcal{H} also represents H and is connected in $K_p(G)$ (since every two nonadjacent vertices of H are connected by p internally-disjoint paths in H). To show that \mathcal{H} is P_n-free, suppose instead that Q_1, \ldots, Q_n is an induced path in \mathcal{H} (arguing by contradiction). By Lemma 2, there would exist an induced path v_0, v_1, \ldots, v_n in H [contradicting $H \notin \langle \langle G, 1, n + 1 \rangle \rangle$]. The maximality of H from being in $\langle \langle G, p, n + 1 \rangle \rangle$ implies the maximality of \mathcal{H} that ensures $\mathcal{H} \in \langle \langle K_p(G), 1, n \rangle \rangle$.

Corollary 5. If G is ptolemaic, then the maxcliques of $K(G)$ represent precisely the subgraphs of G that are in $\mathcal{CC}(G)$.

Proof. This is the $p = 1, n = 3$ case of Theorem 4. For the graph G in Figure 1 for instance, $\mathcal{CC}(G)$ has exactly four members, induced by the vertex sets $\{a, b, c, d, e, g, h\}$ and $\{d, e, f, g, h, j, k\}$ (represented by the two K_3 maxcliques of $K(G)$), $\{g, h, i, j, k, l, m\}$ (represented by the K_4 maxclique of $K(G)$), and $\{j, k, m, n\}$ (represented by the K_2 maxclique of $K(G)$).

Ptolemaic graphs are not characterized by Corollary 5, as shown by taking G to be the non-ptolemaic graph formed by the union of the length-10 cycle $v_1, v_2, \ldots, v_{10}, v_1$ and the length-5 cycle $v_1, v_3, v_5, v_7, v_9, v_1$. We leave as an open question how this might be modified into an actual characterization.

As another consequence of the $p = 1$ case of Theorem 4, the clique graph $K(G)$ of a connected ptolemaic graph G is complete—equivalently, $K(G)$ is P_4-free—if and only if G is P_4-free. Such P_4-free ptolemaic (equivalently, P_4-free chordal) graphs have been well-studied under various names in the literature, including ‘trivially perfect,’ ‘nested interval,’ ‘hereditary upper bound,’ and ‘quasi-threshold’ graphs; see [6, section 7.9].

For any graph G, the **diameter** of G, denoted $\text{diam } G$, is the maximum distance between vertices in G. If G is distance-hereditary, then $\text{diam } G \leq k$ if and only if G is P_{k+2}-free. (The equivalence fails for graphs that are not distance-hereditary; for instance, $\text{diam } C_5 = 2$ and yet C_5 contains induced P_4 subgraphs.) Reference [1] shows that G is ptolemaic if and only if $K(G)$ is ptolemaic. Using that, the following would be another consequence of the $p = 1$ case of Theorem 4: A ptolemaic graph G always satisfies $\text{diam } K(G) = \text{diam } G - 1$. (This is also a special case of the following much more general
result from [1, 2, 8], in which \(K^1(G) = K(G) \) and \(K^i(G) = K(K^{i-1}(G)) \) when \(i \geq 2 \): A chordal graph \(G \) always satisfies \(\text{diam} K^i(G) = \text{diam} G - i \) whenever \(i \leq \text{diam} G \).

References

Received 17 April 2009
Revised 23 February 2010
Accepted 2 March 2010