AN ANTI-RAMSEY THEOREM ON EDGE-CUTS

JUAN JOSÉ MONTELLANO-BALLESTEROS

Instituto de Matemáticas, U.N.A.M.
Ciudad Universitaria, Coyoacán 04510
México, D.F. México

e-mail: juancho@math.unam.mx

Abstract

Let $G = (V(G), E(G))$ be a connected multigraph and let $h(G)$ be the minimum integer k such that for every edge-colouring of G, using exactly k colours, there is at least one edge-cut of G all of whose edges receive different colours. In this note it is proved that if G has at least 2 vertices and has no bridges, then $h(G) = |E(G)| - |V(G)| + 2$.

Keywords: anti-Ramsey, totally multicoloured, edge-cuts.

2000 Mathematics Subject Classification: 05C15, 05C40.

In this note we consider finite undirected graphs with multiple edges allowed. Let $G = (V(G), E(G))$ be a connected multigraph. Given $Z \subseteq E(G)$, $G - Z$ denotes the graph obtained from G by deleting the edges in Z. A set $Z \subseteq E(G)$ will be called an edge-cut if $G - Z$ is a disconnected or a trivial graph, and an edge $e \in E(G)$ will be called a bridge if $\{e\}$ is an edge-cut. A subgraph H of G is said to be a cut-subgraph if $E(H)$ is an edge-cut of G.

By an edge-colouring of G we will understand a function $c : E(G) \to \mathcal{C}$ where \mathcal{C} is a set of "colours". If $|c[E(G)|] = k$, then c will be called a k-edge-colouring of G. Given an edge-colouring of G, a subgraph H of G is said to be Totally Multicoloured (TMC) if no pair of edges of H have the same colour. Problems concerning TMC subgraphs in edge-colourings of a host graph are called anti-Ramsey problems (see [1, 2, 3, 4, 5, 6, 7]). Typically, the host graph is a complete graph or some graph with a nice structure, and the property which defines the set of TMC subgraphs in consideration is that they are isomorphic to some graph H. When the host graph is a graph with no specific structure, the problem becomes rather intractable unless the
graph \(H \) is very special (see [5]) or, as it happens in this note, the property which defines the set of TMC subgraphs involves strongly the structure of the host graph. Given a graph \(G \), the problem of determining the minimum integer \(h(G) \) such that every \(h(G) \)-edge-colouring of \(G \) produces at least one TMC cut-subgraph of \(G \), is presented in this note. Observe that if \(G \) has only one vertex, there is no edge-cut in \(G \), and in the case that \(G \) has a bridge, \(h(G) = 1 \). The remaining cases are considered in the following theorem.

Theorem 1. Let \(G = (V(G), E(G)) \) be a connected graph of order at least 2 which has no bridges. Then \(h(G) = |E(G)| - |V(G)| + 2 \).

Before presenting the proof, let us introduce some definitions. A \(k \)-edge-colouring of \(G \) which produces no TMC cut-subgraph will be called a good \(k \)-colouring of \(G \). A vertex \(x \in V(G) \) will be called a cut-vertex if the graph obtained from \(G \) by deleting \(x \) and all its incident edges is a disconnected graph. \(G \) will be called a block if it is connected and has no cut-vertices. A set \(P_1, \ldots, P_r \) of subgraphs of \(G \) will be called a decomposition of \(G \) if \(E(P_1), \ldots, E(P_r) \) is a partition of \(E(G) \), and will be called an ear-decomposition of \(G \) if it is a decomposition of \(G \) such that: \(P_1 \) is a cycle; for \(2 \leq j \leq r \), \(P_j \) is a non-trivial path; and for every \(2 \leq j \leq r \), \(V(P_j) \) intersects \(\bigcup_{i=1}^{j-1} V(P_i) \) in exactly the endpoints of \(P_j \). It is known (see [8]) that \(G \) is a block different from \(K_2 \) if and only if \(G \) has an ear-decomposition.

Proof of Theorem 1. Let \(G \) be a connected graph of order at least 2 which has no bridges and let \(k(G) = |E(G)| - |V(G)| + 1 \).

Given a \((k(G) + 1) \)-edge-colouring of \(G \), let \(H \) be a TMC subgraph of \(G \) of size \(k(G) + 1 \). Since the graph \(G' = G - E(H) \) has \(|V(G')| - 2 \) edges, it must be disconnected and thus \(H \) is a TMC cut-subgraph of \(G \). Therefore \(h(G) \leq k(G) + 1 \).

To finish the proof we only need to show a good \(k(G) \)-colouring of \(G \). First suppose that \(G \) is a block (which is different from \(K_2 \) since \(G \) has no bridges) and let \(P_1, \ldots, P_r \) be an ear-decomposition of \(G \). Observe that

\[
|E(G)| = \sum_{i=1}^{r} |E(P_i)| = |V(P_1)| + \sum_{i=2}^{r} (|V(P_i)| - 1) = |V(G)| + (r - 1)
\]

which implies that \(r = k(G) \). Let \(c \) be a \(k(G) \)-edge-colouring of \(G \) defined as \(c(e) = i \) if and only if \(e \in E(P_i) \). It is not difficult to see that any edge-cut of \(G \) uses at least a pair of edges of some \(P_i \) and, therefore, \(c \) is a good \(k(G) \)-colouring of \(G \).
If G has cut-vertices, then G can be decomposed in G_0, \ldots, G_t blocks, none of them isomorphic to K_2 since G has no bridges. For each $j \leq t$, let $P_{j}^1, \ldots, P_{j}^{r_j}$ be an ear-decomposition of G_j. Let c be an edge-colouring of G defined as $c(e) = (j, i)$ if and only if $e \in E(P_j^i)$. As in the previous case, it can be seen that each block G_j receives $k(G_j)$ colours and has no TMC cut-subgraphs. Therefore, the number of colours used by c is $\sum_{j=0}^{t} k(G_j) = \sum_{j=0}^{t} (|E(G_j)| - |V(G_j)| + 1) = |E(G)| - (|V(G) + t| + t + 1) = k(G)$, and, since any edge-cut of G contains an edge-cut of some G_j, c is a good $k(G)$-colouring of G.

Acknowledgement

I like to thank the referee for suggesting this shorter and clearer alternative proof of the theorem.

References

Received 18 September 2004
Revised 28 November 2005