A NOTE ON HAMILTONIAN CYCLES IN GENERALIZED HALIN GRAPHS

Magdalena Bojarska
Makowskiego 5, 02-784 Warsaw, Poland
e-mail: m.bojarska@gmail.com

Abstract
We show that every 2-connected (2)-Halin graph is Hamiltonian.

Keywords: planar graphs, Halin graphs, hamiltonian cycles.

2010 Mathematics Subject Classification: 05C10, 05C45.

1. Introduction
We generalize the well-known notion of a Halin graph in the following way. An \((n)\)-Halin graph is a planar simple graph having the property that its edge set \(E\) can be partitioned as \(E = T \cup C_1 \cup C_2 \cup \cdots \cup C_n\) where \(T\) is a tree with no vertices of degree two and \(C_1, C_2, \ldots, C_n\) are pairwise disjoint cycles such that \(V(C_1) \cup \cdots \cup V(C_n)\) is the set of all leaves of \(T\) (see Figure 1). Thus, \((1)\)-Halin graphs are the usual Halin graphs. It is well known that Halin graphs are Hamiltonian, even Hamiltonian connected (see, for instance, Barefoot [1]). In this note we show that each 2-connected \((2)\)-Halin graph is Hamiltonian.

Figure 1. An example of a \((2)\)-Halin graph.
Theorem 1. A (2)-Halin graph is Hamiltonian if and only if it is 2-connected.

Our proof relies on Lemma 2 below. By a rooted Halin graph we mean a planar graph F which is the union of a rooted tree T, where the root of T is a vertex of degree at least two and all other vertices, except the leaves, are of degree at least three, and a path $P = \ell_1 \ell_2 \cdots \ell_m$ whose vertices are precisely the leaves of T. The endvertices ℓ_1 and ℓ_m of P are called left and rights corners of H respectively.

Lemma 2 [2]. Let F be a rooted Halin graph and let x, y be two different vertices from the set which consists of the root of F and its two corners. Then F contains a Hamiltonian path joining x and y.

Proof of Theorem 1. Clearly, since each Hamiltonian graph is 2-connected, we need only to prove that 2-connectivity is a sufficient condition for a (2)-Halin graph to be Hamiltonian. Let G be a (2)-Halin graph which decomposes into a tree T and two cycles C_1 and C_2, and let \hat{G} be an embedding of G into the plane. Without loss of generality we may assume that in the embedding \hat{G} the faces corresponding to C_1 and C_2 are both bounded. Let $x_1y_1 [x_2y_2]$ denote an edge of $C_1 [C_2]$ which belongs to the unbounded face, and let P_x and P_y denote the disjoint paths contained in T which join vertices x_1, x_2 and y_1, y_2 respectively. Note that because H is 2-connected P_x and P_y have to exist. Finally, let $P = v_1 v_2 \cdots v_n$, $n \geq 2$, be the unique path which joins the paths P_x and P_y in T.

Observe that if we remove P_m from the tree T, it decomposes into a number of ‘rooted Halin trees’, attached to vertices of the cycles C_1 and C_2. Moreover, since v_{n-1} has degree at least three, it must have a neighbor which does not lie on P; thus, without loss of generality, we may assume that it has a neighbor which is the root of a Halin tree attached to C_1. Now, using Lemma 2, we can define a Hamiltonian cycle H in G in the following way (see Figure 2). Start at the vertex y_1 and move to v_1, going through all vertices of the rooted Halin tree which contains y_1. Then go through y_2 and collect the vertices of all Halin rooted trees attached to C_2 up to v_1. Next, pass through the first $n-1$ vertices of P and then visit all vertices of the remaining Halin rooted trees attached to C_1 up to x_1 and finally, go back to y_1. ■
Let us conclude the note with a few remarks. It is tempting to generalize the above result to \((n)\)-Halin graphs and conjecture that, say, a \((3)\)-Halin graph is Hamiltonian whenever it is 1-tough. Unfortunately, it is not the case; Figure 3 shows a 1-tough \((3)\)-Halin graph which, as one can easily check, contains no Hamiltonian cycle. Moreover, unlike \((1)\)-Halin graphs (which are always 3-connected), 3-connected \((2)\)-Halin graphs are not always Hamiltonian connected (see Figure 4). Finally, we remark that from the proof of Theorem 1 it follows that a Hamiltonian cycle in \((2)\)-Halin graph, if exists, can be found in polynomial time. It is not clear whether the same holds for \((3)\)-Halin graph, and more generally, if there exists \(k\) such that the problem of deciding hamiltonicity of \((k)\)-Halin graph is \(NP\)-complete.

Figure 2. A construction of a Hamiltonian cycle in \((2)\)-Halin graph.

Figure 3. An example of a non-Hamiltonian 1-tough \((3)\)-Halin graph.
Figure 4. An example of a 3-connected (2)-Halin graph, which is not Hamiltonian connected (there are no Hamiltonian path between v and w).

References

Received 18 June 2009
Revised 1 February 2010
Accepted 1 February 2010