CRITICALITY OF SWITCHING CLASSES OF REVERSIBLE 2-STRUCTURES LABELED BY AN ABELIAN GROUP

HOUMEM BELKHECHINE

University of Carthage
Institut Préparatoire aux Études d’Ingénieurs de Bizerte, BP 64
7021 Bizerte, Tunisie

e-mail: houmem@gmail.com

PIERRE ILLE

Institut de Mathématiques de Marseille
CNRS UMR 7373, 13453 Marseille, France

e-mail: pierre.ille@univ-amu.fr

AND

ROBERT E. WOODROW

Department of Mathematics and Statistics
University of Calgary, 2500 University Drive
Calgary, Alberta, Canada T2N 1N4

e-mail: woodrow@ucalgary.ca

Abstract

Let V be a finite vertex set and let $(\mathbb{A}, +)$ be a finite abelian group. An \mathbb{A}-labeled and reversible 2-structure defined on V is a function $g : (V \times V) \setminus \{(v,v) : v \in V\} \rightarrow \mathbb{A}$ such that for distinct $u, v \in V$, $g(u,v) = -g(v,u)$. The set of \mathbb{A}-labeled and reversible 2-structures defined on V is denoted by $\mathcal{L}(V, \mathbb{A})$. Given $g \in \mathcal{L}(V, \mathbb{A})$, a subset X of V is a clan of g if for any $x, y \in X$ and $v \in V \setminus X$, $g(x,v) = g(y,v)$. For example, \emptyset, V and $\{v\}$ (for $v \in V$) are clans of g, called trivial. An element g of $\mathcal{L}(V, \mathbb{A})$ is primitive if $|V| \geq 3$ and all the clans of g are trivial.

The set of the functions from V to \mathbb{A} is denoted by $\mathcal{S}(V, \mathbb{A})$. Given $g \in \mathcal{L}(V, \mathbb{A})$, with each $s \in \mathcal{S}(V, \mathbb{A})$ is associated the switch g^s of g by s defined as follows: given distinct $x, y \in V$, $g^s(x,y) = s(x) + g(x,y) - s(y)$. The switching class of g is $\{g^s : s \in \mathcal{S}(V, \mathbb{A})\}$. Given a switching class $\mathcal{G} \subseteq \mathcal{L}(V, \mathbb{A})$ and $X \subseteq V$, $\{g|_{(X \times X) \setminus \{(x,x) : x \in X\}} : g \in \mathcal{G}\}$ is a switching class, denoted by $\mathcal{G}[X]$.

Given a switching class $\mathcal{S} \subseteq \mathcal{L}(V,A)$, a subset X of V is a clan of \mathcal{S} if X is a clan of some $g \in \mathcal{S}$. For instance, every $X \subseteq V$ such that $\min(|X|,|V \setminus X|) \leq 1$ is a clan of \mathcal{S}, called trivial. A switching class $\mathcal{S} \subseteq \mathcal{L}(V,A)$ is primitive if $|V| \geq 4$ and all the clans of \mathcal{S} are trivial. Given a primitive switching class $\mathcal{S} \subseteq \mathcal{L}(V,A)$, \mathcal{S} is critical if for each $v \in V$, $\mathcal{S} - v$ is not primitive. First, we translate the main results on the primitivity of \mathcal{A}-labeled and reversible 2-structures in terms of switching classes. For instance, we prove the following. For a primitive switching class $\mathcal{S} \subseteq \mathcal{L}(V,A)$ such that $|V| \geq 8$, there exist $u, v \in V$ such that $u \neq v$ and $\mathcal{S}[V \setminus \{u, v\}]$ is primitive.

Second, we characterize the critical switching classes by using some of the critical digraphs described in [Y. Boudabous and P. Ille, Indecomposability graph and critical vertices of an indecomposable graph, Discrete Math. 309 (2009) 2839–2846].

Keywords: labeled and reversible 2-structure, switching class, clan, primitivity, criticality.

2010 Mathematics Subject Classification: 05C75.

References

Received 27 September 2015
Revised 29 March 2016
Accepted 29 March 2016