ON THE EDGE-HYPER-HAMILTONIAN LACEABILITY OF BALANCED HYPERCUBES

JIANXIANG CAO, MINYONG SHI

School of Computer Science
Communication University of China, Beijing, China

e-mail: jxcao@126.com, myshi@cuc.edu.cn

AND

LIHUA FENG

School of Mathematics and Statistics
Central South University, Changsha, China

e-mail: fenglh@163.com

Abstract

The balanced hypercube BH_n, defined by Wu and Huang, is a variant of the hypercube network Q_n, and has been proved to have better properties than Q_n with the same number of links and processors. For a bipartite graph $G = (V_0 \cup V_1, E)$, we say G is edge-hyper-Hamiltonian laceable if it is Hamiltonian laceable, and for any vertex $v \in V_i, i \in \{0, 1\}$, any edge $e \in E(G - v)$, there is a Hamiltonian path containing e in $G - v$ between any two vertices of V_{1-i}. In this paper, we prove that BH_n is edge-hyper-Hamiltonian laceable.

Keywords: balanced hypercubes, hyper-Hamiltonian laceability, edge-hyper-Hamiltonian laceability.

2010 Mathematics Subject Classification: 05C38, 94C15.

References

1Corresponding author.

Received 24 June 2015
Revised 5 December 2015
Accepted 5 December 2015