ON A PERFECT PROBLEM

IGOR E. ZVEROVICH

RUTCOR — Rutgers Center for Operations Research, Rutgers
The State University of New Jersey
640 Bartholomew Road, Piscataway, NJ 08854–8003, USA

e-mail: igor@rutcor.rutgers.edu

Abstract

We solve Open Problem (xvi) from Perfect Problems of Chvátal [1] available at ftp://dimacs.rutgers.edu/pub/perfect/problems.tex:

(a) \(\mathcal{C} \) does not include all perfect graphs and
(b) every perfect graph contains a vertex whose neighbors induce a subgraph that belongs to \(\mathcal{C} \).

A class \(\mathcal{P} \) is called locally reducible if there exists a proper subclass \(\mathcal{C} \) of \(\mathcal{P} \) such that every graph in \(\mathcal{P} \) contains a local subgraph belonging to \(\mathcal{C} \). We characterize locally reducible hereditary classes. It implies that there are infinitely many solutions to Open Problem (xvi). However, it is impossible to find a hereditary class \(\mathcal{C} \) of perfect graphs satisfying both (a) and (b).

Keywords: hereditary classes, perfect graphs.

2000 Mathematics Subject Classification: 05C17 (Perfect graphs).

1. Locally Reducible Classes

A class of graphs \(\mathcal{P} \) is hereditary if \(H \in \mathcal{P} \) for each induced subgraph \(H \) of every graph \(G \in \mathcal{P} \). As usual, \(N(u) = N_G(u) \) is the neighborhood of a vertex \(u \) in a graph \(G \). A local subgraph in a graph \(G \) is a subgraph induced by \(N(u) \), where \(u \) is a vertex of \(G \). If \(u \) is an isolated vertex [i.e., \(N(u) = \emptyset \)], then the corresponding local subgraph is \(K_0 \), the vertexless graph. Let \(\mathcal{P} \) be a hereditary class of graphs. If there is a proper subclass \(\mathcal{C} \) of \(\mathcal{P} \) such
that every graph in \mathcal{P} with at least one vertex contains a local subgraph belonging to \mathcal{C}, then \mathcal{P} is called a locally reducible class.

Problem 1. Characterize locally reducible hereditary classes.

Not all hereditary classes are locally reducible. For example, let us consider the class $\mathcal{K} = \{K_n : n \geq 0\}$, of all complete graphs. Let \mathcal{C} be an arbitrary proper subclass of \mathcal{K}. Since $\mathcal{C} \neq \mathcal{K}$, there exists m such that $K_m \notin \mathcal{C}$. The graph K_{m+1} belongs to \mathcal{K}. However, all local subgraphs in K_{m+1} are K_m, and therefore they are not in \mathcal{C}. By definition, \mathcal{K} is not locally reducible.

Theorem 1. A non-empty hereditary class \mathcal{P} is locally reducible if and only if $\mathcal{P} \neq \mathcal{K}$.

Proof. Necessity was shown above.

Sufficiency. As usual, the star $K_{1,n}$ has $n + 1$ vertices v_0, v_1, \ldots, v_n and n edges $v_0v_1, v_0v_2, \ldots, v_0v_n$, the vertex v_0 being the center of the star.

Claim 1. For a fixed $n \geq 2$, there is no graph G such that the neighborhood of each vertex of G induces $K_{1,n}$.

Proof. Suppose that there exists a graph G such that the neighborhood of each vertex induces $K_{1,n}$. We consider an arbitrary vertex u of G. Its neighborhood induces the subgraph H isomorphic to $K_{1,n}$. We denote $V(H) = \{v_0, v_1, \ldots, v_n\}$, where v_0 is the center, see Figure 1.

![Figure 1. An illustration](image_url)
The set $N_G(v_0) = \{u, v_1, v_2, \ldots, v_n\}$ induces $K_{1,n}$ centered at u. The vertex v_1 is adjacent to both u and v_0, and v_1 is non-adjacent to all the vertices v_2, v_3, \ldots, v_n. It follows that $\{u, v_0\}$ is a connected component of the induced subgraph $G(N(v_1))$. Since $n \geq 2$, $N(v_1)$ cannot induce $K_{1,n}$, a contradiction.

First suppose that the path P_3 belongs to \mathcal{P}. Then $C = \mathcal{P} \setminus \{P_3\}$ is a proper subclass of \mathcal{P}. We consider an arbitrary graph $G \in \mathcal{P}$. Claim 1 implies that there exists a vertex $x \in V(G)$ such that $N_G(x)$ does not induce $P_3 \cong K_{1,2}$. By the definition of C, $G(N(x)) \in C$, as required.

It remains to consider the case, where $P_3 \notin \mathcal{P}$. Since P_3 is a forbidden induced subgraph, each graph $G \in \mathcal{P}$ is a disjoint union of complete subgraphs. Clearly, all local subgraphs of G are complete graphs.

Suppose that \mathcal{P} contains O_2, the graph with two non-adjacent vertices. Clearly, we can define $C = \mathcal{P} \setminus \{O_2\}$. If \mathcal{P} does not contain O_2, then \mathcal{P} consists of complete graphs only. According to the condition, $\mathcal{P} \neq \mathcal{K}$, i.e., there exists m such that $K_m \notin \mathcal{P}$. Note that the class \mathcal{P} is not empty implying that $m \geq 1$. We may assume that $K_{m-1} \in \mathcal{P}$. Since \mathcal{P} is a hereditary class, $\mathcal{P} = \{K_0, K_1, \ldots, K_{m-1}\}$. We may set $C = \mathcal{P} \setminus \{K_{m-1}\}$, thus completing the proof.

Recall that a graph G is called perfect if $\omega(H) = \chi(H)$ for each induced subgraph H of G, where $\omega(H)$ is the clique number of H – the size of the largest complete subgraph in H, and $\chi(H)$ is the chromatic number of H – the minimum number of colors in proper vertex colorings of H; see \cite{3}. If $\mathcal{P} = \mathcal{PERF}$ is the class of all perfect graphs, Problem 1 coincides with Open Problem (xvi) in Chvátal's list \cite{1}. Theorem 1 gives a solution to this problem. Since all stars are perfect graphs, Claim 1 implies a more general fact.

Corollary 1. There are infinitely many proper subclasses C of \mathcal{PERF} such that every perfect graph contains a local subgraph belonging to C.

Proof. We define $C_n = \mathcal{PERF} \setminus \{K_{1,n}\}$ for each $n \geq 2$ and apply Claim 1.

A Zykov graph H is defined by the property that there exists a graph G such that neighborhood of each vertex $u \in V(G)$ induces H, see the Neighborhood Problem in Zykov \cite{4}. In our proof we used the fact that all stars $K_{1,n}$ with $n \geq 2$ are not Zykov graphs.
Corollary 2. Let \mathcal{P} be a class of graphs closed under taking local subgraphs. If \mathcal{P} contains a graph H which is not a Zykov graph, then \mathcal{P} is locally reducible.

Proof. We define $\mathcal{C} = \mathcal{P} \setminus \{H\}$. Since H is not a Zykov graph, an arbitrary graph $G \in \mathcal{P}$ has a local subgraph $L \not\sim H$. According to the condition, $L \in \mathcal{P}$. Thus, $L \in \mathcal{P} \setminus \{H\} = \mathcal{C}$.

2. Hereditary Subclasses

Now we consider a more complicated problem. A hereditary class \mathcal{P} of graphs is called locally h-reducible if there exists a proper hereditary subclass \mathcal{C} of \mathcal{P} such that every graph in \mathcal{P} with at least one vertex contains a local subgraph belonging to \mathcal{C}.

Problem 2. Characterize locally h-reducible hereditary classes.

Join of graphs G and H, denoted by $G + H$, is obtained from vertex-disjoint copies of G and H by adding all edges between $V(G)$ and $V(H)$. A class \mathcal{P} of graphs is called join-closed if $G + H \in \mathcal{P}$ whenever $G, H \in \mathcal{P}$.

Claim 2. Each join-closed hereditary class \mathcal{P} having a graph H with at least one vertex is not locally h-reducible.

Proof. Suppose that \mathcal{P} is a locally h-reducible class, i.e., there exists a proper hereditary subclass \mathcal{C} of \mathcal{P} such that every graph in \mathcal{P} with at least one vertex contains a local subgraph belonging to \mathcal{C}. There exists a graph $H \in \mathcal{P} \setminus \mathcal{C}$. Since the class \mathcal{C} is hereditary, each graph in \mathcal{C} is H-free. We consider the graph $G = H + H \in \mathcal{P}$. We see that each local subgraph L in G contains H as an induced subgraph. It implies that $L \not\subseteq \mathcal{C}$, a contradiction to the assumption that \mathcal{P} is a locally h-reducible class.

Claim 2 shows that the class \mathcal{P}^{ERF} is not locally h-reducible. Indeed, join of perfect graphs G and H always produces a perfect graph: $\omega(G + H) = \omega(G) + \omega(H)$ and $\chi(G + H) = \chi(G) + \chi(H)$. Thus, it is impossible to strengthen Corollary 1 requiring that \mathcal{C} is a hereditary class.

A graph is chordal if it does not contain the cycles C_n with $n \geq 4$ as induced subgraphs. Claim 2 does not hold for the class $\mathcal{P} = \text{CHORD}$ of all chordal graphs. Indeed, according to Dirac [2] each chordal graph
$G \neq K_0$ has a simplicial vertex — a vertex whose neighborhood induces a complete subgraph. It shows that we can choose $\mathcal{C} = \mathcal{K}$ as a hereditary proper subclass of all chordal graphs. The reason is that the class CHORD is not join-closed: $C_4 = O_2 + O_2$ is not a chordal graph, while O_2 is. Thus, Problem 2 remains open for all hereditary classes which are not join-closed.

Acknowledgment

We thank the anonymous referees, whose suggestions helped to improve the presentation of the paper.

References

Received 6 September 2005
Revised 15 March 2006