INVERSE PROBLEM ON THE STEINER WIENER INDEX

XUELIANG LI

Center for Combinatorics and LPMC-TJKLC
Nankai University, Tianjin 300071, China

e-mail: lxl@nankai.edu.cn

YAPING MAO

Department of Mathematics
Qinghai Normal University, Qinghai 810008, China

e-mail: maoyaping@ymail.com

AND

IVAN GUTMAN

Faculty of Science P.O. Box 60
34000 Kragujevac, Serbia, and
State University of Novi Pazar, Novi Pazar, Serbia

e-mail: gutman@kg.ac.rs

Abstract

The Wiener index $W(G)$ of a connected graph G, introduced by Wiener in 1947, is defined as $W(G) = \sum_{u,v \in V(G)} d_G(u,v)$, where $d_G(u,v)$ is the distance (the length a shortest path) between the vertices u and v in G. For $S \subseteq V(G)$, the Steiner distance $d(S)$ of the vertices of S, introduced by Chartrand et al. in 1989, is the minimum size of a connected subgraph of G whose vertex set contains S. The k-th Steiner Wiener index $SW_k(G)$ of G is defined as $SW_k(G) = \sum_{|S|=k} d(S)$. We investigate the following problem: Fixed a positive integer k, for what kind of positive integer w does there exist a connected graph G (or a tree T) of order $n \geq k$ such that $SW_k(G) = w$ (or $SW_k(T) = w$)? In this paper, we give some solutions to this problem.

Keywords: distance, Steiner distance, Wiener index, Steiner Wiener index.

2010 Mathematics Subject Classification: 05C05, 05C12, 05C35.

1Supported by NSFC No. 1137205.
References

doi:10.2298/JSC150126015G

doi:10.2298/FIL1505081G

doi:10.1021/ci980004b

doi:10.7151/dmgt.1868

doi:10.1002/jgt.3190140510

Received 16 September 2015
Revised 5 October 2016
Accepted 5 October 2016