ON CYCLICALLY EMBEDDABLE \((n, n)\)-GRAPHS

AGNIESZKA GÖRLICH

MONIKA PILŚNIAK

AND

MARIUSZ WOŹNIAK*

Faculty of Applied Mathematics AGH
Department of Discrete Mathematics
al. Mickiewicza 30, 30–059 Kraków, Poland

e-mail: {forys, pilsniak, mwozniak}@uci.agh.edu.pl

Abstract

An embedding of a simple graph \(G\) into its complement \(\overline{G}\) is a permutation \(\sigma\) on \(V(G)\) such that if an edge \(xy\) belongs to \(E(G)\), then \(\sigma(x)\sigma(y)\) does not belong to \(E(G)\). In this note we consider the embeddable \((n, n)\)-graphs. We prove that with few exceptions the corresponding permutation may be chosen as cyclic one.

Keywords: packing of graphs, cyclic permutation.

2000 Mathematics Subject Classification: 05C70, 05C35.

1. Introduction

We shall use standard graph theory notation. We consider only finite, undirected graphs \(G\) of order \(n = |V(G)|\) and size \(|E(G)|\). All graphs will be assumed to have neither loops nor multiple edges. If a graph \(G\) has order \(n\) and size \(m\), we say that \(G\) is an \((n, m)\)-graph.

Assume now that \(G_1\) and \(G_2\) are two graphs with disjoint vertex sets. The union \(G = G_1 \cup G_2\) has \(V(G) = V(G_1) \cup V(G_2)\) and \(E(G) = E(G_1) \cup E(G_2)\). If a graph is the union of \(k \geq 2\) disjoint copies of a graph \(H\), then we write \(G = kH\).

*The research partly supported by KBN grant 2 P03A 016 18.
An embedding of G (in its complement \overline{G}) is a permutation σ on $V(G)$ such that if an edge xy belongs to $E(G)$, then $\sigma(x)\sigma(y)$ does not belong to $E(G)$. In other words, an embedding is an (edge-disjoint) placement (or packing) of two copies of G (of order n) into a complete graph K_n. If, additionally, an embedding of G is a cyclic permutation we say that G is cyclically embeddable (CE for short).

In the paper we continue the study of families of CE graphs of [10] and [11]. It will be helpful to formulate some results proved in [10, 11] as a theorem.

Theorem 1. The following graphs are cyclically embeddable:
1. $(n, n - 2)$-graphs,
2. non-star trees,
3. cycles C_i for $i \geq 6$,
4. unicyclic graphs (connected (n, n)-graphs) except for graphs that are not embeddable at all (see Figure 1), and five graphs given in Figure 2.

Consider now the family of $(n, n - 1)$-graphs. The following theorem, originally proved in [4] and independently in [7], completely characterizes those graphs with n vertices and $n - 1$ edges that are embeddable.
Theorem 2. Let G be a graph of order n. If $|E(G)| \leq n - 1$ then either G is embeddable or G is isomorphic to one of the following graphs: $K_{1,n-1}$, $K_{1,n-4} \cup K_3$ with $n \geq 8$, $K_1 \cup K_3$, $K_2 \cup K_3$, $K_1 \cup 2K_3$, $K_1 \cup C_4$ (see Figure 3).

Note that the graphs $K_1 \cup K_2$ and $K_1 \cup K_3$ are embeddable but cannot be embedded without fixed vertices. It is interesting to note that all other $(n, n-1)$-graphs that are contained in their complements can be embedded without fixed vertices. More precisely, we have the following theorem mentioned first in [8].

Theorem 3. Let G be a graph of order n with $|E(G)| \leq n - 1$ and such that
a) G is not an exceptional graph of Theorem 2,
b) $G \neq K_{1,2} \cup K_3$ and $G \neq K_{1,3} \cup K_3$.

Then there exists a fixed-point-free embedding of G.

Somewhat unexpectedly, with only one exceptional graph more we have considerably stronger result proved in [11].

Figure 3. Non-embeddable $(n, n-1)$ graphs
Theorem 4. Let G be a graph of order n with $|E(G)| \leq n - 1$ and such that
a) G is not an exceptional graph of Theorem 2,
b) $G \neq K_{1,2} \cup K_3$ and $G \neq K_{1,3} \cup K_3$,
c) $G \neq K_1 \cup C_5$.

Then there exists a cyclic embedding of G. \blacksquare

![Figure 4. Embeddable $(n, n-1)$ graphs which are not CE](image)

In this paper we shall consider the case where G is a graph on n vertices with n edges. The more general result known on embeddings of (n, n)-graphs is the following theorem proved in [5].

Theorem 5. Let G be a graph of order n. If $|E(G)| = n$ then either G is embeddable or G is isomorphic to one of the graphs of Figure 5. \blacksquare

We shall consider the cyclic embedding of (n, n)-graphs. First, we notice that for $n \leq 4$ the number of edges in the complete graph K_n is less than $2n$. In Section 3 in Lemma 15 we notice that neither $(5, 5)$-graph is CE too. Therefore we consider all (n, n)-graphs for $n \geq 6$. We prove that only five embeddable graphs are not CE.

Theorem 6. Let $G = (V, E)$ be an embeddable (n, n)-graph ($n \geq 6$). Then either G is cyclically embeddable or G is isomorphic to:
A) one of the unicyclic graphs U_2, U_3, U_5 given in Figure 2;
B) one of five graphs F_1, F_2, F_3, F_4, F_5 of Figure 6.

The general references for these and other packing problems are in the papers of B. Bollobás, H.P. Yap and M. Woźniak (see [1], [12] and [13], and [9] respectively).
The rest of the paper is organized as follows: in Section 2 we recall some results and we prove some lemmas, which will be helpful in the proof of Theorem 6. In Section 3 we show that the graphs F_i, $i \in \{1, 2, 3, 4, 5\}$ are not cyclically embeddable and in Section 4 we given the proof of Theorem 6.
We shall need some additional definitions in order to formulate the results. Let G and H be two rooted graphs at u and x, respectively. The graph of order $|V(G)| + |V(H)| - 1$ obtained from G and H by identifying u with x will be called the touch of G and H and will be denoted by $G \cdot H$. A similar operation consisting in the identification of a couple of vertices of G, say (u_1, u_2) with a couple of vertices of H, say (x_1, x_2) will be called the 2-touch of G and H and will be denoted by $G : H$. The graph $G : H$ is of order $|V(G)| + |V(H)| - 2$. By definition, the edge say $u_1u_2 \in E(G)$ or $x_1x_2 \in E(H)$.

Let σ be a cyclic permutation defined on $V(G)$. Let assume the vertices of G define a polygon. σ is defined as a clockwise rotation of these vertices. For $u \in V(G)$, we denote the vertex $\sigma(u)$ by u^+ and $\sigma^{-1}(u)$ by u^-. Let u,v are the vertices of G and σ is its cyclic permutation. If between u and v are $k - 1$ and $n - 1 - k$ vertices (for $k > 1$) and $k - 1 \leq n - k - 1$, then the edge uv is said to be of length k (with respect to σ).

The easy proofs of the following lemmas can be found in [10].

Lemma 7. Let G be a graph obtained from the graph H by removing a pendent vertex. If G is CE then H is CE.
Lemma 8. Let H be a graph with at least one isolated vertex v and let $G = H - \{v, x\}$ be a graph obtained from the graph H by removing v and another vertex x. If G has an isolated vertex and is CE then H is CE.

Lemma 9. Let G and H be two CE graphs. Then $G \cup H$ is CE.

Lemma 10. Let G and H be two CE graphs rooted at u and x, respectively. Then the graph $G \cdot H$ is CE.

Remark. A similar result holds also if “cyclically embeddable” is replaced by “embeddable” (see [6]).

Lemma 11. Let G and H be two CE graphs such that the vertices v, u of G and x, y of H are consecutive with respect to the cyclic embeddings of G and H, respectively. Suppose that: the edges uu^+ and xx^- as well as the edges yy^+ and vv^- are not simultaneously present.

Then the graph $G : H$ obtained by identifying u with x and v with y is CE.

We shall need also some new lemmas.

Lemma 12. Let G be a CE graph and σ its cyclic packing. Let $x \in V(G)$ be a vertex of degree two and let $y, y' \in V(G)$ be the neighbors of x. Let G' be a graph obtained from G by inserting new vertex u on the edge xy, i.e., $V' = V \cup \{u\}, E' = E \setminus \{xy\} \cup \{ux, uy\}$.

Then the graph G' is CE.

Proof. We distinguish two cases. Without loss of generality we may assume that x is between y' and y with respect to the orientation given by σ.

Case 1. Let $y \neq x^+$ and $y' \neq x^-$ with respect to σ. We define σ' as follows: $\sigma'(x) = u, \sigma'(u) = x^+$, and $\sigma'(a) = \sigma(a)$ for other vertices of G'. It is easy to see that σ' is a cyclic embedding of G'.

Case 2. Let $y = x^+$ with respect to σ. Then, we define σ' as follows: $\sigma'(x) = u, \sigma'(u) = x$, and $\sigma'(a) = \sigma(a)$ for remaining vertices of G'. As above, it is easy to see that σ' is a cyclic embedding of G' except for the case where $y' = x^{++}$ with respect to σ. In this case we define σ' as follows: $\sigma'(y) = u, \sigma'(u) = y'$, and $\sigma'(a) = \sigma(a)$ for all remaining vertices of G'.

The same reasoning is true if $y = x^-$. ■
Lemma 13. If $G = (V, E)$ is a CE graph and has an isolated vertex then the graph $G \cup K_3$ is CE.

Proof. We obtain a cyclic packing of the graph $G \cup K_3$ by 2-touch of G and the graph $2K_1 \cup K_3$. The result follows from Lemma 11.

Lemma 14. Let $G = (V, E)$ be a CE graph and σ its cyclic packing. If there exists a vertex $x \in V$ such that $d(x) + d(x^+) \leq n - 2$ then the graph $G \cup K_3$ is CE.

Proof. First, note that we can choose y and y^+ such that neither $y \notin \{x, x^+\}$ nor $y^+ \notin \{x, x^+\}$ and neither the edge xy nor x^+y^+ is in E. For, each edge $xz \in E$ effects $y \neq z$ and each edge $x^+z \in E$ effects $y \neq z^-$, so these vertices z are blocked by x or x^+. If edges of x, x^+ together block at least $n - 1$ vertices of G then we cannot find any y and y^+ such that an edge xy does not exist neither an edge x^+y^+. This situation is not possibility by our assumption of $d(x) + d(x^+) \leq n - 2$.

Now, we can define σ' by adding two vertices v and w of K_3 between y and y^+ and a vertex u of K_3 between x and x^+. Let σ' be a packing of $G \cup K_3$ then $\sigma'(x) = u$, $\sigma'(u) = x^+$, $\sigma'(y) = v$, $\sigma'(v) = u$, $\sigma'(w) = y^+$ and it is easy to see that σ' is cyclically embeddable.

3. Exceptional Graphs

In this section we prepare for the proof of Theorem 6. We start with case $n = 5$.

Lemma 15. Let $G = (V, E)$ be an embeddable graph and $|V| = |E| = 5$. Then the graph G is not CE.

Proof. Let σ be a cyclic embedding of G. If G is CE then it has at most four edges: two of length one and two of length two.

Now, we are going to prove that the graphs F_i from Theorem 6 are not cyclically embeddable.

Consider first the graph F_1. Let u be the vertex of degree four and v the isolated vertex of F_1. It is easy to see that each packing permutation of the graph F_1 contains the transposition (u, v), so any packing permutation is not cyclic.
Suppose that σ is a cycling embedding for the graph F_2. Denote by u the vertex of degree four and by a, b the vertices of degree one. It is easy to see that u cannot be sent on a vertex of degree two. This implies that u cannot be an image (by σ) of a vertex of degree two (since σ^{-1} is also an embedding). Without loss of generality, we suppose that $\sigma(u) = a$. If $\sigma(a) = u$ then σ would contain a transposition. Thus we have $\sigma(b) = u$.

Note that $ua^+ \in E$, since u is adjacent to all other vertices. But then, $\sigma(ba) = ua^+$ which contradicts the fact that σ is an embedding.

Let σ be an embedding of the graph F_3. The set of the images of the vertices of K_4 have to contain: an isolated vertex, two vertices of degree one and one vertex of $V(K_4)$. It is easy to see that in this case, the vertex of degree two has to be mapped on itself. Thus σ has a fixed point and is not cyclic.

We know from Theorem 4 there does not exist a cyclic embedding for the graph $C_5 \cup K_1$ i.e., S_3, which has one edge less than the graph F_4. So there does not exist a cyclic embedding of F_4.

Now, we shall show that the graph F_5 is not cyclically embeddable. Let the vertices of F_5 be as in the Figure 7. First we consider a packing of a graph $C_4 \cup 3K_1$. There exist four cyclic embedding of this graph (see Figure 8), so we distinguish four cases. Let σ be an embedding of F_5.

![Figure 7. A graph F5](image)

Case A. Without loss a generality we may suppose that the vertices are such as in Figure 8. Notice $\sigma(a)$ cannot be neither a vertex c, because $\sigma(cx) = \sigma(xb)$, nor a vertex d, because $\sigma(yd) = \sigma(ax)$. So $\sigma(a) = u$. It is not possibility $\sigma^{-1}(y) = d$, because then $\sigma(dy) = \sigma(ya)$. Therefore $\sigma(b) = d$ and $\sigma(d) = c$, but $\sigma(xc) = \sigma(by)$, so there does not exist cyclic packing of F_5 in this case.

Analogously we can consider the remaining cases.
4. Proof of Theorem 6

We use induction on order of graphs and we show that the graphs F_i are the only exceptions. First, we consider $G = (V, E)$ a $(6, 6)$-graph, which is embeddable and is not unicyclic exception. Let σ be a cyclic packing of G. If graph G is CE, it has at most three edges of length one, three edges of length two and one edge of length three. It is easy to see that each graph G is either a cycle C_6, thus is cyclically embeddable by Theorem 1 or G is a subgraph of graph from Figure 9, which is CE.

Figure 9. Cyclically embeddable graph

Now, let $n \geq 7$ and assume that our result is true for all $n' < n$. Consider a graph G of order and size equal to n, which is embeddable and is not an exceptional graph (neither one of the graphs U_2, U_3, U_5 nor one of the graphs F_1, F_2, F_3, F_4, F_5). We distinguish four main cases.
Case 1. G has a pendent vertex x.
Let \(G' = G \setminus \{x\} \). Then \(G' \) is an \((n - 1, n - 1)\)-graph. If \(G' \) is CE then by Lemma 7 \(G \) is CE. If \(G' \) is not embeddable then it is either one of graphs \(B_i, i \in \{1, \ldots, 14\} \) \((B_{15}, B_{16} \) are \((n, n)\)-graphs with \(n < 5 \)) or \(G' \) is one of exceptions \(F_i, i \in \{1, \ldots, 5\} \). Let \(y \) be a vertex of \(G' \). Now \(G = G' \cup \{x\} \) is a graph obtained from \(B_i \) or \(F_i \) by adding a vertex \(x \) with an edge \(xy \).

Note, if \(G \) is a graph obtained from \(B_i, i \in \{1, 2, 3, 4\} \) then \(G \) is CE, because it is an unicyclic graph and is not an exceptional graph of Theorem 1.

If \(G \) is obtained from \(B_5 \) then, by assumption, the vertex \(y \) can be only the vertex \(a, b \) or \(c \). All these graphs are CE (see Figure 10).

![Figure 10. Cyclical embedding of graphs obtained from B5](image-url)

In the next constructions we repeat following reasoning. If the vertex \(y \) of the graph \(G \) is degree four and \(G \) has isolated vertex \(u \), we get a \((n, n - 2)\)-graph \(G'' = G \setminus \{y, u\} \), which has an isolated vertex \(x \). Then by Theorem 1 and Lemma 8 \(G \) is CE. If the vertex \(y \) of the graph \(G \) is degree three and isolated vertex \(u \), we get a \((n, n - 1)\)-graph \(G'' = G \setminus \{y, u\} \), which has an isolated vertex \(x \). Then if \(G'' \) is not an exceptional graph of Theorem 4, by Lemma 8 \(G \) is CE. So we consider only this cases of graph \(G \), in which it is not possible this reasoning.
We consider the graph G obtained from B_6. If y is the vertex of K_4 or K_3, we use reasoning like above. If y is an isolated vertex then we obtain a graph $K_4 \cup K_3 \cup K_2 \cup K_1$, which has a cyclic packing (see Figure 11).

Let G be obtained from B_7. If y is the vertex of K_4, we get a graph G'' from G by removing two pendent vertices different from x. We get an $(n, n-2)$-graph G''' from G'' by removing an isolated vertex and a vertex y. Then by Lemma 7 and Lemma 8 G is CE. If y is a pendent vertex of B_7 then we obtain the graph G isomorphic to $K_4 \cup P_3 \cup K_2$, which has a cyclic packing (see Figure 11).

Let G be obtained from B_8. If y is a pendent vertex of B_8 then we obtain the graph F_5, which is not CE. If y is an isolated vertex of B_8 then we obtain the graph B_7, which is not embeddable.

We consider the case of G obtained from B_9. If y is an isolated vertex of B_9 then we obtain the graph L_1, which is CE (see Figure 12).

If G is obtained from B_{10} then G is the graph B_5 and is not embeddable.

Let us consider the case where G is obtained from B_{11}. If y is a vertex of B_{11} of degree two then we obtain the graph L_2, which is CE and if y is an isolated vertex of B_{11} then we obtain the graph L_3, which is CE, too (see Figure 13).
Let G be obtained from B_{12}. If y is an isolated vertex of B_{12} then we obtain a graph B_8, which is not embeddable.

Let G be a graph obtained from B_{13} and y be a vertex of degree three of B_{13}. We get a graph G'' from G by removing a pendent vertex different from x and we get a $(n, n-2)$-graph G''' from G'' by removing an isolated vertex and a vertex y of degree four. Then by Lemma 7 and Lemma 8 G is CE. If y is a pendent vertex of B_{13} then we obtain the graph L_4 and if y is a vertex of valency two then we obtain a graph L_5. The graphs L_4 and L_5 are CE as it is showed in Figure 14.

If G is obtained from B_{14} by adding a pendent vertex x then G is a $(6,6)$-graph. Then G is either the subgraph of Figure 9, which is CE or the graph B_{13}, which is not embeddable.

Now, let G be a graph obtained from F_i, $i \in \{1, \ldots, 5\}$ by adding a new vertex x with an edge xy. As above, if y is a vertex of degree three or four we apply reasoning like by the graphs B_i.

We consider the case of G obtained from F_1. If y is an isolated vertex of F_1 then we obtain the graph F_2, which is not CE. If y is an other vertex F_1 then we repeat reasoning as above.
We consider the case of G obtained from F_2. If y is a vertex of degree two F_2, then by removing a pendent vertex different from x we get the graph L_6 which is CE (see Figure 15). The same reasoning can be applied if y is a vertex of degree one F_2. Then we obtain the graph L_7, which is CE (see Figure 15).

We consider the case of G obtained from F_3. If y is an isolated vertex F_3 then we obtain the graph $K_4 \cup P_3 \cup K_2$, which is CE, (see Figure 15). And if y is a vertex of degree one F_3 then the graph L_8, which is CE, too (see Figure 15).

We consider the case of G obtained from F_4. If y is a vertex of degree two F_4, which has two neighbours of degree three, we obtain the graph L_9, which is CE (see Figure 16). If y is an isolated vertex F_4 then we obtain the graph L_{10}, which is CE (see Figure 16).
We consider the case of G obtained from F_5. If y is a vertex of degree two of F_5, which has two neighbours of degree three, we obtain the graph L_{11}, which is CE (see Figure 17). If y is an isolated vertex of F_5 then we obtain the graph L_{12}, which is CE (see Figure 17).

Case 2. G has exactly one isolated vertex and it does not have any pendant vertex.

It is easy to see that either G has one vertex of valency four or two vertices of valency three. So, we consider two subcases.

Subcase a. Let x be a vertex of degree four in G and G has two connected components. We can say that x is a joint vertex of two cycles in G.

The graph F_1 is this smallest $(6, 6)$-graph, which obtained from two K_3 by join in a vertex x and it is not CE. Next graph is Z_1 and it is CE (see Figure 18). Every larger graphs with two connected components can be obtained by a construction of Lemma 12.
Other graphs with one vertex of valency four, one isolated vertex and without any pendant vertices are obtained by adding one or more cycle components to F_1 or to graph obtained from F_1 by a construction of Lemma 12. Thereby we obtain a cyclic embedding of the graph W_1 (see Figure 19). Each larger graph with three connected components we can obtained by a construction of Lemma 12 and every graph, which has more connected components we can obtained by Lemma 13 and Lemma 12. The assumptions of this lemmas are satisfy in our case.

Subcase b. Let G have two vertices x and y of valency three. Observe that x and y are joined by exactly three or one paths, so we consider two subcases: b_1 and b_2.

According to subcase b_1 we consider only embeddable graphs, therefore F_5, Z_2 and Z_3 are the smallest graphs satisfying our conditions. We consider additionally $(8, 8)$-graphs Z_4 and Z_5 (see Figure 20), because F_5 is not CE. All graphs Z_i, $i \in \{2, 3, 4, 5\}$ are CE as it is showed in Figure 20. Using a construction of Lemma 12 we can obtain all graphs satisfying our conditions and having two connected components.
W2 and W3 are the smallest graphs, which have three connected components. There are constructed by adding C_3 to B_{14} and B_{11}, and they are CE (see Figure 21). Each larger graph with three connected components can be obtained by a construction of Lemma 12 and each graph, which has more connected components can be obtained by Lemma 13 and Lemma 12.

In subcase b_2 the graphs Z_6 and Z_7 are the smallest, which satisfy our conditions and have two connected components. They are CE (see Figure 22). The addition of C_3 to B_{9}, i.e., a graph W_4 satisfies our conditions too, but has three connected components and is CE (see Figure 22). Now similarly to the previous cases, Lemma 13 and Lemma 12 we can used to obtain every larger graph and its are CE.
Case 3. G has at least two isolated vertices, say u and v and it does not have any pendent vertex.

It is easy to see that either G has at least one vertex of valency greater or equal to four or at least two vertices of valency three. We consider two subcases.
Subcase a. Let \(G \) have at least one vertex of valency at least four, say \(x \). Consider a graph \(G' \) obtained from the graph \(G \) by removing the vertices \(u \) and \(x \). Then \(G' \) has \(n - 2 \) vertices and at most \(n - 4 \) edges. Therefore \(G' \) is CE and by Lemma 8 \(G \) is CE, too.

Subcase b. Let \(G \) have at least two vertices \(x \) and \(y \) of valency three. Consider a graph \(G' = G \setminus \{x, v\} \). Then \(G' \) has \(n - 2 \) vertices and \(n - 3 \) edges. By induction, either \(G' \) is cyclically embeddable and then \(G \) is CE by Lemma 7 or graph \(G' \) is not embeddable, i.e., is one of the graphs of Figure 3, or it is one of exceptions of Figure 4. Graph \(G \) is embeddable by assumption, therefore it is obtained from \(A5, A6 \) or \(S3 \) by adding a vertex \(x \) of degree three and an isolated vertex \(v \).

If \(G \) is constructed from \(A5 \) then new edges join the vertex \(x \) with two vertices of first \(C_3 \) and with one vertex of second \(C_3 \). If \(G \) is obtained from \(A6 \) then new edges join the vertex \(x \) with three vertices of \(C_4 \). In the \(C_5 \) we can select three vertices by two ways, either all three are adjacent or only two are adjacent. So from \(S3 \) (see Figure 4) we can obtain two graphs \(G \).

All these four graphs \(G \) are CE by Lemma 8, because another choice of the vertex of degree three, for example \(y \), leads to a CE \((n - 2, n - 3)\)-graph.

Case 4. \(G \) has only vertices of valency two.

If graph \(G \) is a cycle then by Theorem 1 (recall that \(n \geq 6 \)) it is CE. Let \(G \) be the union of cycles. \(C_3 \cup C_4 \) is the smallest graph, which has two connected components and \(3C_3 \) is the smallest graph, which has three connected components and both are CE as it is showed in Figure 23. Every larger graph with two connected components can be obtained by construction of Lemma 12 and every graph, which has more connected components can be obtained by Lemma 14 and Lemma 12.

Thus, by induction, the proof is complete.
References

Received 5 July 2001
Revised 4 March 2002