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Abstract

In this paper, we discuss optimal 1-toroidal graphs (abbreviated as O1TG),
which are drawn on the torus so that every edge crosses another edge at most
once, and has n vertices and exactly 4n edges. We first consider connectiv-
ity of O1TGs, and give the characterization of O1TGs having connectivity
exactly k for each k € {4,5,6,8}. In our argument, we also show that there
exists no O1TG having connectivity exactly 7. Furthermore, using the result
above, we discuss extendability of matchings, and give the characterization
of 1-, 2- and 3-extendable O1TGs in turn.
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1. INTRODUCTION

All graphs considered in this paper are finite, simple and connected. We denote
the vertex set and the edge set of a graph G by V(G) and E(G), respectively.
The order of G means the number of vertices of G. A path P of length k is a
k-path, which has k edges. In particular, if kK = 0, then P is a trivial graph. A
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cycle of length k is a k-cycle. For a cycle C' in a graph G, an edge e € E(QG)
such that V(e) C V(C) and e ¢ E(C) is called a chord of C. A cycle C in G is
separating if G—V (C) is a disconnected graph. We denote the induced subgraph
of G by S C V(G) by G[5].

A graph G is 1-embeddable on a closed surface F? if it can be drawn on F2 so
that every edge of G crosses another edge at most once. The drawn image of G on
F? is a 1-embedded graph on F?. (We implicitly consider good drawings, that is,
(i) vertices are on different points on the surface, (ii) no adjacent edges cross, (iii)
no three edges cross at the same point, and (iv) any non-adjacent edges do not
touch tangently.) The study of 1-planar graphs, which are 1-embeddable graphs
on the plane or the sphere, was first introduced by Ringel [16], and recently
developed in various points of view (see e.g., [6, 19]); the drawn image is called a
1-plane graph. It is known that if G is a 1-embedded graph on F? with at least
three vertices, then |E(G)| < 4|V(G)| — 4x(F?) holds, where x(F?) stands for
the Euler characteristic of F? (see [8] for example). In particular, a 1-embedded
graph G on F? that satisfies the equality, that is |E(G)| = 4|V (G)| — 4x(F?), is
optimal. An edge in a 1-embedded graph G is crossing if it crosses another edge,
and non-crossing otherwise.
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Figure 1. 8-regular O1TG G, quadrangular subgraph Q(G) and Q[S] induced by S.

It was shown in [8] that every simple optimal 1-embedded graph G on F? is
obtained from a polyhedral quadrangulation H by adding a pair of crossing edges
in each face of H. We call the quadrangulation H, which consists of all the non-
crossing edges of G, the quadrangular subgraph of G, and denote it by Q(G)(= H)
(see the left-hand side and the center of Figure 1). By the property above, every
vertex of G has even degree, that is, G is Eulerian. For example, “optimal 1-plane
graph” is abbreviated as “O1PG” in past research; see e.g., [17, 20]. Similarly,
“optimal 1-embedded graph on the torus” (respectively, “the projective plane)” is
also said like “optimal 1-toroidal graph” (respectively, “optimal 1-projective plane
graph”, and abbreviated as “O1TG” (respectively, “O1PPG”).

In the first half of the paper, we discuss connectivity of O1TGs. In [4],
Fujisawa et al. discussed connectivity of O1PGs, and show that every O1PG
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has connectivity either 4 or 6; they actually gave the characterization of O1PGs
having connectivity k for each k& € {4,6}. Furthermore in [7], connectivity of
O1PPGs was discussed, and it was shown that there exist O1PPGs that have
connectivity exactly 5. That is, every O1PPG has connectivity 4, 5 or 6, and
the authors actually characterized such O1PPGs with connectivity k for each
k € {4,5,6}. Since every O1PG or O1PPG G has a vertex of degree exactly 6,
and hence k(G) < 6, where k(G) represents the connectivity of G. However for
O1TGs, the situation is different, since there are infinitely many 8-regular O1TGs
whose quadrangular subgraphs are 4-regular. The first main result in this paper
is the characterization of 8-connected O1TGs as follows, where Q(p, ¢, r) is a well-
known representation of 4-regular quadrangulations in topological graph theory,
which will be introduced in Section 3.

Theorem 1. Let G be an 8-regular O1TG. Then, we have k(G) € {6,8}. Fur-
thermore, G is 8-connected if and only if Q(G) is not isomorphic to Q(p,r,3)
(p>4andr>0).

Actually, it is easy to show that every optimal 1-embedded graph on a closed
surface is 4-connected; this fact is proved as Theorem 18 in this paper. Hence,
we characterize O1TGs, which are not 8-regular, having connectivity exactly
k € {4,5} as follows. (As a result, O1TGs other than those have connectivity
exactly 6.)

Theorem 2. Let G be an O1TG. Then the following statements hold.

(i) K(G) =4 if and only if Q(G) has a trivial 4-cycle that does not bound a face
of Q(G).

(ii) Assume that G is 5-connected. Then k(G) =5 if and only if Q(G) has two
homotopic cycles xy1z1x and xy2z9x, where x,y1,y2, 21 and zo are distinct
vertices.

In the latter half of the paper, we discuss matching extendability of O1TGs
using the result related to connectivity of those graphs discussed above. A match-
ing M C E(G) of G is extendable if G has a perfect matching containing M.
Moreover, a graph G with at least 2m + 2 vertices is m-extendable if any match-
ing M in G with |M| = m is extendable. Matching extendability has been widely
studied in literature (e.g., see [15]). In particular, matching extendability of
graphs embedded on closed surfaces was investigated in [1, 2, 5, 13]; for example,
it was proven as a basic result that no planar graph is 3-extendable.

The matching extendability of 1-embedded graphs on F? was first addressed
in [4], and the authors proved that every O1PG of even order is l-extendable.
Further in the same paper, they discussed 2-extendability of O1PGs, and proved
that an O1PG G of even order is 2-extendable unless G contains a barrier 4-cycle,
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where a barrier k-cycle is a k-cycle of Q(G) that bounds a 2-cell containing an
odd number of vertices; it is precisely defined in Section 5. As mentioned above,
every O1PG has a vertex v of degree exactly 6, and it is clear that every O1PG is
not 3-extendable; consider three independent edges covering Ng(v). In the same
paper, they actually characterize three independent edges that are extendable.
Moreover in [7], the argument was extended to O1PPGs.

We first give the characterization of 1-extendable O1TGs as follows, where
T? represents the torus throughout the paper.

Theorem 3. Let G be an O1TG of even order. Then G is 1-extendable if and
only if Q(G) does not contain a subgraph H satisfying the following conditions:

(i) H is a quadrangulation of T?, and

(ii) every facial cycle of H corresponds to a barrier 4-cycle of G.

The following statement concerning the 2-extendability of O1TGs is similar
to those for O1PGs and O1PPGs.

Theorem 4. An O1TG G of even order is 2-extendable if and only if G has no
barrier 4-cycle.

Unlike in the case of O1PGs and O1PPGs, there exist 3-extendable O1TGs,
and those graphs are characterized as follows.

Theorem 5. An O1TG G of even order is 3-extendable if and only if G is 8-
regqular.

This paper is organized as follows. In the next section, we first define ter-
minology used in the paper, and introduce the fundamental results holding for
optimal 1-embedded graphs on general closed surfaces. Next, we discuss con-
nectivity of O1TGs and separating short cycles in quadrangular subgraphs. In
Section 3, we provide the characterization of 8-regular O1TGs having connectiv-
ity exactly 8. Furthermore in Section 4, we characterize not 8-regular O1TGs
having connectivity k for each k € {4,5,6}. In Section 5, we discuss matching
extendability of O1TGs, and show the characterization of m-extendable O1TGs
for each m € {1,2,3}.

2. PRELIMINARIES AND BAsic RESULTS

A vertex set S of a connected graph G is a cut if G— S has at least two connected
components. A cut S of G is minimal if any proper subset of S is not a cut of G.
For a cut S of G, if |S| = k, then we call S a k-cut of G. We denote the number
of odd components of G — S for S C V(G) by C,(G — 5); that is, a connected
component of odd order.
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Let G be a graph embedded on a closed surface F2. Then a connected com-
ponent of F? — G, which is as a topological space, is a face of G, and we denote
the face set of G by F'(G); that is, “a face” in this paper is not necessarily home-
omorphic to an (open) 2-cell. In particular, if every face of G is homeomorphic
to a 2-cell, then G is a 2-cell embedding or 2-cell embedded graph on F?2.

In general, each boundary component of a face f forms a closed walk of G.
That is, the boundary of f, which is denoted by Jf, is the union of closed walks
of G. In particular, if f has the unique boundary component, then it is said to be
the boundary closed walk of f. Let f be a face of G embedded on F?, and assume
that 0f = Wy U---UW,, where W; is a closed walk corresponding to a boundary
component of f for each i € {1,...,l}. Then, the invariant deg(f), which is
called the size of f, is defined as follows where || is the length of a closed walk
Wi deg(f) = Zi’:l |W;|. Furthermore, we put V(0f) =V (Wy)U---UV(W;). A
k-face f of G is a face with deg(f) = k. In particular, if a k-face f is bounded
by a closed walk Wy = vgvy - - - vk _1vg of length k, that is, 9f = Wy, then f is a
k-gonal face of GG. In this case, we simply denote f = vgvy ---vg_1 in our latter
arguments. Furthermore, if f is a 2-cell face, we say that f is a k-gonal 2-cell
face. Observe that every 4-face is a 4-gonal face since it cannot have at least two
boundary components, except for a very special case where the boundary consists
of two independent edges such that the 4-gonal face is incident to those edges on
both sides.

A simple closed curve v on a closed surface F? is trivial if v bounds a 2-cell
on F?, and essential otherwise. We apply these definitions to cycles of graphs
embedded on F?, regarding them as simple closed curves. A simple closed curve
v on a closed surface F? is surface separating if F? — ~ is disconnected as a
topological space. We also apply the definition to cycles of graphs on F2. It is
well-known that every surface separating simple closed curve on the sphere, the
projective plane or the torus is trivial. The following proposition is known in
topological graph theory, and is commonly used.

Proposition 6 [9]. Let G be a graph 2-cell embedded on a closed surface F? so
that each face is bounded by a closed walk of even length. Then the lengths of
two cycles in G have the same parity if they are homotopic to each other on F?.
Furthermore, there is no surface separating odd cycle in G.

We often consider the induced subgraph of Q(G) by a cut S of G in our
argument, which is Q(G)[S] under our definition. However, when the underlying
graph G is clear, we use Q[S] in place of Q(G)[S], to simplify the notation (see
the right-hand side of Figure 1). In the following five lemmas, we assume that G
is an optimal 1-embedded graph on F?, and S C V(G) is a cut of G. First of all,
we show the following one, which is related to Proposition 6.

Lemma 7. For every face f of Q[S], the size of f is even.
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Proof. Consider the graph H = Q(G) N (f U df) embedded on the surface Fy
with the boundary components W1 U --- U W;. We glue a disc D; to W; so that
the boundary of D; coincides with W; for each i € {1,...,l}, to obtain a closed
surface Fy. Now, take the dual H* of H on Fy. If the size of f is odd, then it
immediately contradicts the odd point theorem. [

The remaining four lemmas are proved in [7].

Lemma 8 [7]. Every face of Q[S] contains at most one connected component of
G-5.

Lemma 9 [7]. If S is minimal, then the minimum degree of Q[S] is at least 2.

Lemma 10 [7]. If Q[S] has p faces each of which has the size at least 2q > 6,
then the following inequalities hold:

(i) [E@QISD] = 2[F(Q[S])] + (¢ — 2)p,
(i) [S]—x(F?) + (2= a)p > [F(Q[S))I.
Lemma 11 [7]. If |S]| < Co,(G — S)+2m holds for some integer m, then we have

the following
2|F(QIS])| +2m — x(F?) > |E(Q[S))].

3. CONNECTIVITY OF 8-REGULAR O1TGs

In this section, we discuss the connectivity of 8-regular O1TGs. First of all, we
show that every O1TG is 6-connected.

Lemma 12. Let G be an 8-regular O1TG. Then 6 < k(G) < 8 holds.

Proof. An 8-regular O1TG G has a 6-regular triangulation T as a spanning
subgraph, which is obtained from Q(G) by adding a diagonal edge in each face;
note that Q(G) is a 4-regular quadrangulation of 72. Then T is 6-connected by
the result in [11], and x(G) > 6 holds. In addition, we clearly have k(G) < 8,
since every vertex of G has degree exactly 8. [

The following lemma describes the inner structures of 2-cell regions of quad-
rangulations of closed surfaces bounded by closed walks of length 4, 6 and 8.
Note that a region in this paper might contain vertices and edges of the graph.

Lemma 13 ([18]). Let G be a quadrangulation of a closed surface F? and let D
be a 2-cell region bounded by a closed walk C of length 4, 6 or 8 such that

(i) there is at least one vertez inside D,

(ii) all vertices inside D have degree at least 3, and
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(iii) D does not have a unique vertex x of degree 4 such that Ng(x) C V(C) and
D contains exactly four faces incident to x (when |C| =8).

Then, there exists a vertex of degree 3 inside D.

Next, we discuss Q[S] for a k-cut S in 8-regular O1TGs, and present the
following three lemmas, which are keys to prove our main result.

Lemma 14. Let G be an 8-reqular O1TG, and let S be a minimal k-cut of G
with k € {6,7}. Then Q[S] has at least two faces that are not homeomorphic to
2-cells.

Proof. Suppose, for a contradiction, that Q[S] has at most one face that is not
homeomorphic to a 2-cell. Since S is a cut of G, Q[S] has a 2-cell face f; that
contains a connected component of G — S by Lemma 8. Furthermore, deg(f1) is
even by Lemma 7. Then, we have deg(fi;) > 8 by Lemma 13. If deg(f1) = 8,
then f; contains the unique vertex v of G by Lemma 13. Since k € {6,7}, 0f; is
not a cycle. This contradicts that G is simple since degq(v) = 8. Therefore, we
have deg(f1) > 10.

Next, we discuss the other face fo that contains a connected component of
G; f2 might not be a 2-cell face. By the minimality of S, V(df2) = S. (Observe
that fo contains at least one vertex of G since no edge of Q(G) other than those
on the boundary is inside fa; recall that Q[S] is the induced subgraph of Q(G).)
Hence f5 is a k’-face where k' is an even number is at least k£ by Lemma 7.

Then the inequality 2|E(Q[S])| > 4(|F(Q[S])| — 2) + k' + 10 = 4|F(Q]S])| +
k' +2 holds. On the other hand, we have k—|E(Q[S])|+|F(Q[S])| > 0, and hence
kE+ |F(Q[S])| > |E(Q[S])| holds. By combining the former inequality, we obtain
2k — (K" +2) > 2|F(QI[S])|. Since |F(Q[S])| > 2, the equality in the inequality
above must hold, and it implies that Q[S] is a 2-cell embedding. Thus, Q[S] has
exactly two faces f1 and fo with deg(f1) = 10 and deg(f2) € {6,8}. However,
deg(f2) must be at least 10 by the argument above, a contradiction. [

Lemma 15. Let G be an 8-reqular O1TG, and let S be a 6-cut of G. Then Q[S]
is the union of two essential 3-cycles that are homotopic to each other.

Proof. By Lemma 14, Q[S] has at least two faces fi and f2 that are not homeo-
morphic to 2-cells. Assume that 0f; = WiU---UW;, where each W; is a boundary
component that is a closed walk in Q[S]. First, we suppose [ = 1. In this case,
0 f1 consists of the unique boundary component, and f; contains a handle. Under
the condition, fy that is not a 2-cell face cannot exist. Thus, we conclude that
> 2.

Now we take a simple closed curve ~; along W; inside f; foreachi € {1,...,1}.
Suppose that ~; is trivial on T? for some i € {1,...,1}, say v without loss of
generality. In this case, note that V(W7) NV (W;) = 0 for each i # 1. If the
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interior of ; contains a vertex other than those of W7, then, W7 would become a
smaller cut set, contrary to S being minimal. On the other hand, if the interior
of v1 does not contain any vertex other than those of Wi, then it also concludes
a contradiction since V(W) U --- U V(W) is a smaller cut set of G. As a result,
7; is not trivial on T2 for each i € {1,...,1}.

Since v; and 2 do not have any intersection, they are homotopic to each
other on T2. That is, 71 can be shifted through f; and aligned to 7o, and the
trajectory itself forms an annular region. Furthermore, this implies that no other
boundary component can exist in the annular region, and hence we have | = 2;
observe that if there exists W3 in the annular region, then 3 must be trivial, a
contradiction. That is, the annular region is actually f;.

Since G is simple, we have |V(W7)| > 3 and |V (W2)| > 3. Furthermore,
if V(W1) NV (Ws) # (), then the other non-2-cell face fy does not exist on 72;
observe that the same argument also holds for fy, and we can take an essential
simple closed curve in fo. Thus, we have |V (W7)| = |V/(W3)| = 3. Furthermore,
each of W; and Wy is a 3-cycle under the situation, and hence we have got our
desired conclusion. Observe that fs also has the boundary components W; and
Ws, which are 3-cycles. [

Lemma 16. FEvery 8-reqular O1TG has no minimal 7-cut.

Proof. Suppose, for a contradiction, that an 8-regular O1TG G has a minimal
7-cut S. Then, by Lemma 14, Q[S] has at least two faces f; and fy that are not
homeomorphic to 2-cells. Actually, the same argument as that in the previous
proof holds, and hence, we have df; = W UWs with |V/(W;)| > 3 and |V (Wa)| >
3, and V(W7) NV (W) = (. Without loss of generality, we may assume that
|V (W1)| = 3, that is, W7 is a cycle of length 3. Even if W5 is not a cycle, then Wy
contains an essential cycle C. (In the case where W5 is not a cycle, we can divide
Ws into two shorter closed walks, one of which is essential. Otherwise, Wy would
become trivial. By repeating this division, we can eventually obtain an essential
cycle. For example, see an example in Figure 2, where Wy = wiwswgwrwgwy
and C' = wywswgwy.) Since V(W1) NV (Wa) =0, Wi and C are homotopic, and
hence |C| = 3 by Proposition 6. Then V(W7) UV (C) would become a smaller
cut, contrary to S being minimal. [

As follows, 4-regular quadrangulations of T? are completely classified in [3],
where Q(p, r, q) is a commonly used notation that represents those graphs. (Every
4-regular quadrangulations of T2 can be cut along edges into a p x ¢ rectangle, and
the parameter r represents the deviation when reconstructing the torus from the
annulus with two boundary cycles of length ¢. See [3, 9, 10, 11, 12] for details.)
In particular, g represents the length of the meridian cycle of Q(p, 7, q). Note that
to keep Q(p, 1, q) simple, we need the condition ¢ > 3 at least. (See the center of
Figure 1. The figure depicts Q(5,0,4).)
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Figure 2. Homotopic closed walks W7 and W5 containing C'.

Theorem 17 [3]. Every 4-reqular quadrangulation of T? is isomorphic to Q(p,
r,q) for some integersp > 1, ¢ >3 and r > 0.

Now we prove our first main result in the paper.

Proof of Theorem 1. By Lemmas 12 and 16, we have x(G) € {6,8}. Then,
we show the latter part of the theorem below. The necessity is trivial, and hence
we discuss the sufficiency of the statement. Let G be an 8-regular O1TG that is
not 8-connected. As above, we discuss the case of kK(G) = 6. Then there exists
a 6-cut S of G. By Lemma 15, Q[S] is the union of two essential 3-cycles that
are homotopic to each other, and hence G is isomorphic to Q(p,7,3) (p > 4 and
r > 0); observe that each annular region of 7% — Q[S] contains vertices of G,
otherwise .S would not become a cut of G. [

4. CONNECTIVITY OF NOT 8-REGULAR O1TGs

In this section, we discuss the connectivity of not 8-regular O1TGs. At the
beginning of the section, we prove the following theorem. (For the cases of the
sphere and the projective plane, that is, for O1PGs and O1PPGs, the proofs are
provided separately in [4] and [7], respectively.)

Theorem 18. Every optimal 1-embedded graph on a closed surface is 4-connected.

Proof. Let G be an optimal 1-embedded graph on a closed surface F2. Suppose,
for a contradiction, that G has a 3-cut S. Then, we have |F(Q[S])| > 2 by
Lemma 8. Further, we have |E(Q[S])| > 2|F(Q[S])| by Lemma 7. This is a
contradiction since we clearly have |E(Q[S])| < 3. |

The following is also a generalization of the results in [4, 7].

Lemma 19. Let G be an optimal 1-embedded graph on F?, and let S be a 4-cut
of G. Then, one of the following holds.
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(I) Q[S] has exactly three 4-gonal faces each of which contains a vertex of G. In
this case, Q[S] has eractly siz edges, and F? is nonorientable.

(IT) Q[S] has exactly two faces each of which contains a vertex of G. Furthermore,
one of them is a 4-gonal face.

Proof. We put S = {s1, s2,3,54}. By Lemma 8, we have |F(Q[S])| > 2. Fur-
thermore, |E(Q[S])| > 2|F(Q[S])| by Lemma 7, and hence we obtain |F'(Q[S])| <
3; recall that [V (QI[S])| = |S| = 4, and then |E(Q[S])| < 6. First, we consider
the case of |F(Q[S])| = 3. In this case, we immediately have |E(Q[S])| = 6 by
the inequality above, and this implies that Q[S] has exactly three 4-faces; that
is, three 4-gonal faces. Let f1, fo and f3 denote such three 4-faces, and we may
assume that f; = s1s9s354 without loss of generality. We may further assume
that sisg is shared by two faces fi and fo. If fo = s1s25354, then Q[S] must be
a 4-cycle on the sphere by the simplicity of GG, contradicting the existence of fs.
Thus, we have fy = 51525453, and F? contains a Mdbius band that crosses edges
s1s2 and sgsg. This is actually (I) in the statement.

Next, we consider the case of F/(Q[S]) = 2. Let f1 and f2 be two faces of Q[S].
Suppose, for a contradiction, that deg(f1) = deg(f2) = 6 with |E(Q[S])| = 6;
the other cases clearly admit a 4-face by a similar argument as above. Now,
we consider the following two cases: Case (i) df; has at least two boundary
components, and Case (ii) df1 has exactly one boundary component.

We first discuss Case (i). In this case, we may assume that df; = W U Ws
with V(W) = {s1,s2,s3} and V(Ws) = {s1, s2,54}. Under the situation, a 4-
cycle s183898481 cuts off the region obtained from f; by identifying s1$2 from the
other part, which is nothing but f,, contradicting that fo has size 6.

Next, we assume Case (ii). By Lemma 9 and the simplicity of G, each s;
appears on Jf; at most twice. Then, we may assume that 0f; = $1525351525451
without loss of generality; observe that the element of S that appears on 0f
twice must be on the diagonal position. Similar to the previous case, the cycle
52838184852 is a surface separating 4-cycle; that is, fo = s9s35154 is a 4-gonal face
of Q[S], a contradiction. |

Next, we discuss minimal 5-cuts in O1TGs.

Lemma 20. Let G be an O1TG, and let S be a minimal 5-cut of G. Then Q|S]
has a 6-face f such that V(0f) = S and f contains a connected component of
G-S.

Proof. By Lemma 7, every face of Q[S] has even size. Note that since S is
minimal, Q[S] has no 4-face that contains a connected component of G — S. By
Lemma 8, |F(Q[S])| > 2 holds, and hence Q[S] has at least two faces with size
at least 6. Then the inequality |F(Q[S])| < 3 follows from (ii) of Lemma 10 with
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|S| =5, x(F?) =0, p > 2 and ¢ > 3. By combining |F(Q[S])| < 3 and Euler’s
formula 5 — |E(Q[S])| + |F(Q[S])| > 0, we obtain |E(Q[S])| < 8.

First, we consider the case of |E(Q[S])| = 8. Then all the equalities of
inequalities above hold, and we have |F(Q[S])| = 3. Thus @Q[S] has the unique
4-face and two 6-faces under our assumption, and hence there exists a 6-face of
Q[S] that contains a connected component of G — S. If |E(Q[S])| < 7, then we
have |F(Q[S])| = 2 since Q[S] has at least two faces with size at least 6. In the
same way, we can easily find our desired 6-face; note that |E(Q[S])| > 6 by our
assumption. [

Now we prove our second main result in the paper.

Proof of Theorem 2. First, we show (i) in the statement. By Theorem 18, the
sufficiency is trivial, and hence we discuss the necessity below. Let S be a 4-cut
of an O1TG G. By Lemma 19, Q[S] contains a 4-gonal 2-cell face containing a
vertex since the surface is 72 now; observe that 72 is orientable, and that any
surface separating cycle is trivial on T2. Therefore, (i) of the statement holds.

Next, we show (ii). First, we discuss the sufficiency. We put C = zy; 212 and
Cy = xys20x, which are two homotopic cycles in the statement. By Proposition 6,
both C'y and C5 are essential. Firstly, consider the 2-cell region R bounded by
C1 U Cy. We may assume that the boundary closed walk of R is xyizi1x2010.
If R contains no vertex of G, then R has the unique diagonal edge of Q(G), say
Y122 without loss of generality; that is, R contains exactly two faces of Q(G).
However in this case, a crossing edge xz2 in R and a non-crossing edge xz2 on
the boundary of R would form multiple edges, a contradiction. Similarly, the
other region, which is outside of R, must contain a vertex of GG. Therefore,
{z, 11,2, 21,22} is a 5-cut of G.

X
A A
Y1 21
Y2 22
Wh Wo
T

Figure 3. Homotopic 3-cycles W7 and W,.

Secondly, we discuss the necessity, by putting a minimal 5-cut S = {x, y1, y2,
21, 22}. By Lemma 20, Q[S] has a 6-face f such that V(0f) =S and f contains
a connected component of G — S. Similar to the proof of Lemma 19, we consider
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the following two cases. Case (i) df has at least two boundary components,
and Case (ii) df has exactly one boundary component. First, we discuss Case
(). In this case, we may assume that df = Wy U Wy with V(W1) = {z,y1,y2}
and V(Ws) = {x, 21, 22}; note that df has exactly two connected components,
otherwise f would not become a 6-face. Then, we clearly have our desired two
3-cycles; by Proposition 6 and by our former arguments. Under the situation,
observe that the region bounded by xyiyszzez1x other than f is homeomorphic
to a 2-cell, where W1 = xyi1yox and Wy = x2z129x are homotopic to each other in
this direction (see the left-hand side of Figure 3).

Next, we consider Case (ii). We may assume that only x appears exactly
twice on Jf; since |V(9f)| = 5 now. By Lemma 9 and the simplicity of G, z
must appear on the diagonal position of df. Then, we may assume that 0f =
xYy1Yy2x 2921, and hence we have our desired two 3-cycles also in this case; indeed
using Proposition 6 (see the right-hand side of Figure 3). |

5. MATCHING EXTENDABILITY OF O1TGs

Let G be an optimal l1-embedded graph on F?2, and let W be a closed walk
consisting of only non-crossing edges that bounds a 2-cell region D. If D contains
an odd number of vertices, then we call D an odd weighted region. In particular,
if W is a cycle, then W is a barrier cycle. A barrier cycle of length k is called a
barrier k-cycle.

The following lemma is a generalization of Lemma 2.3 in [14] that is often
used in matching theory; this can be easily derived from Tutte’s 1-factor theorem.

Lemma 21 [4]. Let G be a graph of even order and {e1,...,emt1} be a matching
of G which is not extendable. Then there exists S C V(G) such that

(1) SO UM Ve, and
(i) S| < C,(G — S) + 2m.

In fact, by assuming m-extendability of a graph G, the equality of (ii) in
Lemma 21 holds (see e.g., [4]). In the remaining part of the section, we prove
the following three main results concerning matching extendability, using tools
proved in the former sections.

Proof of Theorem 3. First, we show the necessity. Suppose that an O1TG
G contains a subgraph H in the statement. Since H is a quadrangulation of
T2, |V(H)| = |F(H)| holds, and hence we have |V (H)| = C,(G — H) by the
assumption. Let e be an edge in H. Then G’ = G — V(e) has a cut V(H) \ V (e)
such that G’ — (V(H) \ V(e)) has exactly |V(H)| odd components. Thus G’
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does not have a perfect matching by Tutte’s 1-factor theorem. That is, G is not
1-extendable.

Next, we discuss the sufficiency. Let G be an O1TG that is not 1-extendable,
and assume that e is an edge of G that is not extendable. Then there exists
S C V(G) such that (i) V(e) C S and (ii) |S| < Co(G—S) by Lemma 21 for m = 0.
Now we consider Q[S] on T?. By Lemma 11, we have 2|F(Q[S])| > |E(Q[S])|
with m = 0 and x(F?) = 0. On the other hand, |E(Q[S])| > 2|F(Q[S])| holds
by Lemma 7, and hence we obtain 2|F(Q[S])| = |E(Q[S])|. Actually, Lemma
11 is obtained by using Euler’s formula, and this equality implies that Q[S] is
a 2-cell embedding, and it further indicates that Q[S] is a quadrangulation of
T2. Tt is well-known that the number of vertices equals the number of faces of a
quadrangulation of T2, and hence we have |S| = |F(Q[S])|. Then, |F(Q[S])| <
Co(G — S) by (ii) above, and thus |F(Q[S])| = Co(G — S) by Lemma 8. Hence
each face of Q[S] contains the unique odd component of G — S, that is, each
face of Q[S] is an odd weighted region. Therefore, Q[S] is a subgraph H in the
statement. [ |

Proof of Theorem 4. Any two independent edges on a barrier 4-cycle are not
extendable, and hence the necessity clearly holds. Thus, we discuss the sufficiency
of the statement below. Let G be an O1TG that is not 2-extendable, and assume
that e; and ez are independent edges of G that are not extendable. Then there
exists S C V(G) such that (i) V(e;) UV (ea) C S and (ii) |S| < Co(G — S) +2 by
Lemma 21 for m = 1.

Now we consider Q[S] on T2, By Lemma 11 with m = 1, we have 2| F(Q[S])|+
2 > |E(Q[S])|. This inequality with Lemma 7 implies that there exist at most
two faces of Q[S] with size at least 6; that is, the others are all 4-faces. If |S| > 5,
that is, C,(G — S) > 3, then there exists a 4-gonal face f of Q[S] that contains
an odd component of G — S. Since any surface separating closed curve on T2 is
trivial, and hence, 0f is our desired barrier 4-cycle. On the other hand, if |S| = 4,
then there is also a barrier 4-cycle by (II) of Lemma 19 since 72 is an orientable
closed surface. Thus, we are done. [

We use the following lemma in the proof of Theorem 5.

Lemma 22. Let G be a 2q-connected optimal 1-embedded graph on F? with q¢ > 3
and let {e1,...,em+1} be a matching of G which is not extendable. Then we have
the following

2m — x(F?)

—9) <
ColG = 8) £ == =5

Proof. Then there exists S C V(G) such that (i) S > U™ V(e;) and (ii)
|S| < Co(G — S) + 2m of Lemma 21. Now we consider Q[S] on F?. Since
G is 2g-connected, Q[S] has at least Co(G — S) faces with size at least 2¢ by
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Lemma 8. By (ii) of Lemma 10, |S| — x(F?) + (2 — ¢)C,(G — S) > |F(Q[S])|
holds, and thus C,(G — S) + 2m — x(F?) + (2 — q)Co(G — S) = 2m — x(F?) +
(3 —q)Co(G — S) > |F(QIS])|- Since |F(Q[S])| > Co(G — S) by Lemma 8, we
have 2m — x(F?) > (¢ — 2)Co(G — S), and hence the inequality in the statement
holds. [ ]

Proof of Theorem 5. The necessity is trivial and hence we prove the suffi-
ciency of the statement; recall the observation in the introduction. Let G be an
8-regular O1TG. Suppose, for a contradiction, that G is not 3-extendable, and
assume that M = {ej, e2,e3} is a matching that is not extendable. Then there
exists S C V(G) such that (i) V(M) C S and (ii) |S| < Co(G — S) +4 by Lemma
21 for m = 2. Since G is 8-regular, k(G) € {6,8} by Theorem 1. First, suppose
that k(G) = 8. Then the inequality C,(G — S) < 2 holds by Lemma 22 with
q =4, m =2 and x(T?) = 0, and hence we have |S| < 6 by (ii) above. This
contradicts k(G) = 8.

Hence we assume that x(G) = 6 and hence Q(G) is isomorphic to Q(p,r,3)
(p > 4 and r > 0) by Theorem 1. Then the inequality C,(G — S) < 4 holds
by Lemma 22, with ¢ = 3, m = 2 and x(7?) = 0, and hence |S| < 8 holds
by (ii) above. First, we consider the case of |S| = 6. By Lemma 15, Q[S] is the
union of two essential 3-cycles C7 and C5 that are homotopic to each other. Since
S = V(M), one edge in M joins vertices of C; and Cy. This implies that one
of the two annular faces of Q[S] does not contain a vertex of G, contradicting
Lemma 8.

Next, we discuss the case of |S| = 7. By Lemma 16, S contains a 6-cut
S’, and we put S\ S’ = {v}. By Lemma 15 again, Q[S’] is the union of two
essential 3-cycles. Let H; and Hy be connected components of G — S’. Under
the situation, H] = Q[V(H;)] is a Cartesian product of a 3-cycle and a k-path
(k > 0) for each i € {1,2}. Then each of H| and H} is either a 3-cycle (if k¥ = 0)
or 3-connected (if £ > 1). Thus, H; — v is connected for i such that v € V(H;).
Therefore C,(G — S) < 2 holds, contradicting C,(G — S) > 3 obtained from (ii)
above. Finally, we consider the case of |[S| = 8. Similarly, by (ii) above, we
have C,(G — S) > 4, that is, C,(G — S) = 4. By the argument in the proof of
Lemma 22, all the equalities hold, and hence Q[S] is a 2-cell embedding, and has
exactly four faces, each of which is 6-gonal, and contains an odd component of
G — S. This clearly contradicts Lemma 13. [

6. REMARKS

In this paper, we have discussed connectivity and matching extendability of
O1TGs. We aim to investigate similar problems on optimal 1-embedded graphs
on the Klein bottle, and further extend our discussion to such graphs on gen-
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eral closed surfaces. Actually, we proved some results that work for optimal
l-embedded graphs on general closed surfaces, for example, Theorem 18, Lem-
mas 19 and 22. Furthermore, there are facts that do not hold for general closed
surfaces but do apply to optimal 1-embedded graphs on the torus and the Klein
bottle, that is, closed surfaces with Euler characteristic 0. For example, Lemmas
12, 14 and 20 are among them, and further, we can confirm that the assertion of
Theorem 3 also holds for optimal 1-embedded graphs on the Klein bottle. These
results are expected to be very helpful for our future research. However, on the
other hand, there are many claims that require us to re-examine the discussion
using properties specific to the Klein bottle. Specifically, it is known that the
Klein bottle has a non-trivial surface separating simple closed curve, which is
known as an equator, and understanding its impact on our problem seems to be
the first step of our future work.

We believe that, at least, every optimal 1-embedded graph on the Klein bottle
has no minimal 7-cut. In other words, we propose the following conjecture, which
is similar to the proposition for O1TGs.

Conjecture 23. Fvery 8-reqular optimal 1-embedded graph G on the Klein bottle
has connectivity either 6 or 8.

Similar to the case of the torus, 4-regular quadrangulations on the Klein
bottle are well classified in [10], and it would be even better if we could describe
our claims using those classifications. Furthermore, we would like to investigate
the matching extendability of optimal 1-embedded graphs on the Klein bottle as
a direction for future work. In particular, we know that there exists an 8-regular
optimal 1-embedded graph on this surface that is not 3-extendable.
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