FACIAL INCIDENCE COLORINGS OF EMBEDDED MULTIGRAPHS

Mirko Horňák, Stanislav Jendrol’

AND

Roman Soták

Institute of Mathematics
P.J. Šafárik University
Jesenná 5, 040 01 Košice, Slovakia

e-mail: {mirko.hornak, stanislav.jendrol, roman.sotak}@upjs.sk

Abstract

Let G be a cellular embedding of a multigraph in a 2-manifold. Two distinct edges $e_1,e_2 \in E(G)$ are facially adjacent if they are consecutive on a facial walk of a face $f \in F(G)$. An incidence of the multigraph G is a pair (v,e), where $v \in V(G)$, $e \in E(G)$ and v is incident with e in G. Two distinct incidences (v_1,e_1) and (v_2,e_2) of G are facially adjacent if either $e_1 = e_2$ or e_1,e_2 are facially adjacent and either $v_1 = v_2$ or $v_1 \neq v_2$ and there is $i \in \{1,2\}$ such that e_i is incident with both v_1,v_2. A facial incidence coloring of G assigns a color to each incidence of G in such a way that facially adjacent incidences get distinct colors. In this note we show that any embedded multigraph has a facial incidence coloring with seven colors. This bound is improved to six for several wide families of plane graphs and to four for plane triangulations.

Keywords: embedded multigraph, incidence, facial incidence coloring.

2010 Mathematics Subject Classification: 05C15, 05C10.

References

The research was supported by the Slovak grant VEGA 1/0368/16, by the grant APVV-15-0116, and by the Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic for the Structural Funds of EU under the project ITMS 26220120007.

Received 12 December 2016
Revised 17 May 2017
Accepted 17 May 2017