COMBINATORIAL LEMMAS FOR POLYHEDRONS

ADAM IDZIK
Akademia Świętokrzyska
15 Świętokrzyska street, 25–406 Kielce, Poland
and
Institute of Computer Science
Polish Academy of Sciences
21 Ordona street, 01–237 Warsaw, Poland
e-mail: adidzik@ipipan.waw.pl

AND

KONSTANTY JUNOSZA-SZANIAWSKI
Warsaw University of Technology
Pl. Politechniki 1, 00–661 Warsaw, Poland
e-mail: k.szaniawski@mini.pw.edu.pl

Abstract

We formulate general boundary conditions for a labelling to assure the existence of a balanced \(n \)-simplex in a triangulated polyhedron. Furthermore we prove a Knaster-Kuratowski-Mazurkiewicz type theorem for polyhedrons and generalize some theorems of Ichiishi and Idzik. We also formulate a necessary condition for a continuous function defined on a polyhedron to be an onto function.

Keywords: KKM covering, labelling, primoid, pseudomanifold, simplicial complex, Sperner lemma.

2000 Mathematics Subject Classification: 05B30, 47H10, 52A20, 54H25.
1. Preliminaries

By N and R we denote the set of natural numbers and reals, respectively. Let $n \in N$ and V be a finite set of cardinality at least $n + 1$. $P(V)$ is the family of all subsets of V and $P_n(V)$ is the family of all subsets of V of cardinality $n + 1$. For $A \subset R^n$ $co A$ is the \textit{convex hull} of A and $af A$ is the \textit{affine hull} of A (the minimal affine subspace containing A). Let $ri Z$ and $bd Z$ be the \textit{relative interior} and the \textit{boundary} of a set $Z \subset R^n$, respectively.

By a polyhedron we understand the convex hull of a finite set of vertices of the polyhedron. Let $af P$ be a polyhedron of dimension n. Let $ri Z$ and $bd Z$ be the \textit{relative interior} and the \textit{boundary} of a set $Z \subset R^n$, respectively. The relative interior of the set Z is considered with respect to the affine hull of Z. \textit{Dimension} of a set $A \subset R^n$ is the dimension of $af A$. If for some $A \subset R^n$ the dimension of $af A$ is $n - 1$, then $af A$ is called a \textit{hyperplane}. And if for a finite set $A = \{a_0, \ldots, a_m\} \subset R^n \ (m \in \{0, \ldots, n\})$ the dimension of $af A$ is equal to m, then $co A$ is called a \textit{simplex} (precisely an \textit{m-simplex}).

2. Polyhedrons

By a polyhedron we understand the convex hull of a finite set of R^n. Let $P \subset R^n$ be a polyhedron of dimension n. A \textit{face} of the polyhedron P is the intersection of P with some of its supporting hyperplane. Denote the set of all k-dimensional faces of the polyhedron P by $F_k(P) \ (k \leq n)$ and the set of all vertices of the polyhedron P by $V(P) \ (V(P) = F_0(P))$. The maximal dimension proper faces of the polyhedron P are called \textit{facets}. Let Tr_n be a family of n-simplexes such that $P = \bigcup_{\delta \in Tr_n} \delta$ and for any $\delta_1, \delta_2 \in Tr_n$, $\delta_1 \cap \delta_2$ is the empty set or their common face. A \textit{triangulation} of the polyhedron P (we denote it by Tr) is a family of simplexes containing Tr_n and fulfilling the following condition: any face of any simplex of Tr also belongs to Tr. Let $Tr_n \ (m \in \{0, \ldots, n\})$ denote the family of m-simplexes belonging to a triangulation Tr. Hence $Tr = \bigcup_{n=0}^n Tr_n$. Let $V = Tr_0$ be the set of vertices of all simplexes of Tr. Notice, that $Tr_0 = \bigcup_{\delta \in Tr_n} V(\delta)$. An $(n - 1)$-simplex of Tr_{n-1} is a \textit{boundary $(n - 1)$-simplex} if it is a facet of exactly one n-simplex of Tr_n.

Let U be a finite set. An \textit{n-primoid} L^U_n over U is a nonempty family of subsets of U of cardinality $n + 1$ fulfilling the following condition: for every set $T \in L^U_n$ and for any $u \in U$ there exists exactly one $u' \in T$ such that a set $T \setminus \{u'\} \cup \{u\} \in L^U_n$.

Each function $l : V \rightarrow U$ is called a \textit{labelling}. An n-simplex $\delta \in Tr_n$ is \textit{completely labelled} if $l(V(\delta)) \in L^U_n$ and an $(n - 1)$-simplex $\delta \in Tr_{n-1}$ is x-\textit{labelled} ($x \in U$) if $l(V(\delta)) \cup \{x\} \in L^U_n$.
The following theorem is a special case of the theorem of Idzik and Junosza-Szaniawski formulated for geometric complexes. This theorem generalizes the well known Sperner lemma [9].

Theorem 2.1 (Theorem 6.1 in [3]). Let Tr be a triangulation of an n-dimensional polyhedron $P \subset \mathbb{R}^n$, $V = \text{Tr}_0$, L_U^n be an n-primoid over a set U and $x \in U$ be a fixed element. Let $l : V \to U$ be a labelling. Then the number of completely labelled n-simplexes in Tr is congruent to the number of boundary x-labelled $(n - 1)$-simplexes in Tr modulo 2.

Let $U \subset \mathbb{R}^n$ be a finite set containing $V(P)$ and let $b \in \text{ri } P$ be a point, which is not a convex combination of fewer than $n + 1$ points of the set U. The family $L^b_n = \{ T \subset U : |T| = n + 1, \ b \in \text{co } T \}$ is a primoid over the set U (see Example 3.6 in [3]). We say a b-balanced n-simplex instead of a completely labelled n-simplex if $L^b_U = L^b_n$. In the case $b = 0$ a b-balanced n-simplex is called a balanced n-simplex.

3. Main Theorem

Theorem 3.1. Let $P \subset \mathbb{R}^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $V = \text{Tr}_0$. Let $U \subset \mathbb{R}^n$ be a finite set containing $V(P)$, let $b \in \text{ri } P$ be a point which is not a convex combination of fewer than $n + 1$ points of U and let $l : V \to U$ be a labelling. If for every facet F_{n-1} of the polyhedron P we have $l(V \cap F_{n-1}) \subset F_{n-1}$, then the number of b-balanced n-simplexes in the triangulation Tr is odd.

Remark 3.2. Notice that the condition $l(V \cap F_{n-1}) \subset F_{n-1}$ implies that for each lower dimensional face F we have $l(V \cap F) \subset \bigcap_{F \subset F_{n-1} \in \mathcal{F}_{n-1}(P)} F_{n-1} = F$.

Proof of Theorem 3.1. We apply the induction with respect to dimension of the polyhedron P. If dimension of P is equal to 1, then the theorem is obvious. Assume that the theorem is true for all polyhedrons of dimension k ($k \in \mathbb{N}$). Consider a polyhedron P of dimension $k + 1$. Choose a vertex of P and denote it by x. Let b' be a point different from x, lying on the boundary of P and on the straight line passing through points b and x. Let $F_{b'}$ be a face of P containing b'. Observe that dimension of $F_{b'}$ is equal to k, because otherwise the point b would be a convex combination of fewer than $(k + 1)+1$ points of $V(P)$.

Let us count x-labeled k-simplexes on $bd P$. For any facet F different from F'_v there is no x-labeled k-simplex contained in F since for all $\delta \in Tr^k \cap F$ $co(l(V(\delta))) \subset F$ and $b \notin co(\{x\} \cup V(F))$. Hence all x-labeled k-simplexes are contained in F'_v. Notice that a k-simplex $\delta \in Tr^k \cap F'_v$ is the x-labelled k-simplex if and only if δ is a b'-balanced k-simplex. Because of Remark 3.2 we may apply the induction assumption for F'_v (F'_v is considered as a subset of af F'_v) and the point b'. Therefore the number of b'-balanced k-simplexes on F'_v is odd. Thus the number of boundary x-labeled k-simplexes in Tr is odd and by Theorem the number of the b-balanced $(k + 1)$-simplexes in Tr is odd.

Observe that for any polyhedron Q, triangulation Tr' of $bd Q$ and a point $c \in ri Q$ the family $Tr = \{co(\{c\} \cup V(\delta)) : \delta \in Tr'\} \cup Tr' \cup \{c\}$ is a triangulation of the polyhedron Q.

For any $(n - 1)$-dimensional hyperplane h^F_b containing the point b and disjoint with a facet F of the polyhedron P let H^F_b denote the open halfspace containing F and such that h^F_b is its boundary.

Theorem 3.3. Let $P \subset R^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $V = Tr_0$. Let $U \subset R^n$ be a finite set containing $V(P)$, let $b \in ri P$ be a point which is not a convex combination of fewer than $n + 1$ points of U and let $l : V \to U$ be a labelling. If for every facet F_{n-1} of the polyhedron P there exists an $(n - 1)$-dimensional hyperplane $h^{F\cap_{n-1}}_b$ containing the point b and disjoint with F_{n-1} such that $l(V \cap F_{n-1}) \subset H^{F\cap_{n-1}}_b$, then the number of b-balanced n-simplexes in the triangulation $Tr P$ is odd.

Proof. For $n = 1$ the theorem is obvious, so we consider $n > 1$. Let $V(P) = \{a_0, \ldots, a_k\}$ ($k \geq n$). Let $a'_i = 2a_i - b$ for $i \in \{0, \ldots, k\}$ and let $P' = co\{a'_0, \ldots, a'_k\}$. Notice that $P \subset P'$.

Now we define a triangulation of P', which is an extension of the triangulation Tr on P. We will define a triangulation of $P' \setminus ri P$.

For every face $F = co\{a_{i(0)}, \ldots, a_{i(l)}\}$ ($\{a_{i(0)}, \ldots, a_{i(l)}\} \subset V(P)$) of the polyhedron P we denote $F' = co\{a'_{i(0)}, \ldots, a'_{i(l)}\}$. Every face F of P has one-to-one correspondence to the face F' of P'.

Let us denote $FF' = co\{F \cup F'\}$. Thus $P' \setminus ri P = \bigcup_{F \in F_{n-1}} FF'$.

For $n = 1$ the triangulation of P' is trivial, so we may assume $n > 1$.

For any face $F_1 \in F_1(P)$ we choose a point $v_{F'_1} \in ri F'_1$ in such a way that the point b is not a convex hull of less than $n + 1$ points of $U \cup \{v_{F'_1} :
$F_1 \in \mathcal{F}_1(P)$. We join $v_{F'_1}$ with every vertex of the face F'_1. Thus we receive triangulation of F'_1. We choose a point $v_{F'_1} \in \mathcal{F}_1(P)$ in such a way that the point b is not a convex hull of less than $n + 1$ points of $U \cup \{v_{F'_1} : F \in \mathcal{F}_1(P)\}$. We join $v_{F'_1}$ with every vertex of the face F'_1, with the point $v_{F'_1}$ and with every vertex of $V \cap F_1$. Thus we receive triangulation of $F_1 F'_1$.

Now we apply the induction for $k \in \{2, \cdots, n - 1\}$: For any face $F_k \in \mathcal{F}_k(P)$ we choose a point $v_{F_k} \in \mathcal{F}_k F'_k$ in such a way that the point b is not a convex hull of less than $n + 1$ points of $U \cup \bigcup_{i=1}^{k} \{v_{F'_i} : F \in \mathcal{F}_i(P)\} \cup \bigcup_{i=1}^{k-1} \{v_{FF'_i} : F \in \mathcal{F}_i(P)\}$. We join v_{F_k} with every vertex of F'_k and every point of the set $\bigcup_{F \subset F'_k} \{v_{FF'_i}\}$. Thus we get a triangulation of the face F'_k.

We choose a point $v_{F_k F'_k} \in \mathcal{F}_k F'_k$ in such a way that the point b is not a convex hull of less than $n + 1$ points of $U \cup \bigcup_{i=1}^{k} \{v_{F'_i}, v_{FF'_i} : F \in \mathcal{F}_i(P)\}$. For each $F_k \in \mathcal{F}_k(P)$ we join the vertex $v_{F_k F'_k}$ with the vertex $v_{F'_i}$, with all the vertices of $V \cap F_k$, vertices of F'_k and with the vertices of the set $\bigcup_{F \subset F'_k} \{v_{F'_i}, v_{FF'_i}\}$.

We get the triangulation of $P' \setminus \mathcal{R} P$ and we denote it by Tr''. Hence $Tr' = Tr \cup Tr''$ is a triangulation of P', which is an extension of the triangulation Tr on P.

Let $U' = U \cup \bigcup_{i=1}^{n-1} \{v_{F'_i}, v_{FF'_i} : F \in \mathcal{F}_i(P)\}$. Let $V' = Tr'$. We define a labelling $l' : V' \to U'$. Let $l'(v) = l(v)$ for $v \in V$ and $l(v) = v$ for $v \in V' \setminus V$. Notice that the labelling l' satisfies conditions of Theorem 3.1. Thus there exists an odd number of b-balanced n-simplexes in Tr'. All b-balanced n-simplexes belong to Tr since for any facet F of P we have $l'(V' \cap FF'_i) \subset H^F_b$, where H^F_b is an open halfspace such that the point b is on its boundary.

In the proof of Theorems 3.1, 3.3 the condition: $b \in \mathcal{R} P$ is a point which is not a convex combination of fewer than $n + 1$ elements of $l(V)$ is essential. If we omit this condition we may still prove that there exists at least one b-balanced n-simplex (not necessarily an odd number of such n-simplexes). Related results were obtained by van der Laan, Talman and Yang [6, 7].

Theorem 3.4. Let $P \subset \mathbb{R}^n$ be a polyhedron of dimension n, Tr be a triangulation of the polyhedron P, $V = Tr_0$. Let $U \subset \mathbb{R}^n$ be a finite set, let $b \in \mathcal{R} P$ and let $l : V \to U$ be a labelling. If for every facet F of the polyhedron P there exists an $(n - 1)$-dimensional hyperplane h^F_b containing the point b and disjoint with F such that $l(V \cap F) \subset H^F_b$, then there exists a b-balanced n-simplex in the triangulation Tr.
Proof. Take a sequence of points \(b_k \), which converges to the point \(b \) and \(b_k \) is not a convex combination of fewer than \(n + 1 \) elements of \(l(V) \) for any \(k \in N \). For sufficiently large \(k \) we may assume that \(H_{b_k}^F \cap l(V \cap F) = H_{b_k}^F \cap l(V \cap F) \) for some \((n - 1) \)-dimensional hyperplane \(H_{b_k}^F \) and every facet \(F \) of \(P \) and apply Theorem 3.3 to \(b_k \). Thus there exists a \(b_k \)-balanced \(n \)-simplex in \(T_r \) of the polyhedron \(P \). Since the points \(b_k \) converge to the point \(b \) and the set \(U \) is finite, then there exists at least one \(b \)-balanced \(n \)-simplex in \(T_r \).

Theorem 3.4 applied to the \(n \)-dimensional cube implies the Poincaré-Miranda theorem [5].

Theorem 3.5. Let \(P \) be an \(n \)-dimensional polyhedron, \(b \in ri P \) and \(U \subset R^n \) be a finite set containing \(V(P) \). Let \(\{ C_u \subset R^n : u \in U \} \) be a family of closed sets such that \(P \subset \bigcup_{u \in U} C_u \) and for every facet \(F_{n-1} \) of the polyhedron \(P \) there exists a hyperplane \(H_b^{F_{n-1}} \) containing \(b \) and disjoint with \(F_{n-1} \) such that for every face \(F \) of \(P \) we have \(F \subset \bigcup_{u \in U \cap H_b^{F_{n-1}}} C_u \), where \(H_b^F = \bigcap_{F \subset F_{n-1} \subset \bigcup_{u \in U \cap H_b^{F_{n-1}}}} H_b^{F_{n-1}} \). Then there exists \(T \subset U \), \(|T| = n + 1 \), such that \(b \in co T \) and \(\bigcap_{u \in T} C_u \neq \emptyset \).

Proof. Let \(T_r^k \) be a sequence of triangulations of \(P \) with the diameter of simplexes tending to zero, when \(k \) tends to infinity. Denote \(V_k = T_r^k \). We define a labelling \(l_k \) on the vertices \(V_k \) \((k \in N) \) in the following way: for \(v \in V_k \) let \(l_k(v) = u \) for some \(u \in C_u \) and furthermore if \(v \in bd P \), then \(u \in \bigcap_{F_{n-1} \in F_{n-1} \subset \bigcup_{u \in U \cap H_b^{F_{n-1}}}} H_b^{F_{n-1}} \).

Since \(P \subset \bigcup_{u \in U} C_u \) and \(F \subset \bigcup_{u \in H_b^{F_{n-1}}} C_u \), then the labelling \(l_k \) is well defined and it satisfies the conditions of Theorem 3.4. Thus there exists a \(b \)-balanced \(n \)-simplex \(\delta_k \in T_r^k \). Let \(V(\delta_k) = \{ v_0^k, \ldots, v_n^k \} \). Hence for \(i \in \{0, \ldots, n\} \) \(v_i^k \in C_{l_k(v_i^k)} \). Because the diameter of simplexes of \(T_r^k \) tends to zero, there exists \(z \in P \) and a subsequence of \(v_i^k \) which converges to \(z \) for each \(i \in N \). Since \(C_u \) is a closed set for \(u \in U \) and \(U \) is a finite set, then \(z \in C_{l_i} \) for \(i \in \{0, \ldots, n\} \) and \(T = \{ t_0, \ldots, t_n \}, |T| = n + 1, b \in co T \) and thus \(\bigcap_{u \in T} C_u \neq \emptyset \).

Theorem 3.5 is a generalization of an earlier result of Ichiiishi and Idzik.

Theorem 3.6 (Theorem 3.1 in [1]). Let \(P \) be an \(n \)-dimensional polyhedron, \(b \in ri P \) and \(U \subset R^n \) be a finite set containing \(V(P) \). Let \(\{ C_u \subset R^n : u \in U \} \) be a family of closed sets such that \(P \subset \bigcup_{u \in U} C_u \) and \(F \subset \bigcup_{u \in U \cap F} C_u \) for every face \(F \) of the polyhedron \(P \). Then there exists \(T \subset U \), \(|T| = n + 1 \), such that \(b \in co T \) and \(\bigcap_{u \in T} C_u \neq \emptyset \).
Notice that the theorem of Ichiishi and Idzik is more general than the Knaster-Kuratowski-Mazurkiewicz covering lemma [4] and Shapley’s covering lemma (Theorem 7.3 in [8]).

The theorem below is related to Corollary 4.2 in [2].

Theorem 3.7. Let $P \subset \mathbb{R}^n$ be an n-dimensional polyhedron and $f : P \to \mathbb{R}^n$ be a continuous function. If for every facet F of the polyhedron P the set $f(F)$ is in the closed halfspace H^F, such that $\text{bd } H^F = \text{af } F$ and P is not contained in H^F, then $P \subset f(P)$.

Proof. Let $b \in \text{ri } P$ be a fixed point. Let Tr^k be a triangulation of the polyhedron P with the diameter of simplexes tending to zero and with a set of vertices denoted by V_k ($k \in \mathbb{N}$). We define a labelling $l_k : V_k \to \mathbb{R}^n$ by putting $l_k(v) = f(v)$ ($v \in V_k$, $k \in \mathbb{N}$). Notice that the labelling l_k satisfies the conditions of Theorem 3.4 and there exists a b-balanced n-simplex in Tr^k. Denote this n-simplex by δ_k. Without loss of generality we may assume that there exists $x \in P$ such that $x = \lim_{k \to \infty} x_k$ for every $x_k \in \delta_k$. Because f is a continuous function and $b \in \text{co } f(V(\delta_k))$ we have $f(x) = b$.

We have proved that $\text{ri } P \subset f(P)$. Since the set $f(P)$ is closed, we have $P \subset f(P)$. \qed

Acknowledgement

We are indebted to the referee for many valuable comments.

References

Received 3 November 2003
Revised 21 March 2005