ON A SPHERE OF INFLUENCE GRAPH
IN A ONE-DIMENSIONAL SPACE

Zbigniew Palka and Monika Sperling

Department of Algorithmics and Programming
Adam Mickiewicz University
Umultowska 87, 61–614 Poznań, Poland

\textbf{e-mail}: palka@amu.edu.pl
\textbf{e-mail}: dwight@amu.edu.pl

\section*{Abstract}
A sphere of influence graph generated by a finite population of generated points on the real line by a Poisson process is considered. We determine the expected number and variance of societies formed by population of \(n\) points in a one-dimensional space.

\textbf{Keywords}: cluster, sphere of influence graph.

\textbf{2000 Mathematics Subject Classification}: Primary 60D05; Secondary 60C05, 05C80.

\section{1. Introduction}
Let \(X = \{X_1, X_2, \ldots, X_n\}\) be the set of \(n\) points of \(\mathbb{R}^d\) chosen randomly and independently with the same probability. Let

\[r(X_i) = \min_{X_j \in X \setminus \{X_i\}} d(X_i, X_j) \]

denote the minimum distance between \(X_i\) and any other point in \(X\). The open ball

\[B_i = \left\{ X \in \mathbb{R}^d : d(X_i, X) < r_i \right\} \]

with center \(X_i\) and radius \(r_i\) is the sphere of influence graph at \(X_i\) \((i = 1, \ldots, n)\). The random sphere of influence graph \(SIG(X)\) has vertex set \(X\) with edges corresponding to pairs of intersecting spheres of influence.
In other words two vertices, say X_i and X_j, are connected by an edge if and only if
$$r(X_i) + r(X_j) > d(X_i, X_j).$$

The definition of the sphere of influence graph was introduced in [10] by Touissant. These graphs have been widely investigated recently. It is known that on the Euclidean plane the sphere of influence graph always has a vertex of degree at most 18 (see [5], for related results see [1, 7]). Füredi [4] showed that the expected number of edges $E(n, \mathcal{N})$ of the random sphere of influence graph on n vertices in normed space \mathcal{N} is equal to
$$E(n, \mathcal{N}) = C(d)n + o(n),$$
where $C(d)$ is a constant depending only on the dimension of the space and
$$\frac{\pi}{8} 2^d < C(d) < \left(1 + \frac{1}{2d}\right) \frac{\pi}{8} 2^d.$$

This result was also proved independently by Chalker et al in [2]. In [6] Hitczenko, Janson and Yukich proved analogue result for variance. They showed
$$c(d)n \leq \text{Var}(n, \mathcal{N}) \leq C(d)n,$$
where constants $c(d)$ and $C(d)$ depend only of the space dimension.

Consider a population of n points generated by some random process in \mathbb{R}^d and its resulting sphere of influence graph. We thereby generate clusters of points that are connected by edges. We call these clusters societies. The following questions arise:

- Let M denote the number of societies formed. What is the distribution of M?
- Let N denote the size of society, i.e., the number of individuals (points) in a society. What is the distribution of N?
- Form the convex hull of each society. What is
 - the content (area, volume) covered by a society?
 - the fraction of \mathbb{R}^d that is contained in some society, as $n \to \infty$?

In this paper our main concern is with the random variable M.

2. One-Dimensional Societies

Let the population consist of \(n \) points, \(X_i, 1 \leq i \leq n \), generated on the real line by a Poisson process. Let \(X_{(i)} \) denote the corresponding order statistics and let

\[
A_i = X_{(i+1)} - X_{(i)}, \quad 1 \leq i \leq n-1,
\]

denote the lengths of the spacings between adjacent points. Societies are determined by the relative magnitudes of the spacings. The \(A_i \) are identically distributed. Moreover, the distribution of the vector of ranks of the \(A_i \) is discrete uniform.

Consider now the number of societies \(M \) formed by a population of \(n \) points. Clearly, \(M \) satisfies \(1 \leq M \leq \lfloor \frac{n}{2} \rfloor \). For fixed \(n \), let

\[
P_n(M = m) = P_n(m)
\]
denote the distribution of \(M \). Obviously, \(P_2(1) = P_3(1) = 1 \).

The following technical lemma will be helpful in the proof of the main theorem.

Lemma 1. Let \(2 \leq m \leq \lfloor \frac{n}{2} \rfloor \). If for \(n \geq 4 \)

\[
P_n(m) = \sum_{i=2}^{n-2} \frac{1}{4} P_i(1) P_{n-i}(m-1)
\]

and for \(n \geq 2 \)

\[
P_n(1) = (n-1)2^{2-n}
\]

then

\[
P_n(m) = 2^{2-n}\left(\frac{n-1}{2m-1}\right)
\]

for \(n \geq 2 \).

Proof. Let \(m = 2 \). Then

\[
P_n(2) = \sum_{i=2}^{n-2} \frac{1}{4} P_i(1) P_{n-i}(1) = \sum_{i=2}^{n-2} \frac{1}{4} 2^{2-i}(i-1)2^{2-n+i}(n-i-1)
\]

\[
= 2^{2-n} \sum_{i=1}^{n-3} i(n-i-2) = 2^{2-n}\left(\frac{n-1}{3}\right).
\]
Assume that lemma is true for \(m \leq j \) and let \(m = j + 1 \). Then by induction

\[
P_n(j + 1) = \sum_{i=2}^{n-2} \frac{1}{4} P_i(1) P_{n-i}(j) = \sum_{i=2}^{n-2} \frac{1}{4} 2^{2-i}(i-1)2^{2-n+i}\left(\frac{n-i-1}{2j-1}\right)
\]

\[
= 2^{n-2} \sum_{i=1}^{n-3} i \left(\frac{n-i-2}{2j-1}\right) = 2^{n-2} \left(\frac{n-1}{2j+1}\right)
\]

which completes the proof. \(\blacksquare \)

Theorem 2. Let \(E_n(M) \) and \(\text{Var}_n(M) \) denote the mean and the variance of the number of societies formed in a population of \(n \) individuals. Then

\[
E_n(M) = \begin{cases}
2 & \text{for } n = 2, \\
\frac{n+1}{4} & \text{for } n \geq 3,
\end{cases}
\]

and

\[
\text{Var}_n(M) = \begin{cases}
0 & \text{for } n = 2, 3, \\
\frac{n-1}{16} & \text{for } n \geq 4.
\end{cases}
\]

Proof. Let us assume that \(A_{n-1} \geq A_{n-2} \). Then independently from the value of \(A_{n-3} \), vertices \(X_{(n-1)} \) and \(X_{(n-2)} \) are connected by an edge. So by the above assumption the number of societies formed by population of \(n \) points is equal to one with probability

\[
\frac{1}{2} P_{n-1}(1).
\]

Now, let \(A_{n-1} < A_{n-2} \). In this case the existence of only one society formed by \(n \) points, under condition that first \(n-2 \) points formed one society, depends on lengths \(A_{n-3}, A_{n-2}, A_{n-1} \). Notice that two vertices \(X_{(n-1)} \) and \(X_{(n-2)} \) are not connected by an edge if the following inequality holds

\[
A_{n-1} + A_{n-3} < A_{n-2}.
\]

Assume that \(A_{n-3} + A_{n-2} + A_{n-1} = l \). Then the probability of the event

\[
A_{n-2} > \frac{1}{2} l,
\]
i.e., probability that vertices $X_{(n-1)}$ and $X_{(n-2)}$ are not connected by an edge, is equal to

$$P\left(A_{n-2} > \frac{1}{2}\right) = \frac{1}{2}l^2 - \frac{1}{4}.$$

Thus we obtain that if $A_{n-1} < A_{n-2}$, the number of societies formed by population of n points is equal to one with probability

$$\frac{1}{2}P_{n-1}(1) - \frac{1}{4}P_{n-2}(1).$$

Consequently population of n individuals forms one society with the probability

$$P_n(1) = P_{n-1}(1) - \frac{1}{4}P_{n-2}(1).$$

Solving this recurrence equation and considering boundary conditions we obtain

\[(*) \quad P_n(1) = (n - 1)2^{2-n}, \quad n \geq 2.\]

Let B_i denote the event that two vertices, say $X_{(i)}$ and $X_{(i+1)}$, are the first ones that are not connected by an edge in the sphere of influence graph. It means that the number of societies formed by population of first i vertices is equal to one, while population of first $i + 2$ vertices form two societies and the number of societies formed by population of last $n - i$ points is equal to $m - 1$, assuming that $M = m$. Then

$$P_n(M = m|B_i) = P_{n-i}(M = m - 1).$$

Therefore for $n \geq 4$

$$P_n(M = m) = \sum_{i=2}^{n-2} P_n(m|B_i)P(B_i)$$

$$= \sum_{i=2}^{n-2} \frac{1}{4}P_i(1)P_{n-i}(m - 1).$$

This and $(*)$ imply (see Lemma 1) that

$$P_n(m) = 2^{2-n}\binom{n - 1}{2m - 1}$$

for $1 \leq m \leq \lfloor \frac{n}{2} \rfloor$.
Now we can calculate the expected value of number of societies formed by \(n \) points. For \(n \geq 3 \) we have

\[
E_n(M) = \sum_{i=1}^{\lfloor n/2 \rfloor} i P_n(i) = \sum_{i=1}^{\lfloor n/2 \rfloor} 2^{2-n} \left(\frac{n-1}{2i-1} \right)^i
\]

\[
= 2^{1-n} \sum_{i=1}^{\lfloor n/2 \rfloor} \left(\frac{n-1}{2i-1} \right)^{2i} = 2^{1-n} \left(2^{n-2} + (n-1)2^{n-3} \right)
\]

\[
= \frac{n+1}{4}.
\]

Consequently

\[
E_n(M) = \begin{cases}
 2 & \text{for } n = 2, \\
 \frac{n+1}{4} & \text{for } n \geq 3.
\end{cases}
\]

The second moment (for \(n \geq 4 \) is equal to

\[
E_n(M^2) = \sum_{i=1}^{\lfloor n/2 \rfloor} i^2 P_n(i) = \sum_{i=1}^{\lfloor n/2 \rfloor} 2^{2-n} \left(\frac{n-1}{2i-1} \right)^{i^2}
\]

\[
= 2^{-n} \sum_{i=1}^{\lfloor n/2 \rfloor} \left(\frac{n-1}{2i-1} \right)^{(2i)^2}
\]

\[
= 2^{-n} \left(n2^{n-2} + (n-1)2^{n-3} + (n-1)(n-2)2^{n-4} \right)
\]

\[
= \frac{n(n+3)}{16}.
\]

And thus we obtain

\[
Var_n(M) = \begin{cases}
 0 & \text{for } n = 2, 3, \\
 \frac{n-1}{16} & \text{for } n \geq 4.
\end{cases}
\]

Although we formulated the problem for \(R^d \), we provided results only for the one-dimensional case. Even for simpler model of nearest neighbour graph (see [11] and [3]), higher-dimensional situations become complex enough to require simulation.
References

Received 9 September 2004
Revised 4 May 2005