ON SHORT CYCLES THROUGH PRESCRIBED VERTICES OF A POLYHEDRAL GRAPH

ERHARD HEXEL

Department of Mathematics
Technische Universität Ilmenau
Postfach 0565, D–98684 Ilmenau, Germany

Abstract

Guaranteed upper bounds on the length of a shortest cycle through \(k \leq 5 \) prescribed vertices of a polyhedral graph or plane triangulation are proved.

Keywords: polyhedral graph, triangulation, short cycle, prescribed vertices.

2000 Mathematics Subject Classification: 05C38.

1. Introduction and Results

G.A. Dirac [2] proved that for a given integer \(c \geq 2 \) any \(k \) \((1 \leq k \leq c)\) prescribed vertices of a \(c \)-connected graph belong to a common cycle. However, the complete bipartite graph \(K_{c,c+1} \) shows that this is not true for \(c+1 \) prescribed vertices. In [3] we investigated the length of short cycles through \(k \) prescribed vertices with \(1 \leq k \leq \min\{c,3\} \) in a \(c \)-connected graph \(G \). From A.K. Kelmans and M.V. Lomonosov [6] we know that any five vertices of a polyhedral graph (that is a planar and 3-connected graph) belong to a common cycle which is best possible.

For given integers \(k, l \) with \(1 \leq k \leq 5, \ 3 \leq l \) and \(k \leq l \) let \(n_k(l) \) denote the minimum number \(n \) such that there exists a polyhedral graph \(G \) of order \(n \) having a subset of \(k \) vertices with the property that the length of every cycle containing those \(k \) vertices is at least \(l \). In [3] we proved

(i) \(n_1(l) = 3l - 5 \) for \(l \geq 3 \),
(ii) \(n_2(l) = \left\lfloor \frac{3l-1}{2} \right\rfloor \) for \(l \geq 3 \),

(iii) \(n_3(l) = \left\lfloor \frac{3l-1}{2} \right\rfloor \) for \(l \geq 5 \),

and the following results which will be proven here is a continuation of the investigation [3] of short cycles through prescribed vertices for a polyhedral graph.

Theorem 1.

\[
n_4(l) = \begin{cases}
 l & \text{if } l \in \{4, 8\}, \\
 l + 1 & \text{if } l \in \{5, 6, 7, 9, 10\}, \\
 l + 2 & \text{if } l \in \{11, 12\}, \\
 \left\lceil \frac{4l-5}{3} \right\rceil & \text{if } l \geq 13.
\end{cases}
\]

Theorem 2.

\[
n_5(l) = \begin{cases}
 l & \text{if } l = 5 \text{ or } l \geq 8, \\
 l + 1 & \text{if } l = 6 \text{ or } 7.
\end{cases}
\]

For integers \(k, l \) with \(2 \leq k \leq 5 \), \(3 \leq l \) and \(k \leq l \) denote by \(t_k(l) \) the minimum number \(n \) such that there exists a plane triangulation \(T \) of order \(n \) with certain \(k \) vertices such that the length of every cycle containing them is at least \(l \). Then we have \(n_k(l) \leq t_k(l) \) since every plane triangulation is 3-connected and thus a polyhedral graph. Notice that even \(n_k(l) = t_k(l) \) holds in every considered case. If, namely, \(G \) is any one of the here or in [3], respectively, constructed graphs to prove an upper bound for \(n_k(l) \) with certain \(k \) and \(l \), then we were able to construct a plane triangulation \(T \) from \(G \) by adding edges only such that the length of a shortest cycle containing the prescribed \(k \) vertices is at least \(l \).

2. Proofs

For terminology and notation not defined here we refer to [5]. Let \(G \) be a graph and \(A, B \subseteq V(G) \). A path \(P \) of \(G \) with one end-vertex in \(A \) and \(B \), respectively, and with \(|V(P) \cap A| = |V(P) \cap B| = 1 \) is called an \(A-B \)-path. If \(A \) or \(B \) consists of a single vertex \(x \) we write \(x \) instead of \(\{x\} \). We use \([x, y] \) to denote an \(x-y \)-path and, moreover, \([x, y) \) or \((x, y) \) to denote the segments obtained from \([x, y] \) by removing \(y \) or both end-vertices, respectively. A path
system is a set of internally disjoint paths. For a path system \(P \) let \([P] \) and \(EV(P) \) denote the union of all paths and the set of all end-vertices of paths of \(P \), respectively. For some \(a \in V(G) \) and \(B \subseteq V(G) \setminus \{a\} \) a path system \(P \) of \(a\)-\(B \)-paths is called an \(a\)-\(B \)-fan if \(P \cap Q = \{a\} \) for different \(P, Q \in P \).

We need the following lemma which is proved in [3] in more general form.

Lemma 1. Let \(G \) be a \(c \)-connected graph with \(a \in V(G) \), \(B \subseteq V(G) \setminus \{a\} \) and a path system \(P \) of \(c - 1 \) \(a\)-\(B \)-paths. Let \(B' = B \setminus EV(P) \) if this is not empty, and \(B' \) be an arbitrary nonempty subset of \(B \) otherwise. Then there is a vertex \(b \in B' \) and a path system \(Q \) of \(c \) \(a\)-\(B \)-paths such that \(EV(Q) = EV(P) \cup \{b\} \), all vertices of \(B \setminus \{b\} \) are end-vertices of as many paths of \(P \) as of \(Q \), and \(Q \) has one more path with end-vertex \(b \) than does \(P \).

We define five polyhedral graphs containing the vertices of a prescribed 4-element set \(X \) as follows. Let \(F_1 \) be the complete graph \(K_4 \) on \(X \). Let \(F_2 \) denote the graph which is obtained from a 4-cycle \(C \) on \(X \) by connecting an additional vertex \(a \notin X \) with all vertices of \(C \). Let \(F_3 \) denote the graph which results from \(C \) and two adjacent vertices \(a, b \notin X \) by connecting two adjacent vertices of \(C \) with \(a \) and the remaining two vertices of \(C \) with \(b \). The graph \(F_3 \) is obtained if two non-adjacent vertices \(a, b \notin X \) are connected with three vertices of a 4-path \(P \) on \(X \), respectively, such that every vertex of \(X \) becomes degree 3. Eventually, let \(F_5 \) denote the cube graph containing the vertices of \(X \) such that no two vertices of \(X \) are adjacent.

Lemma 2. Every polyhedral graph \(G \) with \(X = \{x_1, x_2, x_3, x_4\} \subseteq V(G) \) has a subgraph \(H \) which is a subdivision of some \(F_i \) with \(1 \leq i \leq 5 \).

Proof of Lemma 2. Lemma 1 implies that \(G \) has an \(x_1\)-\(x_2 \)-path system \(\{P_1, P_2, P_3\} \) which contains \(x_3 \) by planarity of \(G \), i.e., we may assume that \(x_3 \in V(P_1) \). Moreover, Lemma 1 yields an \(x_3\)-\(V(P_2 \cup P_3) \)-fan \(Q = \{[x_1, x_3], [x_2, x_3], [a, x_3]\} \), where we may assume that \(a \in V(P_2) \). Thus, \(G \) has a path system \(P = \{[x_1, x_2], [x_1, x_3], [x_2, x_3], [a, x_1], [a, x_2], [a, x_3]\} \).

Suppose first, that \(x_4 \) is contained in \([P] \). Considering symmetries we have to examine three different cases.

Case 1. \(x_4 = a \).

Then \([P] \) is a subdivision of \(F_1 \).
Case 2. $x_4 \in (x_1, x_2)$.
By Lemma 1 there is an x_4-$V([P] \setminus (x_1, x_2))$-fan $Q = \{[x_1, x_4], [x_2, x_4], [b, x_4]\}$ where $b \in V([P] \setminus (x_1, x_2))$. Let H denote the subgraph $[P \cup Q] \setminus (x_1, x_2)$ of G, then by symmetries there are following subcases. If $b = x_3$ or $b = a$ then H is a subdivision of F_1 or F_2, respectively. If $b \in (x_1, x_3)$ or $b \in (a, x_1)$ then H is a subdivision of F_4 or F_3, respectively.

Case 3. $x_4 \in (a, x_1)$.
Applying Lemma 1 again there is an x_4-$V([P] \setminus (a, x_1))$-fan $Q = \{[x_1, x_4], [a, x_4], [b, x_4]\}$ where $b \in V([P] \setminus (a, x_1))$. Let H denote the subgraph $[P \cup Q] \setminus (a, x_1)$ of G. Considering symmetries we have: If $b \in (x_1, x_2)$ or $b \in [x_2, a)$ then H is a subdivision of F_4 or F_1, respectively.

Suppose now, that x_4 is not contained in $[P]$ and in any other such path system of G. Applying Lemma 1 we obtain an x_4-$V([P])$-fan $Q = \{[b, x_4], [c, x_4], [d, x_4]\}$ such that each path of P contains at most one vertex of $EV(Q)$ and that at most one path of P with end vertex a contains a vertex of $EV(Q)$. Thereby and since G is planar we may assume that $b \in (x_1, x_2)$, $c \in (x_2, x_3)$ and $d \in (x_1, x_3)$ which implies that $[P \cup Q]$ is a subdivision of F_5.

Figure 1 contains further three polyhedral graphs which contain the vertices of $X = \{x_1, x_2, x_3, x_4\}$ and which are needed to prove Theorem 1.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{Figure 1}
\end{figure}

Proof of Theorem 1. For $l = 6, 7, 11$ and $l \geq 13$ connect a vertex a with each vertex of a 4-cycle $C = x_1x_2x_3x_4x_1$. Put $\alpha = \frac{l-5}{r}$ and suppose $l \equiv r (\text{mod } 3)$ where $r \in \{0, 1, 2\}$. Subdivide every edge e of C with respect to r by the number of new vertices given in Table 1. Connect every new vertex with a and denote the so constructed polyhedral graph by G.
A simple calculation shows that the length of a shortest cycle in G containing $X = \{x_1, x_2, x_3, x_4\}$ is l and that the order of G is $\lceil \frac{4l-5}{3} \rceil$, in every case.

For $l = 4, 5, 8, 9, 10, 12$, let G be $F_1, F_4, F_5, F_6, F_7, F_8$, respectively, with $X \subseteq V(G)$. In these special cases it is not hard to see that the length of a shortest cycle of G containing X is l. That together with $n_4(l) \leq |G|$ completes the proof of the upper bound.

Suppose, now, that G is a polyhedral graph of order n with a 4-element subset $X = \{x_1, x_2, x_3, x_4\}$ of $V(G)$ such that the length of a shortest cycle containing X is at least l. Because of Lemma 2 it is sufficient to estimate for $i = 1, \ldots, 5$ the order of a subgraph H of G which is a subdivision of F_i with $X \subseteq V(F_i)$ and to deduce a lower bound for $n_4(l)$.

$i = 1$: H has three different cycles C_1, C_2, C_3 passing each vertex of F_1. Every vertex of $V(H) \setminus V(F_1)$ occurs in precisely two of these three cycles. Thus, $2|H| + 4 \geq |C_1| + |C_2| + |C_3| \geq 3l$ and, consequently, $|H| \geq \lceil \frac{3l-4}{2} \rceil$.

$i = 2$: H has four cycles C_1, \ldots, C_4 containing all vertices of F_2 and one cycle C_5 containing X but no other vertex of F_2. Every vertex of $V(H) \setminus V(F_2) \setminus V(C_5)$ occurs in precisely two and every vertex of $V(C_5) \setminus V(F_2)$ in precisely three of the cycles C_1, \ldots, C_4. Thus, $2|H| + |C_5| + 4 \cdot 1 + 2 \geq |C_1| + \ldots + |C_4| \geq 4l$ and, thereby, $2|H| + |C_5| + 6 \geq 4l$. From $|C_5| \leq |H| - 1$ we further obtain $|H| \geq \lceil \frac{4l-5}{3} \rceil$.

$i = 3, 4$: H has three different cycles C_1, C_2, C_3 passing each vertex of F_3. Every vertex of $V(H) \setminus V(F_1)$ occurs in precisely two of these three cycles. Thus, $2|H| + 6 \geq |C_1| + |C_2| + |C_3| \geq 3l$ and, consequently, $|H| \geq \lceil \frac{3l-6}{2} \rceil$.

$i = 5$: H has six different cycles C_1, \ldots, C_6 passing each vertex of F_5. Every vertex of $V(H) \setminus V(F_5)$ occurs in precisely four of these six cycles. Thus, $4|H| + 2 \cdot 8 \geq |C_1| + \ldots + |C_6| \geq 6l$ and, consequently, $|H| \geq \lceil \frac{3l-8}{2} \rceil$.

Because of $|G| \geq \min\{|H_i| : 1 \leq i \leq 5\}$ and $|G| \geq l$ we obtain
In the special cases \(l = 5, 6 \) one can observe that since \(G \) has a subgraph \(H \) which is a subdivision of \(F_i \) for some \(i \in \{1, \ldots, 5\} \) the order of \(G \) can not be smaller than 6 or 7, respectively. That proves the lower bound.

Proof of Theorem 2. For \(l = 5, 6, 7, 8, 9 \) let \(G_l \) be the polyhedral graphs with \(X = \{x_1, \ldots, x_5\} \subseteq V(G_l) \) given in Figure 2.

![Figure 2](image-url)

For \(l > 9 \) let \(G_l \) be the polyhedral graph which results from \(G_9 \) by subdividing \(x_1x_2 \) by \(l - 9 \) new vertices and connecting each of them with \(a \notin X \).

Notice that \(|G_l| = l \) if \(l = 5 \) or \(l \geq 8 \) and \(|G_l| = l + 1 \) if \(l = 6 \) or 7. It is not hard to see that for every \(l \geq 5 \) the length of any cycle of \(G_l \) passing all the vertices of \(X \) is at least \(l \).

So, it remains to prove \(n_5(l) > l \) for \(l = 6, 7 \). Let \(l = 6 \) and suppose that there exists a polyhedral graph \(G \) of order 6 with \(V(G) = X \cup \{a\} \) such that every cycle which contains the vertices of \(X \) is a hamiltonian one. Let \(\mathcal{C}(G) \) denote the set of all cycles of \(G \). Then we may suppose that \(x_1x_2x_3x_4x_5ax_1 \in \mathcal{C}(G) \). Clearly, \(x_1x_5 \notin E(G) \) which implies that \(x_1x_3 \).
or $x_1x_4 \in E(G)$. If $x_1x_3 \in E(G)$ then $x_2x_5 \notin E(G)$ because otherwise $x_1x_2x_3x_4x_3x_1 \in \mathcal{C}(G)$. Thus, $x_3x_5 \in E(G)$ and also $x_1x_4,x_2x_4 \notin E(G)$ because otherwise $x_1x_2x_3x_4x_1 \in \mathcal{C}(G)$, respectively. Thereby, x_2 and x_4 are connected with a which yields that $\{x_3,a\}$ is a cutset, a contradiction. So, we have that $x_1x_3 \notin E(G)$ and $x_1x_4 \in E(G)$ which implies that $x_3x_5 \notin E(G)$ because otherwise $x_1x_2x_3x_4x_1 \in \mathcal{C}(G)$. That implies $x_2x_5 \in E(G)$ and thereby $d_G(x_3) = 2$, a contradiction.

Now, let $l = 7$ and suppose that there exists a polyhedral graph G of order 7 with $V(G) = X \cup \{a,b\}$ such that every cycle which contains the vertices of X is a hamiltonian one. We may assume that $\mathcal{C}(G)$ contains one of the cycles $C_1 = x_1x_2x_3x_4x_5bx_1$, $C_2 = x_1x_2x_3x_4ax_5bx_1$, $C_3 = x_1x_2x_3ax_4x_5bx_1$.

Case 1. $C_1 \in \mathcal{C}(G)$.

Clearly, $x_1x_5,x_1a,x_5b \notin E(G)$. If $x_1x_3 \in E(G)$ then x_2x_5, $x_2a \notin E(G)$ because otherwise $x_1x_2x_3x_4x_3x_1 \in \mathcal{C}(G)$, respectively. Thus, $x_3x_5 \in E(G)$ which yields x_1x_4, x_2x_4, $x_1b \notin E(G)$ because otherwise $x_1x_2x_3x_4x_3x_1$ or $x_1x_2x_4x_3x_1$ or $x_1x_2x_3x_5x_4bx_1 \in \mathcal{C}(G)$, respectively. That implies $x_2b,x_4a \in E(G)$ which means that $\{x_3,a\}$ or $\{x_3,b\}$ would be a cutset of G, a contradiction. If $x_1x_3 \notin E(G)$ we have $x_1x_4 \in E(G)$ and x_3x_5, $x_3a \notin E(G)$ because otherwise $x_1x_2x_3x_4x_1$ or $x_1x_2x_3x_5x_4bx_1 \in \mathcal{C}(G)$, respectively. That implies $x_2x_5 \in E(G)$ which means by planarity that $x_3b \notin E(G)$. Thus, $d_G(x_3) = 2$, a contradiction.

Case 2. $C_2 \in \mathcal{C}(G)$.

Clearly, $x_1x_5,x_4x_5 \notin E(G)$. Suppose, first, $x_1x_3 \in E(G)$ then $x_2x_5 \notin E(G)$ because otherwise $x_1x_2x_5ax_4x_3x_1 \in \mathcal{C}(G)$. Thereby, $x_3x_5 \in E(G)$ which implies that $x_1x_4,x_2x_4 \notin E(G)$ because otherwise $x_1x_2x_3x_5ax_4x_1$ or $x_1x_2x_4x_3x_1 \in \mathcal{C}(G)$, respectively. Thus, $x_1b \in E(G)$ which yields by planarity $x_1a,x_2a \notin E(G)$, i.e., $\{x_3,b\}$ would be a cutset of G, a contradiction. Suppose, now, $x_1x_3 \notin E(G)$ and $x_1x_4 \in E(G)$. Then x_2x_5, $x_3x_5 \notin E(G)$ because otherwise $x_1x_2x_3x_5x_4bx_1$ or $x_1x_2x_3x_5ax_4x_1 \in \mathcal{C}(G)$, respectively. That yields $d_G(x_5) = 2$, a contradiction. Suppose $x_1x_3,x_1x_4 \notin E(G)$ then $x_1a \in E(G)$. If, here, $x_2x_5 \in E(G)$ then $x_3x_5 \notin E(G)$ because otherwise $x_1x_2x_5x_3x_1ax_1 \in \mathcal{C}(G)$. By planarity, $x_3b,x_4b \notin E(G)$ which means that $\{x_2,a\}$ would be a cutset of G, a contradiction. If $x_2x_5 \notin E(G)$ then $x_3x_5 \in E(G)$ and, consequently, $x_2x_4 \notin E(G)$ because otherwise $x_1x_2x_3x_5ax_1 \in \mathcal{C}(G)$. Planarity implies $x_4b \notin E(G)$ and, hence, $d_G(x_4) = 2$, a contradiction.
Case 3. $C_3 \in C(G)$.

Clearly, $x_1x_5, x_3x_4 \not\in E(G)$. Suppose, first, $x_1x_3 \in E(G)$ then $x_2x_4, x_2x_5 \not\in E(G)$ because otherwise $x_1x_3x_2x_4x_5bx_1$ or $x_1x_3x_4x_5x_2x_1 \in C(G)$, respectively. That implies x_1x_4 or $x_4b \in E(G)$. If $x_1x_4 \in E(G)$ then $x_2b \not\in E(G)$ because otherwise $x_1x_3x_2bx_5x_4x_1 \in C(G)$. Thereby, $x_2a \in E(G)$ which implies $x_3x_5, x_3b \not\in E(G)$ because otherwise $x_1x_2x_3x_5x_4x_1$ or $x_1x_2x_3bx_5x_4x_1 \in C(G)$, respectively. That gives $d_G(x_3) = 2$, a contradiction. If $x_1x_4 \not\in E(G)$ then $x_4b \in E(G)$ which implies $x_3x_5 \not\in E(G)$ because otherwise $x_1x_2x_3x_5x_4bx_1 \in C(G)$. Thus, $x_5a \in E(G)$ and $\{a, b\}$ would be a cutset of G, a contradiction.

Suppose, now, $x_1x_3 \not\in E(G)$ and $x_1x_4 \in E(G)$. Then $x_3x_5, x_3b \not\in E(G)$ because otherwise $x_1x_2x_3x_5x_4x_1$ or $x_1x_2x_3bx_5x_4x_1 \in C(G)$, respectively. That implies $d_G(x_3) = 2$, a contradiction.

Suppose, eventually, $x_1x_3, x_1x_4 \not\in E(G)$ then $x_1a \in E(G)$. That implies $x_3x_5 \not\in E(G)$ because otherwise $x_1x_2x_3x_5ax_1 \in C(G)$). Thereby, $x_3b \in E(G)$ and by planarity $x_2x_4, x_2x_5 \not\in E(G)$ which means that $\{a, b\}$ would be a cutset of G, a contradiction, and the proof is complete.\vspace{1em}

References

Received 3 September 2004
Revised 18 February 2005