A NOTE ON k-UNIFORM SELF-COMPLEMENTARY HYPERGRAPHS OF GIVEN ORDER

ARTUR SZYMAŃSKI AND A. PAWEŁ WOJDA

Faculty of Applied Mathematics
AGH University of Science and Technology
Al. Mickiewicza 30, 30-053 Kraków, Poland

e-mail: szymansk@agh.edu.pl, wojda@agh.edu.pl

Abstract

We prove that a k-uniform self-complementary hypergraph of order \(n \) exists, if and only if \(\binom{n}{k} \) is even.

Keywords: self-complementing permutation, self-complementary hypergraph, k-uniform hypergraph, binomial coefficients.

2000 Mathematics Subject Classification: 05C65.

Let \(V \) be a set of \(n \) elements. The set of all \(k \)-subsets of \(V \) is denoted by \(\binom{V}{k} \).

A \(k \)-uniform hypergraph \(H \) consists of a vertex-set \(V(H) \) and an edge-set \(E(H) \subseteq \binom{V(H)}{k} \). Two \(k \)-uniform hypergraphs \(G \) and \(H \) are isomorphic, if there is a bijection \(\theta : V(G) \rightarrow V(H) \) such that \(e \in E(G) \) if and only if \(\{ \theta(x) | x \in e \} \in E(H) \). The complement of a \(k \)-uniform hypergraph \(H \) is the hypergraph \(\overline{H} \) such that \(V(\overline{H}) = V(H) \) and the edge set of which consists of all \(k \)-subsets of \(V(H) \) not in \(E(H) \) (in other words \(E(\overline{H}) = \binom{V(H)}{k} - E \)). A \(k \)-uniform hypergraph \(H \) is called self-complementary (s-c for short) if it is isomorphic with its complement \(\overline{H} \). Isomorphism of a \(k \)-uniform self-complementary hypergraph onto its complement is called a self-complementing permutation (or s-c permutation).

The \(k \)-uniform s-c hypergraphs for \(k = 3 \) and \(k = 4 \) are studied in [3] and [6], respectively. The 2-uniform self-complementary hypergraphs are exactly self-complementary graphs. This class of graphs has been independently discovered by Ringel [4] and Sachs [5] who proved that an s-c graph of order \(n \) exists if and only if \(n \equiv 0 \) or \(n \equiv 1 \) (mod 4) or, equivalently, whenever \(\binom{n}{2} \) is even.
We prove a generalisation of this fact for \(k \)-uniform hypergraphs.

Theorem 1. Let \(n \) and \(k \) be positive integers, \(k \leq n \). There is a \(k \)-uniform self complementary hypergraph of order \(n \) if and only if \(\binom{n}{k} \) is even.

Let us give first some results which will be needed in the proof of Theorem 1.

For positive integers \(k \) and \(n \) we say that \(n \) contains \(k \) (we write \(k \subset n \)) if when \(k \) has 1 in a certain binary place, then \(n \) also has 1 in the corresponding binary place. That is, the binary representation of \(k \) can be obtained from that of \(n \) by changing some ones to zeros. For example, \(6 \subset 14 \) since \(6 = 1 \cdot 2^3 + 1 \cdot 2^1 + 0 \cdot 2^0 \) and \(14 = 1 \cdot 2^3 + 1 \cdot 2^1 + 0 \cdot 2^0 \) and, clearly, \(5 \not\subset 14 \). In [2] Hatcher and Riley solved a problem proposed by Kimball by proving the lemma which we give below (Moser has pointed out that this result is contained in [1]).

Lemma 1. \(\binom{n}{k} \) is odd if and only if \(k \subset n \).

Any positive integer \(n \) may be, in the unique way, written in the form \(n = 2^l c \), where \(c \) is an odd integer. We denote then \(\lambda(n) = l \). For any finite and nonempty set \(A \) we shall write \(\lambda(A) \) in place of \(\lambda(|A|) \), for short.

The following lemma is proved in [7].

Lemma 2. Let \(k, m \) and \(n \) be positive integers, and let \(\sigma : V \to V \) be a permutation of a set \(V \), \(|V| = n \), with orbits \(O_1, \ldots, O_m \). \(\sigma \) is a self-complementing permutation of a self-complementary \(k \)-uniform hypergraph, if and only if, for every \(p \in \{1, \ldots, k\} \) and for every decomposition

\[
\lambda(k) = k_1 + \ldots + k_p
\]

of \(k \) (\(k_j > 0 \) for \(j = 1, \ldots, p \)), and for every subsequence of orbits

\[
O_{i_1}, \ldots, O_{i_p}
\]

such that \(k_j \leq |O_{i_j}| \) for \(j = 1, \ldots, p \), there is a subscript \(j_0 \in \{1, \ldots, p\} \) such that

\[
\lambda(k_{j_0}) < \lambda(O_{i_{j_0}}).
\]

Proposition 1. Let \(n \) and \(k \) be two non negative integers, \(k < n \). The following two conditions are equivalent.

1. \(\binom{n}{k} \) is odd.
(2) For every non negative integer \(l \) such that \(k = a2^l + s \), where \(a \) is odd and \(0 \leq s < 2^l \) we have \(n \in \{2^l + s, \ldots, 2^{l+1} - 1\} \mod 2^{l+1} \).

Proof. Put \(k = \sum_{i=0} c_i 2^i \) and \(n = \sum_{i=0} d_i 2^i \), where \(c_i, d_i \in \{0, 1\} \) for every \(i \). Let us suppose first that \(\binom{n}{k} \) is odd. Then, by Lemma 1, for every \(i \), \(c_i = 1 \) implies \(d_i = 1 \). Note that \(k = a2^l + s \), where \(a \) is odd and \(0 \leq s < 2^l \), means exactly that \(c_l = 1 \) and \(\sum_{i=0}^{l-1} c_i 2^i = s \). Since \(d_i = 1 \) whenever \(c_i = 1 \), we have \(\sum_{i=0}^l d_i 2^i \geq 2^l + s \) for every \(l \) such that \(c_l = 1 \) (and, clearly, \(\sum_{i=0}^l d_i 2^i < 2^{l+1} \)).

If \(\binom{n}{k} \) is even then, again by Lemma 1, there is \(l_0 \) such that \(c_{l_0} = 1 \) and \(d_{l_0} = 0 \). Hence \(k = a2^{l_0} + s \), with \(a \) odd and \(0 \leq s = \sum_{j=0}^{l_0-1} c_j 2^j < 2^{l_0} \), and \(n = b2^{l_0+1} + \sum_{j=0}^{l_0-1} d_j 2^j \). Since \(\sum_{j=0}^{l_0-1} d_j 2^j < 2^{l_0} \), we have \(n \in \{0, \ldots, 2^{l_0} - 1\} \mod 2^{l_0+1} \subset \{0, \ldots, 2^{l_0} + s - 1\} \mod 2^{l_0+1} \) and the proposition is proved.

Proposition 1 is clearly equivalent to the following.

Proposition 2. Let \(n \) and \(k \) be two non negative integers, \(k < n \). The following two statements are equivalent.

1. \(\binom{n}{k} \) is even.
2. There is a non negative integer \(l_0 \) such that \(k = a_0 2^{l_0} + s_0 \), where \(a_0 \) is odd, \(0 \leq s_0 < 2^{l_0} \), and \(n \in \{0, \ldots, 2^{l_0} + s_0 - 1\} \mod 2^{l_0+1} \).

Lemma 3. Let \(l, k, s \) and \(n \) be non negative integers such that \(k < n \), \(k = a2^l + s \), \(a \) is odd, \(s < 2^l \). If \(n \in \{0, \ldots, 2^{l} + s - 1\} \mod 2^{l+1} \) then there is a \(k \)-uniform self-complementary hypergraph of order \(n \).

Proof. Let us write \(n \) in the form \(n = b2^{l+1} + r \), where \(0 \leq r < 2^l + s \), and let \(\sigma \) be a permutation of an \(n \)-set \(V \) such that it has \(b \) orbits \(O_1, \ldots, O_b \), each of which having its cardinality equal to \(2^{l+1} \), and one orbit \(O_{b+1} \) with \(|O_{b+1}| = r \). Applying Lemma 2 we shall prove that \(\sigma \) is the self-complementing permutation of a self-complementary \(k \)-uniform hypergraph.

Suppose, contrary to our claim, that \(\sigma \) is not \(s \)-c permutation of any \(s \)-c \(k \)-uniform hypergraph. Then, by Lemma 2, there is a decomposition of \(k \), \(k = k_1 + \ldots + k_p \) and a subsequence \(O_{i_1}, \ldots, O_{i_p} \) of \(O_1, \ldots, O_{b+1} \) such that \(0 < k_j \leq |O_{i_j}| \) and \(\lambda(k_j) \geq \lambda(O_{i_j}) \) for \(j = 1, \ldots, p \). Clearly, we have \(k_j = |O_{i_j}| = 2^{l+1} \), whenever \(i_j \neq b + 1 \). Hence there exists \(j_0 \) such that \(i_{j_0} = b + 1 \) and \(k_{j_0} = k - \sum_{j \neq j_0} k_j = (2^a + s) - (p - 1)2^{l+1} = 2^l(a - 2(p - 1)) + s \). Observe that \(a - 2(p - 1) > 0 \) is positive and odd, so we have \(k_{j_0} \geq 2^l + s > r = |O_{b+1}| \). This contradicts our assumption that \(|O_{b+1}| = k_{j_0} \).
Note that if there is a k-uniform s-c hypergraph of order n then, clearly, \(\binom{n}{k} \) is even. Now the proof of Theorem 1 follows by Lemma 3 and Proposition 2.

Acknowledgement

The research was partially supported by AGH local grant No. 11 420 04.

References

Received 16 October 2007
Revised 1 December 2008
Accepted 1 December 2008