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Abstract

Given a positive integer k, a k-tuple dominating set of a graph G is a
subset of vertices D ⊆ V (G) such that every vertex of G has at least k
neighbors in D. The k-tuple domination number of G, denoted γ×k(G), is
the minimum cardinality of a k-tuple dominating set of G. In this paper we
determine all the minimum k-tuple dominating sets for the Kneser graphs
K(n, r) with n large enough with respect to r. In addition, we relate k-tuple
dominating sets and 2-packings in Kneser graphs, and we compute the 2-
packing number of K(3r−2, r) for r ≥ 3. Finally, we obtain minimum sized
k-tuple dominating sets of K(n, 2) for n ≥ Θ(

√
k).

Keywords: Kneser graphs, multiple domination, k-tuple domination, 2-
packings.
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1. Introduction

Given a simple graph G, let NG(v) denote the open neighbourhood of a vertex v in
G and NG[v] = NG(v)∪{v} the closed neighbourhood of v in G. When the graph
G is clear from the context, we may omit the subscripts and simply write N(v)
and N [v]. Furthermore, let δ(G) be the minimum degree among all the vertices
of graph G. A dominating set in G is a subset D ⊆ V (G) such that every vertex
v ∈ V (G) verifies that |N [v] ∩ D| ≥ 1. The domination number of G, denoted
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γ(G), is the minimum cardinality of a dominating set in G. Domination in graphs
has been extensively studied in graph theory, and there is rich literature on this
subject (see e.g. [15, 16, 17]).

Some of the most studied variations of domination introduced an integer k,
such as k-tuple domination [6, 7, 11, 25]. Formally, given a graph G and a positive
integer k, a set D ⊆ V (G) is called a k-tuple dominating set of G if for every
vertex v ∈ V (G), we have |NG[v] ∩D| ≥ k. The k-tuple domination number of
G is the minimum cardinality of a k-tuple dominating set of G, and is denoted
by γ×k (G). A γ×k-set is a k-tuple dominating set with cardinality γ×k (G).
The k-tuple domination number is only defined for graphs with k ≤ δ(G) + 1.
An excellent brief survey on k-tuple domination appears in the book Topics in
Domination in Graphs [15], as part of a chapter devoted to the study of multiple
domination. Liao and Chang [21] studied the problem from an algorithmic point
of view and proved that, fixed k, determining the k-tuple domination number is
NP-complete (even for split graphs and for bipartite graphs). Considering these
unfavorable outcomes, exploring how this parameter behaves within classes of
graphs exhibiting a nice combinatorial structure, like Kneser graphs, represents
a natural direction for further research.

For positive integers r ≤ n, we denote by [r..n] and [n] the sets {r, . . . , n}
and {1, . . . , n}, respectively. If n ≥ 2r, the Kneser graph K(n, r) has as vertices
the r-subsets of [n] and two vertices are adjacent in K(n, r) if and only if they
are disjoint. This class of graphs gained prominence due to the Erdös-Ko-Rado
theorem [10], which determined the independence number of the Kneser graph
K(n, r) to be

(
n−1
r−1

)
, as a result on extremal combinatorics. Lovász’s proof of

Kneser’s conjecture [20, 22], later complemented by Matoušek’s combinatorial
proof [23], provided a determination of the chromatic number of Kneser graphs.
Numerous other graph invariants have been investigated in Kneser graphs. One
of them is the domination number [12, 14, 18, 24]. In particular, the value of the
domination number of K(n, r) is determined for n large enough in [24].

Figure 1. Kneser graph K(5, 2).
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Theorem 1 [24, Theorem 2.2]. If n ≥ r2 + r, then γ(K(n, r)) = r + 1.

It is also known that γ(K(n, 2)) = 3 for n ≥ 4 [18]. Furthermore, for the
remaining cases of the domination number of Kneser graphs partial results are
provided, but a complete solution for the domination number, similar to the
case of chromatic and independence numbers, has not yet been achieved. After
these results, different variations of domination have been explored in Kneser
graphs. For instance, Grundy domination numbers and the related zero forcing
numbers [4], the total dominator chromatic number [19] and Roman domination
graph invariants [28]. In addition, another kind of multiple domination, called
k-domination, has been studied and results on k-domination in Kneser graphs
appear in [5] after a first version of the present paper [9] was released.

As we have mentioned, in this work we focus on the study of k-tuple dom-
ination in Kneser graphs. In Section 2 we extend the result in Theorem 1 (no-
tice that γ×1 (G) = γ(G)) by proving that γ×k (K(n, r)) = k + r if and only
if n ≥ r(k + r) and we characterize the γ×k-sets for these cases. Besides, we
prove that γ×k (K(n, r)) is not decreasing with respect to n, so we conclude that
γ×k (K(n, r)) is at least k + r + 1 if n < r(k + r). In addition, we calculate
γ×k (K(n, r)) for k large enough. In Section 3 we analyze k-tuple dominating
sets of Kneser graphs, from its relationship with 2-packings in graphs. We show
that 2-packings in Kneser graphs are closely connected to intersecting set fami-
lies. Using this link, we compute the 2-packing number of K(n, r) for n = 3r− 2
and r ≥ 3. Then we obtain γ×k-sets for the odd graphs K(7, 3) and K(11, 5) for
every k, from the Steiner systems S(2, 3, 7) (Fano plane) and S(4, 5, 11), respec-
tively. Furthermore, in the case of K(7, 3), we give all the γ×k-sets. Finally, in
Section 4 we give a characterization of the k-tuple dominating sets for K(n, 2)
that lead us to provide γ×k (K(n, 2)) for k ≤ a n−3

4 , with a = n − 4 if n is even
and a = n− 6 + (n mod 4) if n is odd. We also design an ILP formulation to ob-
tain some k-tuple dominating sets whose cardinality meet the lower bounds given
previously. Table 1 shows the values of γ×k (K(n, 2)) for n ≤ 26 and k ≤ 60.

2. Monotonicity and Results for n Large Enough

Similarly to other works on domination in Kneser graphs, we use γ×k (n, r) to
denote the k-tuple domination number of the Kneser graph K(n, r). Since Kneser
graphs are regular graphs and each vertex in K(n, r) has degree

(
n−r
r

)
, then the

Kneser graph K(n, r) can only have a k-tuple dominating set if k ≤ δ(K(n, r)) +
1 =

(
n−r
r

)
+1. Furthermore, if k =

(
n−r
r

)
+1, the entire set of vertices in K(n, r) is

the only k-tuple dominating set. The Kneser graph K(n, 1) is isomorphic to the
complete graph Kn. In this case, γ×k (n, 1) = k for k ∈ [n]. On the other hand,
if n = 2r, then the Kneser graph K(2r, r) is isomorphic to 1

2

(
2r
r

)
copies of K2. It
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follows that γ×1 (2r, r) = 1
2

(
2r
r

)
, γ×2 (2r, r) =

(
2r
r

)
, and no k-tuple dominating set

exists for these graphs if k ≥ 3. Thus, for the subsequent discussion, we consider
n ≥ 2r + 1 and r ≥ 2.

The known general bounds for k-tuple domination number of graphs [6, 7,
11, 25] are not efficient to determine the γ×k (n, r) for n ≥ 2r + 1. Moreover,
some of these upper bounds applied to γ×k (n, r) are increasing with respect to
n whereas, as we will prove in Theorem 2, the parameter γ×k (n, r) is decreasing
with respect to n.

Note that if D is a (k + 1)-tuple dominating set of a graph G and v ∈ D,
then D \ {v} is a k-tuple dominating set (k ≥ 1). Therefore, for any graph
G, we have γ×k (G) < γ×(k+1) (G) whenever δ(G) ≥ k − 1. Then it turns out

that if n ≥ 2r + 1 and 2 ≤ k ≤
(
n−r
r

)
, we have γ×k (n, r) < γ×(k+1) (n, r), i.e.,

γ×k (n, r) is strictly increasing with respect to k. In addition, in general, there
is no monotonicity for the k-tuple domination number with respect to induced
subgraphs. However, in the case of Kneser graphs, if 2r ≤ m < n, K(m, r) is
an induced subgraph of K(n, r) and we will show that γ×k (m, r) ≥ γ×k (n, r) for
every k ≥ 2 if k ≤

(
m−r
r

)
+1. This is, for each fixed k ≥ 2, γ×k (n, r) is decreasing

with respect to n.

Theorem 2. If D is a k-tuple dominating set of K(n, r) with k ≥ 2, then D is a
k-tuple dominating set of K(n + 1, r). In consequence, we have γ×k (n + 1, r) ≤
γ×k (n, r) for every n.

Proof. Let D be a k-tuple dominating set of K(n, r). In order to see that D is
a k-tuple dominating set of K(n + 1, r), it is enough to show that every vertex u
of K(n + 1, r) containing the element n + 1 satisfies

|Nn+1[u] ∩D| ≥ k,

where Nt[u] denotes the closed neighborhood of the vertex u in the graph K(t, r).
Let ũ be a (r − 1)-subset of [n] and u = ũ ∪ {n + 1}. Let us define, for

b ∈ [n] \ ũ, ub = ũ ∪ {b}. Note that if b ∈ [n] \ ũ, then

|Nn+1[u] ∩D| = |{w ∈ D : |w ∩ ũ| = 0}| ≥ |Nn(ub) ∩D| ≥
{
k − 1, if ub ∈ D,

k, if ub /∈ D.

Therefore, if there exists b ∈ [n] \ ũ such that ub /∈ D, then |Nn+1[u] ∩D| ≥ k.
Otherwise, consider ub for some b ∈ [n] \ ũ. We have ub ∈ D and in con-

sequence, |Nn(ub) ∩ D| ≥ k − 1. Consider z ∈ Nn(ub) ∩ D, and let x be an
element from z. Now, consider the vertex ux. Note that w ∩ ũ = ∅ for every
w ∈ Nn(ux) ∩D. Besides, ũ ∩ z = ∅ since z ∈ Nn(ub). It follows that

|Nn+1[u] ∩D| = |{w ∈ D : |w ∩ ũ| = 0}| ≥ |Nn(ux) ∩D| + 1 ≥ k.

Therefore D is a k-tuple dominating set of K(n + 1, r).
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In Theorem 1 it is shown that if n ≥ r2 + r, then γ×1 (n, r) = γ(K(n, r)) =
r + 1. Moreover, for every k we state the following result.

Lemma 3. Let n, k, and r be positive integers such that n ≥ r(k + r). Then
γ×k (n, r) = k + r.

Proof. Let D = {u1, . . . , uk+r} be a set of vertices of K(n, r) such that ui∩uj = ∅
for all i ̸= j. This is possible since n ≥ r(k + r). Consider a vertex u of K(n, r).
If u ∈ D, then there exists i ∈ {1, . . . , k + r} such that u = ui. Since u ∩ uj = ∅
for all j ̸= i, we have D \ {ui} ⊆ N(u). Thus,

|D ∩N [u]| = |D| = k + r ≥ k.

If u /∈ D, we have |{i : ui ∩ u ̸= ∅}| ≤ r. So

|D ∩N [u]| ≥ |D| − r = k.

Therefore D is a k-tuple dominating set of K(n, r) with cardinality k + r, and
γ×k (n, r) ≤ k + r.

Now, assume that there exists a k-tuple dominating set D with cardinality
|D| = k + r − 1. Let us consider r distinct vertices u1, . . . , ur of D. Let a1 ∈ u1
and for each 2 ≤ i ≤ r we choose ai ∈ ui such that ai /∈ {a1, . . . , ai−1}. Let
w = {a1, . . . , ar}. If w ̸= ui for every i ∈ [r], then we have w ∩ ui ̸= ∅, and so
ui /∈ N [w] for all i ∈ [r]. It turns out that

|D ∩N [w]| ≤ |D| − r ≤ k − 1,

contradicting the fact that D is a k-tuple dominating set.

If w = uj for some j, note that we can choose b ∈ [n] \ (
⋃r

i=1 ui). This is

possible since |⋃r
i=1 ui| ≤ n− 1. In fact, uj ⊆

(⋃
i ̸=j ui

)
∪ {aj} and then

∣∣∣∣∣
r⋃

i=1

ui

∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋃
i ̸=j

ui

∣∣∣∣∣∣+ 1 ≤ r(r − 1) + 1 < r(k + r) ≤ n.

Let w′ = [w \ {aj}]∪{b}. We have w′ ̸= ui for every i ∈ [r]. Besides, ai ∈ w′ ∩ui
for i ̸= j, and w′ ∩ uj = w \ {aj}. Therefore w′ ∩ uj ̸= ∅. Thus, ui /∈ N [w′] for all
i ∈ [r]. Then

|D ∩N [w′]| ≤ |D| − r ≤ k − 1,

which contradicts the fact that D is a k-tuple dominating set.

Therefore, it does not exist a k-tuple dominating set of K(n, r) with cardi-
nality less than k + r. We conclude that γ×k (n, r) = k + r.
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Note that the condition n ≥ r(k + r) in Lemma 3 guarantees the existence
of a set of k + r pairwise disjoint vertices of K(n, r). In the next result, we state
that, unless k = 1 and r = 2, these set families are all the γ×k-sets in K(n, r) for
n ≥ r(k + r).

We introduce the following notation, which will be used throughout the pa-
per. Given a set of vertices D in K(n, r) and x ∈ [n], the occurrences of the ele-
ment x in D, denoted by ix(D), represent the number of vertices in D that contain
the element x. In other words, ix(D) is the cardinality of the set {u ∈ D : x ∈ u}.
For a positive integer a, we define Xa(D) as the set of elements in [n] such that
their occurrences in D are equal to a, i.e., Xa(D) = {x ∈ [n] : ix(D) = a}.
Similarly, we define X≥

a (D) = {x ∈ [n] : ix(D) ≥ a}, and X≤
a (D) = {x ∈ [n] :

ix(D) ≤ a}. When the set D is clear from the context, we shall omit it in the
notation. It is important to note that the sum of the occurrences of all elements
in D is equal to r times the cardinality of D, i.e.,

∑
x∈[n] ix = r|D|.

Lemma 4. Let k and r be positive integers with k ≥ 2 if r = 2, and let n ≥ 2r+1.
If D is a k-tuple dominating set of K(n, r) with cardinality k+r, then the vertices
of D are pairwise disjoint.

Proof. Let D be a k-tuple dominating set of K(n, r) with cardinality k + r.
Assume that the vertices in D are not pairwise disjoint. Let a ∈ [n] such that
ia = maxx∈[n] ix. Under our assumption, ia ≥ 2.

If ia ≥ 3, let u1, u2, u3 in D such that a ∈ u1 ∩ u2 ∩ u3. Let us consider
u4, . . . , ur+1 vertices in D \ {u1, u2, u3}. Let b1 = a. For j = 2, . . . , r − 1, we
choose bj ∈ uj+2 \ {b1, . . . , bj−1}. Let b = {b1, . . . , br−1}. Since n ≥ 2r + 1, it
follows that |[n] \ b| = n − (r − 1) ≥ r + 2. Thus, there exists x ∈ [n] such that
w = b∪{x} ≠ uj for j = 1, . . . , r + 1. As a result, for every j we have w ∩ uj ̸= ∅
and w ̸= uj . Then,

(1) |D ∩N [w]| ≤ |D| − |{u1, . . . , ur+1}| = |D| − (r + 1) = k − 1,

which contradicts the fact that D is a k-tuple dominating set. So, ia = 2. Let u1
and u2 be the two vertices that contain the element a.

If r > 2, let u3, . . . , ur+1 be vertices in D \ {u1, u2}. Let b1 = a and for
j = 2, . . . , r, we choose bj ∈ uj+1 \ {b1, . . . , bj−1}. Let w = {b1, . . . , br}. Note
that b is a vertex that is not adjacent to any uj for j = 1, . . . , r+ 1. If w ̸= uj for
each j, then (1) holds, contradicting the fact that D is k-tuple dominating. Then
w = uj for some j. Since the only vertices that contain the element b1 = a are u1
and u2, without loss of generality, assume w = u1. Then we have bj ∈ u1 ∩ uj+1

for every j = 1, . . . , r. Let x ∈ u2 \w and let w′ = w\{b1}∪{x} = {x, b2, . . . , br}.
Let us see that w′ ̸= uj and w′ ∩ uj ̸= ∅ for every j. In fact, as bj ∈ u1 ∩ uj+1

for j = 2, . . . , r, then w′ ∩ uj ̸= ∅ for every j ∈ 1, . . . , r + 1. Moreover, if
w′ = uℓ for some ℓ, then since a /∈ w′, ℓ ≥ 3 and for j ̸= ℓ, j ≥ 2 we have that
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bj−1 ∈ u1 ∩ uj ∩ uℓ. Thus, ibj−1
≥ 3 but maxx∈[n] ix = 2. Therefore, w′ ̸= uj for

every j, and in consequence (1) holds for w′.

If r = 2, we have u1 = {a, c}, u2 = {a, d} for some c, d ∈ [n]. Since k ≥ 2,
there exists a vertex u3 ∈ D \ {u1, u2} such that u3 ̸= {c, d}. Let x ∈ u3 \ {c, d}.
Since ia = 2, x ̸= a. Consider the vertex w = {a, x}. We have w ̸= uj and
w ∩ uj ̸= ∅ for every j. Then (1) holds.

Either r > 2 or r = 2, we arrive at a contradiction since D is a k-tuple
dominating set.

Therefore, we conclude that the vertices in D are pairwise disjoint.

This result does not hold when k = 1 and r = 2. In fact, in [18] it is shown
that the dominating sets of K(n, 2) for n ≥ 5 are the sets of 3 vertices that are
either pairwise disjoint or mutually intersecting.

As a by product of Lemmas 3 and 4 we have the following result for n large
enough.

Theorem 5. For k ≥ 2, γ×k (n, r) = k + r if and only if n ≥ r(k + r).

In addition, from monotonicity on n we have the following.

Corollary 6. For k ≥ 2, γ×k (n, r) ≥ k + r. Moreover, if n < r(k + r), then
γ×k (n, r) ≥ k + r + 1.

The remaining of this section is devoted to obtain γ×k-sets for k =
(
n−r
r

)
− t

when n is large enough with respect to both r and t. As we have mentioned, if
k =

(
n−r
r

)
+ 1, the only γ×k-set of K(n, r) is the set of vertices itself. On the

other hand, when n ≥ 3r − 1, the diameter of the Kneser graph K(n, r) is equal
to 2 [27]. In these cases, any pair of vertices in K(n, r) are adjacent or they
have a common neighbor. Thus, for k =

(
n−r
r

)
and n ≥ 3r − 1, it follows that

γ×k (n, r) =
(
n
r

)
− 1. In a similar way, we prove that for a positive integer t,

when n ≥ (t + 3)r −
⌈
t+2
2

⌉
, every set of t + 2 vertices in K(n, r) is contained in

the closed neighborhood of some vertex and in consequence, for k =
(
n−r
r

)
− t, it

follows that γ×k (n, r) =
(
n
r

)
− (t + 1).

Remark 7. Let t ≥ 2, and let S be a set of t vertices of K(n, r) such that each
vertex u ∈ S intersects at least one vertex in S \ {u}. It holds

(2)

∣∣∣∣∣⋃
v∈S

v

∣∣∣∣∣ ≤ tr −
⌈
t

2

⌉
.

Lemma 8. Let t ≥ 2. If n ≥ (t+1)r−
⌈
t
2

⌉
and S is a set of t vertices of K(n, r),

then there exists a vertex w of K(n, r) such that S ⊆ N [w].
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Proof. Let t, r, n be positive integers such that t ≥ 2 and n ≥ (t+1)r−
⌈
t
2

⌉
, and

let S be a set of t vertices of K(n, r). If there exists w ∈ S such that w ∩ u = ∅
for every u ∈ S \ {w}, the result holds. Now, assume that each vertex of S
intersects at least another vertex in S. Thus, by Remark 7, it follows (2). Since
n ≥ (t + 1)r −

⌈
t
2

⌉
, we have

∣∣[n] \⋃v∈S v
∣∣ = n −

∣∣⋃
v∈S v

∣∣ ≥ r and there exists
at least one vertex w ∈ [n] \ ⋃v∈S v. Since w ∩ v = ∅ for each v ∈ S, we have
S ⊆ N [w], and the statement holds.

Theorem 9. For a nonnegative integer t, n ≥ (t+3)r−
⌈
t+2
2

⌉
and k =

(
n−r
r

)
− t,

it holds γ×k (n, r) =
(
n
r

)
− (t + 1). Moreover, for every set S ⊆ V (K(n, r)) with

cardinality t + 1, V (K(n, r)) \ S is a γ×k-set.

Proof. Let S be a set of vertices of K(n, r) with cardinality t + 2. Let us
show that the set D = V (K(n, r))\S is not a k-tuple dominating set. In fact, by
Lemma 8, we have that there exists a vertex w ∈ V (K(n, r)) such that S ⊆ N [w].
Thus, |N [w] ∩D| = |N [w]| − |S| =

(
n−r
r

)
+ 1 − (t + 2) = k − 1. In consequence,

V (K(n, r))\S is not a k-tuple dominating set of K(n, r). Therefore, γ×k (n, r) ≥(
n
r

)
− (t + 1).
On the other hand, let S be any set of vertices of K(n, r) with cardinality

t + 1, and D = V (K(n, r)) \ S. Let u ∈ V (K(n, r)). We have

|N [u] ∩D| = |N [u]| − |N [u] ∩ S|︸ ︷︷ ︸
≤|S|

≥
(
n− r

r

)
+ 1 − (t + 1) = k.

Thus, D is a k-tuple dominating set, and γ×k (n, r) ≤ |D| =
(
n
r

)
− (t + 1).

Therefore, γ×k (n, r) =
(
n
r

)
− (t + 1).

To end this section, we remark that the lower bound for n in the previous
theorem is tight. Note that if n = (t + 3)r −

⌈
t+2
2

⌉
− 1 and k =

(
n−r
r

)
− t, then

γ×k (n, r) <
(
n
r

)
− (t + 1). In fact, we may consider the following set S. For t

even,

S =

{
[ξ + 1..ξ + r], [ξ + r..ξ + 2r − 1], ξ = (x− 1)(2r − 1), with x ∈

[
t

2
+ 1

]}
and for t odd,

S =

{
[ξ + 1..ξ + r], [ξ + r..ξ + 2r − 1], ξ = (x− 1)(2r − 1),with x ∈

[⌈
t

2

⌉
+ 1

]}
∪
{

[ξ + 1..ξ + r], [ξ + r..ξ + 2r − 1], [ξ + 2r..ξ + 3r − 2], ξ =

⌈
t

2

⌉
(2r − 1)

}
.

In both cases, S is a set of t + 2 vertices and V (K(n, r)) \ S is a k-tuple
dominating set. Thus, γ×k (n, r) ≤

(
n
r

)
− (t + 2).
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3. 2-Packings and k-Tuple Dominating Sets in Odd Graphs

Packings and dominating sets have been extensively studied in graphs. Given a
graph G, a subset S ⊆ V (G) is called a 2-packing of G if for every pair of vertices
u, v ∈ S, their closed neighborhoods satisfy N [u] ∩N [v] = ∅. In other words, no
two vertices in the 2-packing have any common neighbor. The 2-packing number
of a graph G, denoted by ρ (G), is the maximum cardinality of a 2-packing in G,
see e.g. [3, 8]. In [6], the author establishes a relationship between the 2-packing
number and the k-tuple domination number.

Theorem 10 [6, Theorem 2.3]. Let k ≥ 2. For any graph G of order n and
δ(G) ≥ k,

kρ (G) ≤ γ×k (G) ≤ n− ρ (G) .

It is known that when n ≥ 3r − 1 with r ≥ 2, the diameter of the Kneser
graph K(n, r) is equal to 2 [27]. Therefore, in these cases the 2-packing number
of the Kneser graph K(n, r) is equal to 1. Thus, for the remaining of this section,
we consider 2r + 1 ≤ n ≤ 3r− 2. We use ρ (n, r) to denote the 2-packing number
of the Kneser graph K(n, r).

Let S be a 2-packing in K(n, r). If u and v are two vertices in S, then
u ∩ v ̸= ∅. Besides, notice that if |u ∩ v| > (3r − 1) − n, then

|[n] \ (u ∪ v)| = |[n]| − |u| − |v| + |u ∩ v| ≥ r,

this implies that there exists a vertex w ∈ N(u) ∩ N(v), contradicting the fact
that S is a 2-packing.

Remark 11. Let 2r + 1 ≤ n ≤ 3r − 2. A set S of r-subsets of [n] is a 2-packing
of K(n, r) if and only if for every pair u, v ∈ S, it holds that

1 ≤ |u ∩ v| ≤ (3r − 1) − n.

Some results on extremal combinatorics and intersecting families can be used
to give upper bounds for the 2-packing number of Kneser graphs. In fact, from
[26], we have

ρ (n, r) ≤
(

n

(3r − 1) − n

)
and

ρ (n, r) ≤
(3r−1)−n∑

i=0

(
n− 1

i

)
.

In the case n = 3r − 2 both bounds remain

ρ (n, r) ≤ n,

which is tight only for r = 3, as we will show in the next Theorem.
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Theorem 12. Let n and r be positive integers such that r ≥ 3 and n = 3r − 2.
Then,

(3) ρ (n, r) =


7, if r = 3,

5, if r = 4,

3, if r ≥ 5.

Proof. Let r ≥ 3, n = 3r − 2 and S a 2-packing of K(n, r). From Remark 11,
we have that for every pair of vertices u, v ∈ S, it holds |u ∩ v| = 1.

Let us see that ix ≤ 3 for every x ∈ [n]. In fact, suppose ia ≥ 4 for some
a ∈ [n], and let u1, u2, u3, u4 be four vertices in S such that a ∈ uj for j ∈ [4].
We have |uj \ {a}| = r− 1 and (uj \ {a})∩ (uℓ \ {a}) = ∅ for j, ℓ ∈ [4] with j ̸= ℓ.
Then

n ≥

∣∣∣∣∣∣
4⋃

j=1

uj

∣∣∣∣∣∣ = 1 +
4∑

j=1

|uj \ {a}| = 4r − 3 = n + r − 1︸ ︷︷ ︸
>0

,

which cannot be true. Thus, ix ≤ 3 for every x ∈ [n]. Then we have |S| ≤ 3n
r .

If r = 3, then n = 7 and the cardinality of a 2-packing S is at most 7. In
fact, a set of 7 3-subsets of [7] which mutually intersect in exactly one element,
is a Fano plane (see Figure 2). Thus, we have ρ (7, 3) = 7.

6

4

7 13

25

Figure 2. A maximum 2-packing in K(7, 3) and the corresponding Fano plane.

If r ≥ 4, let us suppose that ia = 3 for some a ∈ [n] and let the vertices
u1, u2, u3 ∈ S such that a ∈ uj for each j. Without loss of generality, let us
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consider a = 1 and

u1 = {1} ∪ [2..r], u2 = {1} ∪ [r + 1..2r − 1], u3 = {1} ∪ [2r..3r − 2].

Suppose there exists another vertex w in S. 1 /∈ w since i1 is exactly 3. Then
w = {a1, . . . , ar} with aj ∈ [n] \ {1} for j ∈ [r]. Since {ui \ {1}}3i=1 is a partition
of [n]\{1}, and r ≥ 4, by the pigeonhole principle there exist at least two elements
aj and aℓ that belongs to uk for some k ∈ [3]. This is, |uk ∩w| ≥ 2 but this leads
to a contradiction with Remark 11.

Therefore, if there exists a ∈ [n] such that ia = 3, then |S| ≤ 3. On the
contrary, if ia ≤ 2 for every a ∈ [n], we have |S| ≤ 2n

r .

If r = 4, then n = 10 and the cardinality of a 2-packing S is at most 5. In
fact, we have ρ (10, 4) = 5 and if S is a maximum 2-packing of K(10, 4), then, up
to automorphism, we have

S =
{
{1, 2, 3, 4}, {1, 5, 6, 7}, {2, 5, 8, 9}, {3, 6, 8, 10}, {4, 7, 9, 10}

}
.

If r ≥ 5, suppose that ia ≤ 2 for every a ∈ [n]. Let u1, u2, u3 ∈ S. Without
loss of generality, we may assume that

u1 = {1, 2}∪[4..r+1], u2 = {1, 3}∪[r+2..2r−1], u3 = {2, 3}∪[2r..3r−3].

The fourth vertex in S must contain exactly one element from each set u1, u2, u3
and two elements from [n] \ (u1 ∪ u2 ∪ u3). However,

|[n] \ (u1 ∪ u2 ∪ u3)| = (3r − 2) − (3r − 3) = 1.

We can conclude that |S| ≤ 3, and S = {u1, u2, u3} is a 2-packing of maximum
cardinality.

Therefore, if r ≥ 5, ρ (3r − 2, r) = 3.

As a by-product of the previous proof, we have the following result.

Corollary 13. Let n and r be positive integers such that r ≥ 5 and n = 3r − 2.
If S is a maximum 2-packing of K(n, r), then, up to automorphism,

S =
{
{1, 2} ∪ [4..r + 1], {1, 3} ∪ [r + 2..2r − 1], {2, 3} ∪ [2r..3r − 3]

}
,

or

S =
{
{1} ∪ [2..r], {1} ∪ [r + 1..2r − 1], {1} ∪ [2r..3r − 2]

}
.

Let us notice that 2-packings in Kneser graphs are related to Steiner systems.
A Steiner system S(t, r, n) is a collection of r-subsets of [n], called blocks, with
the property that each t-subset of [n] is contained in exactly one block. It is not
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hard to see that for 2r+ 1 ≤ n ≤ 3r− 2, if a Steiner system S(3r−n, r, n) exists,
then

ρ (n, r) ≤ |S(3r − n, r, n)|.
This relationship is useful to study 2-packings in odd graphs. To this end,

we consider perfect 1-codes in graphs [13]. A subset of vertices C of a graph
G is a perfect 1-code of G if the family of closed neighbourhood {N [v]}v∈C is a
partition of V (G). Notice that if a perfect 1-code of a graph G exists, then it
is also a maximum 2-packing of G. In particular, it is known that a set C is a
Steiner system S(r − 1, r, 2r + 1) if and only if C is a perfect 1-code in the odd
graph K(2r + 1, r) [13]. Thus, the case r = 3 in Theorem 12 also follows from the
fact that the Fano plane is a Steiner system S(2, 3, 7). Similarly, since a Steiner
system S(4, 5, 11) exists [1], then the odd graph K(11, 5) has a perfect 1-code
and

ρ (11, 5) = 66.

The well known conjecture due to Biggs [2] asserts that there is no perfect
1-code if r ̸= 3, 5. Although it has been verified for some values of r, it has not
yet been settled in general.

Notice that the existence of a perfect 1-code in the odd graph K(2r + 1, r)
would give the following lower bound for the k-tuple domination number

γ×k (2r + 1, r) ≥ kρ (2r + 1, r) =

(
2r+1
r

)
k

r + 2
,

which we will show is tight for r = 3, 5.

Lemma 14. Let G be a vertex-transitive graph, and k a positive integer. If
γ×k (G) = kρ (G) and D is a γ×k-set, then |N [v] ∩D| = k for every v ∈ V (G).

Proof. Let S be a maximum 2-packing of G and D a γ×k-set of G. From
definition |N [u]∩D| ≥ k for every vertex u ∈ V (G). On the other hand, the sets
{N [u]}u∈S are pairwise disjoint. So, we have

(4) γ×k (G) = |D| ≥
∑
u∈S

|N [u] ∩D|︸ ︷︷ ︸
≥k

≥ k|S| = kρ (G) = γ×k (G) .

In consequence, |N [u] ∩D| = k for every u ∈ S.

Besides, let v ∈ V (G). Since G is a vertex-transitive graph, it is possible to
find a maximum 2-packing S′ such that v ∈ S′. Thus, |N [v] ∩D| = k.

As it is well-known that Kneser graphs are vertex-transitive graphs, we have
that if γ×k (n, r) = kρ (n, r) and D is a γ×k-set of K(n, r), then |N [u] ∩D| = k
for every u ∈ V (K(n, r)).



k-Tuple Domination in Kneser Graphs 13

Remark 15. Let us notice that if Dk is a k-tuple dominating set of K(n, r) with
cardinality |Dk| = kρ (n, r), then the set V (K(n, r)) \Dk is a k̃-tuple dominating
set of K(n, r), with k̃ =

(
n−r
r

)
+ 1 − k. In fact, for every vertex u ∈ V (K(n, r)),

by Lemma 14 we have

|N [u] ∩ (V (K(n, r)) \Dk)| = |N [u]|︸ ︷︷ ︸
(n−r

r )+1

− |N [u] ∩Dk|︸ ︷︷ ︸
k

=

(
n− r

r

)
+ 1 − k.

It is known that there exist exactly two disjoint Fano planes. Thus the union
of these two Fano planes is a γ×2-set of K(7, 3). Moreover, we provide γ×k-sets
of K(7, 3) for each k ∈ [5].

Remark 16. For r = 3 and n = 7, from Theorem 12 it turns out that ρ (7, 3) = 7.
A bound for γ×k (7, 3) is given by Theorem 10 and we have γ×k (7, 3) ≥ 7k. In
fact, let us see that this bound is tight, i.e., γ×k (7, 3) = 7k for k ∈ [5].

Figure 3. A γ×2-set of K(7, 3).

To this end, it is enough to consider two disjoint Fano planes F1, F2 and the
sets

D1 = F1, D2 = F1 ∪ F2, D3 = V \D2, D4 = V \D1, D5 = V,

where V = V (K(7, 3)). For each k ∈ [5], Dk turns out to be a k-tuple dominating
set with cardinality |Dk| = 7k and in consequence is a γ×k-set.
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In Remark 16 we provide γ×k-sets of K(7, 3). In fact, by exhaustive methods
we can prove that these sets are unique up to automorphism. Regarding Steiner
systems S(4, 5, 11), it is also known that there are exactly two disjoint such Steiner
systems. We know that the union of them is a γ×2-set of K(11, 5). We also find,
for k ∈ {3, 4, 5, 6}, a γ×k-set of K(11, 5) with cardinality 66k = ρ (11, 5) k (a
construction of these sets can be found in [9]).

4. k-Tuple Domination in Kneser Graphs K(n, 2)

The study of subsets of vertices satisfying certain restrictions in Kneser graphs
K(n, 2) deserves particular attention, as this subclass of Kneser graphs has a
remarkable structure. As we have mentioned, in [18] it is shown that γ×1 (n, 2) =
3 for every n ≥ 4. In this section we focus on the k-tuple domination number
γ×k (n, 2) for k ≥ 2. First, we provide a characterization of the k-tuple dominating
sets of K(n, 2) in terms of the occurrences of the elements in [n].

Lemma 17. Let n ≥ 5 and D ⊆ V (K(n, 2)). Then, D is a k-tuple dominating
set of K(n, 2) if and only if for every pair a, b ∈ [n]

ia + ib ≤
{
|D| − k + 2, if {a, b} ∈ D,

|D| − k, if {a, b} /∈ D.

Proof. Let D be a set of vertices of K(n, 2) and let u = {a, b} be a vertex of
K(n, 2). The number of vertices in D that contain either the element a or b is
exactly ia + ib − 1 when u ∈ D and ia + ib, otherwise.

On the one hand, if u ∈ D, then we have,

(5)

|D ∩N [u]| = |D| − |{v ∈ D : v ̸= u ∧ v ∩ u ̸= ∅}|
= |D| − (|{v ∈ D : a ∈ v ∨ b ∈ v}| − 1)

= |D| − (ia + ib − 1) + 1 = |D| + 2 − (ia + ib).

On the other hand, whether u /∈ D it holds

(6) |D∩N [u]| = |D|−|{v ∈ D : a ∈ v∨b ∈ v}| = |D|−(ia+ ib) = |D|−(ia+ ib).

From (5) and (6) it turns out that D is a k-tuple dominating set if and only
if for every pair of elements a, b ∈ [n] it holds{

|D| + 2 − (ia + ib) ≥ k, if {a, b} ∈ D,

|D| − (ia + ib) ≥ k, if {a, b} /∈ D,

i.e.,

ia + ib ≤
{
|D| − k + 2, if {a, b} ∈ D,

|D| − k, if {a, b} /∈ D.
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Remark 18. Note that if D is a k-tuple dominating set and {a, b} ∈ D, then
from Lemma 17 together with the fact that ib ≥ 1, we have that for any a ∈ [n],
it holds ia ≤ |D| − k + 1.

From Theorem 5 with r = 2, we have that γ×k (n, 2) = k + 2 if and only
if n ≥ 2(k + 2). In addition, from monotonicity, it follows that for k ≥ 2 and
n < 2(k + 2), γ×k (n, 2) ≥ k + 3. Moreover, in the following result we state that
the only value of n for which this bound is tight is n = 2k + 3. We introduce the
following notation. Given a set A and a positive integer r ≤ |A|, we denote by(
A
r

)
the set of all the r-subsets of A.

Theorem 19. Let k ≥ 2. Then γ×k (n, 2) = k + 3 if and only if n = 2k + 3.

Proof. Let k ≥ 2 and n ≤ 2k + 3. Let us suppose that there exists a k-tuple
dominating set D = {u1, . . . , uk+3} of K(n, 2) with cardinality k + 3. We will
prove that n must be equal to 2k + 3. Note that it is enough to prove that
n ≥ 2k + 3. Let us consider a vertex u, and let a ∈ u. By Remark 18 we have
ia ≤ 4. Moreover, we can prove the following.

Claim 20. ia ≤ 2 for every a ∈ [n].

Proof. Suppose, on the contrary, that ia ≥ 3 for some a ∈ [n].
Note that there exists b ∈ [n] \ {a} such that {a, b} /∈ D and ib ≥ 1. In fact,

if for every element x ̸= a with ix ≥ 1 we have {a, x} ∈ D, then there are at
most ia + 1 elements in [n] that appear in vertices of D. Let x be an element
different from a such that ix ≥ 1. It turns out that {a, x} ∈ D and by Lemma 17
ia + ix ≤ 5.

Then if ia = 4, we have ix = 1 and k + 3 = |D| = 4 which contradicts that
k ≥ 2. On the other hand, if ia = 3 then it turns out that iy ≤ 2 for every y ̸= a
with iy ≥ 1, and we have

2(k + 3) = 2|D| =
n∑

y=1

iy ≤ ia + 2ia = 9.

We also get k + 3 = 4, which does not hold since k ≥ 2.
Therefore, it is possible to choose b ∈ [n] such that ib ≥ 1 and {a, b} /∈ D.

Thus ia ≥ 3, ib ≥ 1, and in consequence ia+ib ≥ 4, which leads to a contradiction
since by Lemma 17 we have ia + ib ≤ 3.

We conclude ia ≤ 2 for all a ∈ [n].

Let n1 = |X1| and n2 = |X2|. We have n ≥ n2 + n1 and 2|D| = 2n2 + n1. So

n ≥ n2 + n1 = 2|D| − n2 = 2(k + 3) − n2 = 2(k + 2) + (2 − n2).

Since n < 2(k + 2), it turns out that n2 ≥ 3. Let us see that n2 is exactly 3.
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Claim 21. n2 = 3.

Proof. Suppose that a and b are two elements in [n] such that ia = ib = 2, and
let v = {a, b}. If v /∈ D, by Lemma 17 ia + ib ≤ 3 which leads to a contradiction.
Thus, v ∈ D. If n2 ≥ 4, let us consider a1, a2, a3, a4 such that iaj = 2 for
1 ≤ j ≤ 4. Then {a1, aj} ∈ D for every 2 ≤ j ≤ 4, and ia1 ≥ 3 which contradicts
the fact that ia1 = 2. Thus, n2 = 3.

Therefore we have n ≥ n2 + n1 = 2k + 3. In consequence, it turns out that
if γ×k (n, 2) = k + 3, then n = 2k + 3.

On the other hand, if n = 2k+3, then from Theorem 5 and monotonicity, we
have γ×k (n, 2) ≥ k+3. Now, let us see that there exists a k-tuple dominating set
D̂ with cardinality k + 3. From the reasoning above, we have that D̂ = X1 ∪X2,
|X2| = 3 and

(
X2

2

)
⊆ D̂. In fact, consider the set D̂ given by

D̂ =

(
[3]

2

)
∪ {{2a, 2a + 1} : 2 ≤ a ≤ k + 1}.

D̂ is a k-tuple dominating set of K(n, 2) with |D̂| = k + 3. Therefore, we have
γ×k (2k + 3, 2) = k + 3.

We conclude that for k ≥ 2, γ×k (n, 2) = k + 3 if and only if n = 2k + 3.

As a by-product of the proof of Theorem 19 we have that if n = 2k + 3 with
k ≥ 2, and D is a γ×k-set of K(n, 2), then up to automorphism

D =

(
[3]

2

)
∪ {{2a, 2a + 1} : 2 ≤ a ≤ k + 1}.

Note that in Theorems 5 and 19, we provide γ×k (n, 2) for n ≥ 2k + 3. From
monotonicity on n it follows that if n ≤ 2k+2, then γ×k (n, 2) ≥ k+4. Moreover,
in the remaining of this section we will prove Theorem 22, where we obtain
γ×k (n, 2) if n is large enough with respect to k.

Theorem 22. Let n ≥ 7 and n−3
2 < k ≤ a n−3

4 where a = n− 4 if n is even and

a = n− 6 + (n mod 4) if n is odd. Let α =
⌈

2k
n−3

⌉
. It holds

1. γ×k (n, 2) = k + 2α, if 2
αk + 4 ≤ n < 2

α−1k + 3;

2. γ×k (n, 2) = k + 2α + 1, if n =
⌈
2
αk
⌉

+ 3.

Table 1 illustrates the results of Theorem 22 in different colors (item 1 in
light blue and item 2 in blue).

In order to prove Theorem 22, we first give lower bounds for γ×k (n, 2) in
Proposition 23. We then demonstrate that these bounds are tight by construct-
ing k-tuple dominating sets for K(n, 2) with the desired cardinality. Since the
construction of these sets is somewhat laborious, we present it in a separate
section.
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Proposition 23. Let α, n be positive integers with α ≥ 2 and n ≥ 2α + 3 + (α
mod 2)

1. γ×k (n, 2) ≥ k + 2α, if 2
αk + 4 ≤ n < 2

α−1k + 3;

2. γ×k (n, 2) ≥ k + 2α + 1, if n =
⌈
2
αk
⌉

+ 3.

Proof. Let α, n be positive integers with α ≥ 2 and n ≥ 2α + 3 + (α mod 2).
First, we prove the two following claims.

Claim 24. If K(n, 2) admits a k-tuple dominating set with cardinality k + 2α,
then αn ≥ 2k + 4α.

Proof. Let D be a k-tuple dominating set of K(n, 2) with cardinality |D| =
k + 2α. Our goal is to prove that αn ≥ 2(k + 2α) = 2|D|. Let us suppose, on the
contrary, that αn < 2|D|.

On the one side, by Lemma 17 for every pair of elements a, b ∈ [n] we have

(7) ia + ib ≤
{
|D| − k + 2 = 2(α + 1), if {a, b} ∈ D,

|D| − k = 2α, if {a, b} /∈ D.

Since αn < 2|D| =
∑

x∈[n] ix, we have that there is at least one element a ∈ [n]

for which ia ≥ α + 1. For every other element b ∈ X≥
α , it holds ia + ib ≥ 2α + 1,

and by (7) {a, b} ∈ D.

If |X≥
α | > 1, then we have that for every x ∈ X≥

α , ix ≤ α + 2. In fact, if for
some element y it holds iy > α + 2, then by (7) for every other x ∈ [n]

ix ≤ 2(α + 1) − iy < 2(α + 1) − (α + 2) = α,

and y would be the only element in X≥
α , but |X≥

α | > 1.

Let us see that |X≥
α | > 1. Otherwise, X≥

α = {a} with ia ≥ α + 1 and in
consequence

αn < 2|D| =
∑
x∈[n]

ix = ia +
∑

x∈[n]\{a}

≤α−1︷︸︸︷
ix ≤ ia + (n− 1)(α− 1)

= ia + αn− n− α + 1.

Then, ia > n + (α − 1) ≥ n, which cannot be true since ix ≤ n − 1 for
every element x ∈ [n]. Therefore, |X≥

α | > 1. In consequence, ix ≤ α + 2 for
every x ∈ X≥

α . What is more, if y ∈ Xα+2, then for every x ∈ X≥
α we have

ix ≤ 2(α+1)−iy = α and it turns out that ix = α. Then either X≥
α = Xα∪Xα+1

or X≥
α = Xα ∪Xα+2 with |Xα+2| = 1.
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Case 1. X≥
α = Xα ∪Xα+1. Since for a ∈ Xα+1 and every b ∈ X≥

α we have
{a, b} ∈ D, then |X≥

α | ≤ ia + 1 = α + 2, and we have

2|D| =
∑
x∈[n]

ix =
∑

x∈X≥
α

ix +
∑

x∈X≤
α−1

ix ≤ |X≥
α |(α + 1) + |X≤

α−1|︸ ︷︷ ︸
n−|X≥

α |

(α− 1)

= n(α− 1) + 2|X≥
α | ≤ nα− n + 2(α + 2).

Since 2|D| ≥ αn + 1, it turns out that n ≤ 2(α + 2) − 1. By hypothesis, we
have

n ≥
{

2(α + 2), if α is odd,

2(α + 2) − 1, if α is even.

Thus, α is even and n = 2(α + 2) − 1. Therefore

αn + 1 ≤ 2|D| ≤ nα− n + 2(α + 2) = αn + 1.

It turns out that 2|D| = αn + 1. But 2|D| is even whereas αn + 1 is odd.

Case 2. X≥
α = Xα ∪Xα+2 with Xα+2 = {a}. Since for every b ∈ Xα we have

{a, b} ∈ D, then |X≥
α | ≤ α + 3, and we have

2|D| =
∑
x∈[n]

ix = ia +
∑
x∈Xα

ix +
∑

x∈X≤
α−1

ix ≤ (α + 2) + |Xα|︸︷︷︸
|X≥

α |−1

α + |X≤
α−1|︸ ︷︷ ︸

n−|X≥
α |

(α− 1)

= n(α− 1) + |X≥
α | + 2 ≤ nα− n + α + 5.

Since 2|D| > αn, it turns out that n < α + 5. By hypothesis, n ≥ 2α + 3,
then 2α + 3 < α + 5, that implies α < 2, which cannot be true since α ≥ 2.

In both cases, we arrive at a contradiction. Therefore, we can conclude that
αn ≥ 2k + 4α as claimed.

Claim 25. If K(n, 2) admits a k-tuple dominating set with cardinality k+2α−1,
then (α− 1)n ≥ 2k + 3(α− 1).

Proof. Let D be a k-tuple dominating set of K(n, 2) with cardinality |D| =
k+2α−1. We are intended to prove that (α−1)n ≥ 2k+3(α−1) or equivalently
(α−1)n+α+ 1 ≥ 2|D|. Let us suppose, on the contrary, that (α−1)n+α+ 1 <
2|D|.

By Lemma 17 for every pair of elements a, b ∈ [n] we have

(8) ia + ib ≤
{
|D| − k + 2 = 2α + 1, if {a, b} ∈ D,

|D| − k = 2α− 1, if {a, b} /∈ D.
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Since (α − 1)n < 2|D| =
∑

x∈[n] ix, we have that there is at least one element

a ∈ [n] for which ia ≥ α. For every other element b ∈ X≥
α , it holds ia + ib ≥ 2α,

and by (8) {a, b} ∈ D.

Let us see that |X≥
α | > 1. On the contrary, X≥

α = {a} and

(α− 1)n + α + 1 < 2|D| =
∑
x∈[n]

ix = ia +
∑
x ̸=a

ix︸︷︷︸
≤α−1

≤ ia + (α− 1)n− (α− 1).

Thus, ia > 2α, which cannot be true since ix ≤ 2α for every element x ∈ [n]
by Remark 18. Therefore, |X≥

α | ≥ 2.

Then, we have that for every x ∈ X≥
α , ix ≤ α+1. In fact, if for some element

y it holds that iy > α + 1, then by (8) for every other x ∈ [n]

ix ≤ 2α + 1 − iy < 2α + 1 − (α + 1) = α,

and y would be the only element in X≥
α , but |X≥

α | > 1. Therefore, ix ≤ α + 1
for every x ∈ X≥

α . What is more, there is at most one element in Xα+1 since if
x, y ∈ Xα+1, then ix + iy = 2α + 2 and this cannot be true by (8).

Therefore, either X≥
α = Xα or X≥

α = Xα ∪Xα+1 with |Xα+1| = 1.

Case 1. X≥
α = Xα. For every pair a, b ∈ Xα we have {a, b} ∈ D since

ia + ib = 2α and it holds (8). Thus
(
Xα

2

)
⊆ D and we have |Xα| ≤ α + 1. Then

2|D| =
∑
x∈[n]

ix =
∑
x∈Xα

ix +
∑

x∈X≤
α−1

ix ≤ |Xα|α + |X≤
α−1|︸ ︷︷ ︸

n−|Xα|

(α− 1)

= n(α− 1) + |Xα| ≤ n(α− 1) + α + 1.

But we have assumed that 2|D| > n(α− 1) + α + 1.

Case 2. X≥
α = Xα ∪ Xα+1 with Xα+1 = {a}. For every other b ∈ X≥

α−1

we have ia + ib ≥ 2α thus {a, b} ∈ D and in consequence |X≥
α−1| ≤ α + 2. If

X = Xα−1 ∪Xα, we have

2|D| =
∑
x∈[n]

ix = ia +
∑
x∈X

ix +
∑

x∈X≤
α−2

ix ≤ (α + 1) + |X|︸︷︷︸
|X≥

α−1|−1

α + |X≤
α−2|︸ ︷︷ ︸

n−|X≥
α−1|

(α− 2)

= n(α− 2) + 2|X≥
α−1| + 1 ≤ n(α− 1) − n + 2α + 5.

Since 2|D| > (α− 1)n+α+ 1, it turns out that n < α+ 4, but by hypothesis
n ≥ 2α + 3 ≥ α + 5, since α ≥ 2.

In both cases, we arrive at a contradiction. Therefore, we can conclude that
(α− 1)n ≥ 2k + 3(α− 1) as claimed.
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Assume that n =
⌈
2
αk
⌉

+ 3. Suppose that K(n, 2) admits a k-tuple dominat-
ing set with cardinality k+2α. From the first claim, it follows that αn ≥ 2k+4α,
or, equivalently,

n ≥ 2

α
k + 4,

which does not hold. Thus, there does not exist any k-tuple dominating set with
k + 2α vertices and

γ×k (n, 2) ≥ k + 2α + 1.

Similarly, if 2
αk+4 ≤ n < 2

α−1k+3 and K(n, 2) admits a k-tuple dominating
set with cardinality k + 2α− 1, from the second claim it follows that (α− 1)n ≥
2k + 3(α− 1), i.e.,

n ≥ 2

α− 1
k + 3,

which is not true. Then there does not exist any k-tuple dominating set with
k + 2α− 1 vertices and

γ×k (n, 2) ≥ k + 2α.

Construction of k-tuple dominating sets for K(n, 2)

In order to provide k-tuple dominating sets of K(n, 2) whose cardinalities achieve
the lower bounds for γ×k (n, 2) given in Proposition 23, let us introduce the
following definition.

Definition. Let m ∈ N. For i ∈ N, i < m
2 , we define D

[m]
i as the set

D
[m]
i =

{
{ξ, ξ + i} : ξ ∈ [m]

}
,

where the sums are taken modulo m. And for α ∈ N, α ≥ 2, such that m > α,
let a =

⌊
α
2

⌋
. We define Dm,α as the set given by

Dm,α =

(
a⋃

i=1

D
[m]
i

)
∪ D̂,

with

D̂ =

{{{
ξ, ξ +

⌊
m
2

⌋}
, ξ ∈

[⌊
m
2

⌋]}
, if α is odd,

∅, if α is even.

Example 26. • Let α = 3, m = 6 > α and a =
⌊
α
2

⌋
= 1. The set Dm,α = D6,3

is given by

D6,3 = D
[6]
1 ∪ D̂,
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where

D
[6]
1 =

{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 1}

}
,

D̂ =
{
{1, 4}, {2, 5}, {3, 6}

}
.

D6,3 is a set of vertices of K(n, 2) for every n ≥ 6 and the occurrences of the
elements in [n] for the set D6,3 are

ix =

{
3 = α, if x ∈ [6],

0, otherwise.

Figure 4. Set D6,3 in the Kneser graph K(6, 2).

Let α = 4, m = 14 > α and a =
⌊
α
2

⌋
= 2. The set Dm,α = D14,4 is given by

D14,4 = D
[14]
1 ∪D

[14]
2 ,

where

D
[14]
1 =

{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9},
{9, 10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {14, 1}

}
,

D
[14]
2 =

{
{1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 10},
{9, 11}, {10, 12}, {11, 13}, {12, 14}, {13, 1}, {14, 2}

}
.

D14,4 is a set of vertices of K(n, 2) for every n ≥ 14 and the occurrences of the
elements in [n] for the set D14,4 are

ix =

{
4 = α, if x ∈ [14],

0, otherwise.
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• Let α = 3, m = 11 > α, and a =
⌊
α
2

⌋
= 1. The set Dm,α = D11,3 is given by

D11,3 = D
[11]
1 ∪ D̂,

where

D
[11]
1 =

{
{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7},
{7, 8}, {8, 9}, {9, 10}, {10, 11}, {11, 1}

}
,

D̂ =
{
{1, 6}, {2, 7}, {3, 8}, {4, 9}, {5, 10}

}
.

D11,3 is a set of vertices of K(n, 2) for every n ≥ 11 and the occurrences of the
elements in [n] for the set D11,3 are

ix =


3 = α, if x ∈ [10],

2 = α− 1, if x = 11,

0, otherwise.

Let us observe that Dm,α ⊆
(
[m]
2

)
. In consequence, Dm,α is a set of vertices

of K(n, 2) for every n ≥ m, and any element in [m] has at most α occurrences
in Dm,α. In fact, m ≥ α + 1 > 2a, i.e., a < m

2 . So, each element x ∈ [m]

appears in exactly two vertices of D
[m]
i for each 1 ≤ i ≤ a. Moreover, for i ̸= j,

D
[m]
i ∩D

[m]
j = ∅ since i + j ≤ 2a < m. On the other hand, for α odd, a vertex

in D̂ is not in D
[m]
i for any i. Furthermore, every element x ∈ [m] appears in

exactly one vertex of D̂ if m is even, and every element x ∈ [m − 1] appears in
exactly one vertex of D̂ if m is odd.

Thus, for both α and m odd we have

(9) ix (Dm,α) =


α, if x ∈ [m− 1],

α− 1 = 2a, if x = m,

0, otherwise.

and if either α or m are even, then

(10) ix (Dm,α) =

{
α, if x ∈ [m],

0, otherwise.

In any case, we have

(11) |Dm,α| =
1

2

∑
x∈[n]

ix =
⌊αm

2

⌋
.
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Lemma 27. Let α, k ∈ N with α ≥ 2 and n ≥ α + 2. If n ≥ 2
αk + 4, then there

exists a k-tuple dominating set of K(n, 2) with cardinality k + 2α.

Proof. Due to Lemma 17 a set D is a k-tuple dominating set if and only if it
verifies, for every pair of elements x and y in [n]

ix + iy ≤
{
|D| − k + 2 = 2α + 2, if {x, y} ∈ D,

|D| − k = 2α, if {x, y} /∈ D.

Therefore, it is enough to find a set D of vertices with cardinality k + 2α such
that ix ≤ α for each x ∈ [n]. Let a =

⌊
α
2

⌋
. Since n ≥ α + 2 > 2a + 1, we

have a <
⌊
n
2

⌋
. Thus, let us consider the set Dn,α as in Definition 4. Note that

|Dn,α| =
⌊
αn
2

⌋
by (11). Moreover, |Dn,α| ≥ k + 2α. In fact, as 2

αk + 4 ≤ n, we
have αn ≥ 2(k + 2α). If either α or n are even, then

2|Dn,α| = nα ≥ 2(k + 2α).

On the other hand, if both α and n are odd, then

2|Dn,α| = nα− 1 ≥ 2(k + 2α) − 1.

As 2|Dn,α| is an even integer and 2(k + 2α) − 1 is an odd integer, it turns out
that 2|Dn,α| > 2(k + 2α) − 1 and in consequence 2|Dn,α| ≥ 2(k + 2α).

In any case, |Dn,α| ≥ k + 2α as claimed.
Note that ix(Dn,α) ≤ α for every x ∈ [n], by (9) and (10). Thus, eliminating

any |Dn,α| − (k+ 2α) vertices from Dn,α gives as a result a set of vertices D with
cardinality k + 2α such that ix(D) ≤ ix(Dn,α) ≤ α for every x ∈ [n]. This is, a
k-tuple dominating set with cardinality k + 2α.

Therefore, K(n, 2) admits a k-tuple dominating set with cardinality k+2α.

Lemma 28. Let α, k ∈ N with α ≥ 2 and n ≥ 2α + 3. If n =
⌈
2
αk
⌉

+ 3, then
there exists a k-tuple dominating set of K(n, 2) with cardinality k + 2α + 1.

Proof. Due to Lemma 17 a set D is a k-tuple dominating set if and only if for
every pair of elements x and y in [n] it holds

ix + iy ≤
{
|D| − k + 2 = 2α + 3, if {x, y} ∈ D,

|D| − k = 2α + 1, if {x, y} /∈ D.

Therefore it is enough to find a set D of vertices with cardinality k + 2α+ 1 such
that α ≤ ix ≤ α + 1 for each x ∈ [n], and {x, y} ∈ D for every pair x, y ∈ Xα+1.

Let λ ∈ N such that k = αλ + b with 0 ≤ b ≤ α − 1. And let a =
⌊
α
2

⌋
. We

will give such a set D in terms of b considering the cases b = 0, 1 ≤ b ≤ a and
a + 1 ≤ b ≤ α− 1.
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In order to do so, let us consider for h ∈ N, 1 ≤ h < n− α the set

(12) D(h) = Dn−h,α ∪
(

[n− h + 1..n]

2

)
.

Let us note that if (n − h)α is even, then using (10) we have that each element
x ∈ [n − h] has exactly α occurrences in Dn−h,α and none in

(
[n−h+1..n]

2

)
, and

each x ∈ [n− h + 1..n] has exactly h− 1 occurrences in
(
[n−h+1..n]

2

)
and none in

Dn−h,α. In consequence

(13) ix(D(h)) =

{
α, if x ∈ [n− h],

h− 1, if x ∈ [n− h + 1..n].

Furthermore, by (11) we have

(14) |D(h)| =
∣∣∣Dn−h,α

∣∣∣+

∣∣∣∣([n− h + 1..n]

2

)∣∣∣∣ =
(n− h)α

2
+

(
h

2

)
.

In the first case, b = 0, we will prove that for h = α+ 2 the set D(h) is itself
a k-tuple dominating set with cardinality k + 2α. In the remaining cases, we will
consider the set D(h) for h = 2b + 2 and h = 2b− α + 2 respectively and modify
them with the aim of giving k-tuple dominating sets of the desired cardinality.

Case 1. b = 0. Let h = α + 2. Since n ≥ 2α + 3, we have n− h ≥ α + 1 > α.
So, we consider the set D = D(h) as in (12). Note that n =

⌈
2
αk
⌉

+ 3 = 2λ + 3.
Thus, for α odd, we have both n and h are odd and in consequence n − h is
even. Thus, (n − h)α is even. From (13) it turns out that α ≤ ix ≤ α + 1 for
each x ∈ [n], and {x, y} ∈ D for every pair x, y ∈ Xα+1. Thus, D is a k-tuple
dominating set. What is more,

2|D| =
∑
x∈[n]

ix = (n− h)α + h(α + 1) = αn + h

= α

(
2

α
k + 3

)
+ α + 2 = 2(k + 2α + 1).

Therefore, |D| is a k-tuple dominating set with cardinality k + 2α + 1.

Case 2. 1 ≤ b ≤ a. Let h = 2b + 2. h is an even integer between 4 and
2a+2 ≤ α+2. Since n ≥ 2α+3, we have n−h ≥ (2α+3)− (α+2) = α+1 > α.
So, we consider the set D(h) as in (12).

Note that n =
⌈
2
αk
⌉

+ 3 = 2λ + 4. Thus, both n and h are even and in
consequence also n− h. From (14),

2|D(h)| = (n− h)α + h(h− 1) = (nα + h) − h (α− h + 2)︸ ︷︷ ︸
α−2b

= 2(k + 2α + 1) − h(α− 2b)︸ ︷︷ ︸
≥0

,(15)
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since 2(k+2α+1) = 2k+4α+2 = 2(λα+b)+4α+2 = (2λ+4)α+(2b+2) = nα+h.

If b < a, let us consider the following set D.

D =

[
D(h) \

( ⋃
1≤j≤b+1
1≤ξ≤α−2b

{
{ξ, ξ + j}

})
︸ ︷︷ ︸

D1

]

∪
( ⋃

1≤j≤b+1
1≤ξ≤α−2b

{
{ξ, n− h + 2j − 1}, {ξ + j, n− h + 2j}

})
︸ ︷︷ ︸

D2

,

where the sums in D1 are taken modulo n− h.

Let us see that D1 ⊆ D(h). In fact, we have that b + 1 ≤ a, so for each j it

holds {ξ, ξ + j} ∈ D
[n−h]
j ⊆ D(h). Moreover, α − 2b < α < n− h, so for fixed j,

the vertices {ξ, ξ + j} are different. In consequence, |D1| = (b + 1)(α− 2b).

On the other hand, D2 ∩D(h) = ∅ since no vertex in D(h) has an element in
[n−h] and other in [n−h+ 1..n]. Besides the vertices in D2 are different. Thus,
|D2| = 2(b + 1)(α− 2b).

Note that for each x ∈ [n], we have

ix(D) = ix(D(h)) − ix(D1) + ix(D2).

For x ∈ [n− h], we have ix(D1) = ix(D2), and in consequence

ix(D) = ix(D(h)) = α,

and for x ∈ [n − h + 1..n], we have ix(D1) = 0 and ix(D2) = α − 2b, and in
consequence

ix(D) = ix(D(h))︸ ︷︷ ︸
h−1

+α− 2b = α + 1.

We have α ≤ ix(D) ≤ α + 1 for each x ∈ [n], and {x, y} ∈ D for every pair
x, y ∈ Xα+1. Thus, D is a k-tuple dominating set. Furthermore,

|D| = |D(h)| − |D1| + |D2| = k + 2α + 1.

Therefore, |D| is a k-tuple dominating set with cardinality k + 2α + 1.

If b = a and α is even then the set D(h) is itself a k-tuple dominating set
with cardinality k + 2α + 1 since (15) holds. If α is odd, then let us consider the
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following set D.

D =

[
D(h) \

( ⋃
1≤ξ≤b+1

{
{ξ, ξ + 1}

})
︸ ︷︷ ︸

D1

]

∪
( ⋃

1≤ξ≤b+1

{
{ξ, n− h + 2ξ − 1}, {ξ + 1, n− h + 2ξ}

})
︸ ︷︷ ︸

D2

.

Note that D1 ⊆ D
[n−h]
1 ⊆ D(h). Moreover, since α is odd, we have α = 2a + 1 =

2b + 1. Thus, n − h ≥ (2α + 3) − (2b + 2) = α + 2 > b + 1. So, the vertices in
D1 are different and |D1| = b + 1. As in the case b < a, D2 ∩D(h) = ∅ and the
vertices in D2 are different. Thus, |D2| = 2b + 2. We have that for each x ∈ [n]
it holds

ix(D) = ix(D(h)) − ix(D1) + ix(D2).

We have ix(D1) = ix(D2) if x ∈ [n − h] and ix(D1) = 0, ix(D2) = 1 if x ∈
[n− h + 1..n]. In consequence

ix(D) =

{
α, if x ∈ [n− h],

h = α + 1, if x ∈ [n− h + 1..n].

This is, α ≤ ix(D) ≤ α + 1 for each x ∈ [n], and {x, y} ∈ D for every pair
x, y ∈ Xα+1. D is a k-tuple dominating set with cardinality

|D| = |D(h)| − |D1| + |D2| = k + 2α + 1.

Case 3. a + 1 ≤ b ≤ α − 1. Let h = 2b − α + 2. We have 3 ≤ h ≤ α, and h
has the same parity as α, and n−h ≥ (2α+ 3)−α = α+ 3 > α. So, we consider
the set D(h) as in (12).

Note that n =
⌈
2
αk
⌉

+ 3 = 2λ+ 5. Besides, if α is odd, then both n and h are
odd and in consequence n − h is even. So, in any case, (n − h)α is even. From
(14),

2|D(h)| = (n− h)α + h(h− 1) = (nα + h) − h (α− h + 2)︸ ︷︷ ︸
2α−2b

= 2(k + 2α + 1) − 2h(α− b)︸ ︷︷ ︸
>0

,

since 2(k+2α+1) = 2k+4α+2 = 2(λα+b)+4α+2 = (2λ+5)α+(2b−α+2) =
nα + h.
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The procedure is similar to Case 2. This is, we eliminate h(α − b) vertices
from D(h) and add another 2h(α−b) vertices in order to get a k-tuple dominating
set with cardinality k + 2α + 1.

If α is even, let us consider the following set D.

D =

[
D(h) \

( ⋃
1≤j≤b−a+1
1≤ξ≤2α−2b

{
{ξ, ξ + j}

})
︸ ︷︷ ︸

D1

]

∪
( ⋃

1≤j≤b−a+1
1≤ξ≤2α−2b

{
{ξ, n− h + 2j − 1}, {ξ + j, n− h + 2j}

})
︸ ︷︷ ︸

D2

,

where the sums in D1 are taken modulo n− h.

Let us see that D1 ⊆ D(h). In fact, we have that b − a + 1 ≤ α − a = a,

so for each j it holds {ξ, ξ + j} ∈ D
[n−h]
j ⊆ D(h). And, since n ≥ 2α + 3 and

h = 2b−α+ 2, we have n− h ≥ 3α− 2b+ 1 > 2α− 2b. So, 2α− 2b < α < n− h,
thus for fixed j, the vertices {ξ, ξ + j} are different. In consequence, |D1| =
(b− a + 1)(2α− 2b) = h(α− b).

On the other hand, D2 ∩D(h) = ∅ since no vertex in D(h) has an element
in [n− h] and other in [n− h + 1..n]. Thus, the vertices in D2 are different and
it turns out that |D2| = 2(b− a + 1)(2α− 2b) = 2h(α− b).

If α is odd, let us consider the set D = [D(h) \D1] ∪D2, where

D1 =

( ⋃
1≤j≤b−a

1≤ξ≤2α−2b

{
{ξ, ξ + j}

})
∪
( ⋃

1≤ξ≤α−b

{{
ξ, ξ +

n− h

2

}})
,

D2 =

( ⋃
1≤j≤b−a

1≤ξ≤2α−2b

{
{ξ, n− h + 2j − 1}, {ξ + j, n− h + 2j}

})

∪
( ⋃

1≤ξ≤α−b

{
{ξ, n} ,

{
ξ +

n− h

2
, n

}})
,

and the sums in D1 are taken modulo n− h.

Let us see that D1 ⊆ D(h). In fact, we have that b − a ≤ α − 1 − a = a,

so for each j it holds {ξ, ξ + j} ∈ D
[n−h]
j ⊆ D(h). And, since n ≥ 2α + 3 and

h = 2b−α+ 2, we have n− h ≥ 3α− 2b+ 1 > 2α− 2b. So, 2α− 2b < α < n− h,
thus for fixed j, the vertices {ξ, ξ + j} are different. On the other hand, for
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1 ≤ ξ ≤ α− b < n−h
2 , we have

{
ξ, ξ + n−h

2

}
∈ D̂ ⊆ D(h). In consequence,

|D1| = (b− a)(2α− 2b) + (α− b) = (2b− 2a + 1)︸ ︷︷ ︸
h

(α− b) = h(α− b).

Besides, D2 ∩ D(h) = ∅ since no vertex in D(h) has an element in [n − h]
and other in [n−h+ 1..n]. Thus, the vertices in D2 are different and it turns out
that |D2| = 2(b− a)(2α− 2b) + 2(α− b) = 2h(α− b).

Either if α is even or odd, the set D is a k-tuple dominating set with cardi-
nality k + 2α + 1. In fact, note that for each x ∈ [n] we have

ix(D) = ix(D(h)) − ix(D1) + ix(D2).

For x ∈ [n− h], we have ix(D1) = ix(D2), and in consequence

ix(D) = ix(D(h)) = α.

And for x ∈ [n − h + 1..n], we have ix(D1) = 0 and ix(D2) = 2α − 2b, and in
consequence

ix(D) = ix(D(h))︸ ︷︷ ︸
h−1

+2α− 2b = α + 1.

We have α ≤ ix(D) ≤ α + 1 for each x ∈ [n], and {x, y} ∈ D for every pair
x, y ∈ Xα+1. Thus, D is a k-tuple dominating set. Furthermore,

|D| = |D(h)| − |D1| + |D2| = k + 2α + 1.

Therefore, either if α is even or odd, we obtain a k-tuple dominating set with
cardinality k + 2α + 1.

Combining Proposition 23 with Lemmas 27 and 28 yields the following result.

Theorem 29. Let α, n ∈ N with α ≥ 2 and n ≥ 2α + 3 + (α mod 2). We have,

1. γ×k (n, 2) = k + 2α, if 2
αk + 4 ≤ n < 2

α−1k + 3,

2. γ×k (n, 2) = k + 2α + 1, if n =
⌈
2
αk
⌉

+ 3.

Let us see two remarks about the statement of Theorem 29.
Note that condition 2

αk + 3 ≤ n < 2
α−1k + 3 is equivalent to α =

⌈
2k
n−3

⌉
.

Further, for α =
⌈

2k
n−3

⌉
≥ 2, the inequality n ≥ 2α+ 3 + (α mod 2) is equivalent

to n−3
2 < k ≤ a n−3

4 where a = n− 4 if n is even and a = n − 6 + (n mod 4) if
n is odd, with n ≥ 7. Thus, Theorem 29 can be restated as Theorem 22.

Finally, it is worth noting that whereas in Theorem 22 the values of γ×k (n, 2)
are computed for n−3

2 < k ≤ a n−3
4 , with a = n−4 if n is even and a = n−6 + (n

mod 4) if n is odd, Theorems 5 and 19 provide the values of γ×k (n, 2) for k ≤ n−3
2 .

In consequence, we have determined γ×k (n, 2) for all 2 ≤ k ≤ a n−3
4 .
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5. Further Remarks

Regarding γ×k-sets of K(n, 2) for large values of k, recall that for k =
(
n−2
2

)
+ 1,

we have γ×k (n, 2) =
(
n
2

)
, whereas for k =

(
n−2
2

)
, γ×k (n, 2) =

(
n
2

)
− 1. Together

with Theorem 9 for r = 2, we have the following.

Corollary 30. For t ∈ N, if k =
(
n−2
2

)
− t and n ≥ 2(t + 3) −

⌈
t+2
2

⌉
, then

γ×k (n, 2) = k + 2n− 4.

Besides, in order to complete the study of γ×k-sets of K(n, 2) for large val-
ues of k, we have also studied properties of the γ×k-sets of K(n, 2) for k ∈{(

n−4
2

)
+ 2,

(
n−3
2

)
+ 1
}

. In fact, we obtain the following result. We omit the
proof here for the sake of readability (it can be found in [9]).

Proposition 31. • If k =
(
n−4
2

)
+2 and 6 ≤ n ≤ 10, then γ×k (n, 2) =

(
n−2
2

)
+1.

Moreover, D =
(
[n−2]

2

)
∪
{
{n− 1, n}

}
is a γ×k-set.

• If k =
(
n−3
2

)
+ 1 and n ≥ 5, then γ×k (n, 2) =

(
n−1
2

)
. Moreover, D =

(
[n−1]

2

)
is

a γ×k-set.

Notice that although the set
(
[n−2]

2

)
∪
{
{n− 1, n}

}
given in the first item of

Proposition 31 is a k-tuple dominating set of K(n, 2) for every n ≥ 6, it is not
true that it is a γ×k-set for every n. For instance, for n = 11 and k = 23 the set

D =

(
[6]

2

)
∪
(

[7..11]

2

)
∪ D̃,

where D̃ =
{
{1, 7}, {2, 7}, {2, 8}, {3, 8}, {3, 9}, {4, 9}, {4, 10}, {5, 10}, {5, 11}

}
, is

a k-tuple dominating set with cardinality
(
n−2
2

)
=
(
9
2

)
= 36.

With the aim of summarizing the results in this paper for K(n, 2), Table 1
contains several values for γ×k (n, 2). Some of these values are obtained taking
into account Lemma 17, Theorem 2, and upper bounds obtained by Integer Linear
Programming. In this regard, we consider the following ILP formulation for the
k-tuple dominating problem. The set of variables is given by {xu, u ∈ V }, where

xu =

{
1, if u ∈ D,

0, otherwise,

and the ILP model is formulated as

(16)

min
∑
u∈V

xu

s/t
∑

u∈N [v]

xu ≥ k, ∀ v ∈ V,

xv ∈ {0, 1}, ∀ v ∈ V.
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k\n 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a 3a

2 6d 6e 6g 5c 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b 4b

3 9d 7e 7b 7b 6c 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b 5b

4 10d 10e 9c 8b 8b 8b 7c 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b 6b

5 13d 11e 10c 9b 9b 9b 9b 8c 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b 7b

6 14d 14f 12g 11c 10b 10b 10b 10b 10b 9c 8b 8b 8b 8b 8b 8b 8b 8b 8b 8b 8b

7 15d 15e 13g 13g 12c 11b 11b 11b 11b 11b 11b 10c 9b 9b 9b 9b 9b 9b 9b 9b 9b

8 17f 16e 14g 14b 13c 12b 12b 12b 12b 12b 12b 12b 11c 10b 10b 10b 10b 10b 10b 10b

9 19d 17g 16f 15b 15b 14c 13b 13b 13b 13b 13b 13b 13b 13b 12c 11b 11b 11b 11b 11b

10 20d 20f 18f 17c 16b 16b 15c 14b 14b 14b 14b 14b 14b 14b 14b 14b 13c 12b 12b 12b

11 21d 21e 20f 19g 18c 17b 17b 16c 15b 15b 15b 15b 15b 15b 15b 15b 15b 15b 14c 13b

12 22g 22e 20g 19c 18b 18b 18b 17c 16b 16b 16b 16b 16b 16b 16b 16b 16b 16b 16b

13 25d 23g 21g 21b 20c 19b 19b 19b 18c 17b 17b 17b 17b 17b 17b 17b 17b 17b 17b

14 26d 24g 24f 22b 22b 21c 20b 20b 20b 19c 18b 18b 18b 18b 18b 18b 18b 18b 18b

15 27d 27f 25g 24c 23b 22c 21b 21b 21b 21b 20c 19b 19b 19b 19b 19b 19b 19b 19b

16 28d 28e 26g 25c 24b 24b 23c 22b 22b 22b 22b 21c 20b 20b 20b 20b 20b 20b 20b

17 29g 29e 27g 26c 25b 25b 24c 23b 23b 23b 23b 22c 21b 21b 21b 21b 21b 21b

18 32d 30g 28g 27c 26b 26b 25c 24b 24b 24b 24b 24b 23c 22b 22b 22b 22b 22b

19 33d 31g 29-30 29g 28c 27b 27b 26c 25b 25b 25b 25b 25b 24c 23b 23b 23b 23b

20 34d 32-33 30-32 30g 29c 28b 28b 28b 27c 26b 26b 26b 26b 26b 25c 24b 24b 24b

21 35d 33-35 31-33 31g 31g 30c 29b 29b 28c 27b 27b 27b 27b 27b 27b 26c 25b 25b

22 36d 36e 32-34 32-33 32g 31c 30b 30b 30b 29c 28b 28b 28b 28b 28b 28b 27c 26b

23 37g 33-36 33-35 33g 33b 32c 31b 31b 31b 30c 29b 29b 29b 29b 29b 29b 28c

24 38-39 34-38 34-36 34-35 34b 33c 32b 32b 32b 31c 30b 30b 30b 30b 30b 30b 30b

25 41d 35-39 35-37 35-36 35b 35b 34c 33b 33b 33b 32c 31b 31b 31b 31b 31b 31b

26 42d 37-40 37-39 37-38 37c 36b 35c 34b 34b 34b 34b 33c 32b 32b 32b 32b 32b

27 43d 38-42 38-41 38-39 38c 37b 37b 36c 35b 35b 35b 34c 33b 33b 33b 33b 33b

28 44d 40-44 40-42 40-41 40g 39c 38b 37c 36b 36b 36b 36b 35c 34b 34b 34b 34b

29 45d 45e 41-43 41-42 41g 40c 39b 39b 38c 37b 37b 37b 37b 36c 35b 35b 35b

30 46g 42-45 42g 41c 40b 40b 39c 38b 38b 38b 38b 37c 36b 36b 36b

31 47-48 43-47 43-45 43g 43b 42c 41b 41b 40c 39b 39b 39b 39b 38c 37b 37b

32 50d 44-48 44-46 44-45 44b 43c 42b 42b 41c 40b 40b 40b 40b 40b 39c 38b

33 51d 45-49 45-48 45-47 45b 45b 44c 43b 43b 42c 41b 41b 41b 41b 40c 39b

34 52d 47-50 47-49 47-48 47c 46b 45c 44b 44b 43c 42b 42b 42b 42b 42b 41c

35 53d 48-51 48-49 48c 47b 46c 45b 45b 45b 44c 43b 43b 43b 43b 43b

36 54d 49-54 49-52 49-50 49c 48b 48b 47c 46b 46b 45c 44b 44b 44b 44b 44b

37 55d 55e 51-53 51-52 51g 50c 49b 48c 47b 47b 47b 46c 45b 45b 45b 45b

38 56g 52-55 52-54 51c 50b 50b 49c 48b 48b 47c 46b 46b 46b 46b

39 57g 53-57 53-55 52c 51b 51b 50c 49b 49b 49b 48c 47b 47b 47b

40 60d 54-58 54-56 53c 52b 51c 50b 50b 50b 49c 48b 48b 48b

41 61d 55-59 55-57 54c 53b 53b 52c 51b 51b 51b 50c 49b 49b

42 62d 56-60 56-59 55c 54b 54b 53c 52b 52b 52b 51c 50b 50b

43 63d 57-62 56c 55b 55b 54c 53b 53b 53b 52c 51b

44 64d 57c 56b 56b 55c 54b 54b 54b 53c 52b

45 65d 59-65 58c 57b 57b 56c 55b 55b 55b 55b 54c

46 66d 66e 60b 59c 58b 58b 57c 56b 56b 56b 55c

47 67g 61b 60c 59b 59b 58c 57b 57b 57b 57b

48 68g 62b 61c 60b 60b 60b 59c 58b 58b 58b

49 69-70 63b 63b 62c 61b 61b 60c 59b 59b 59b

50 72d 65c 64b 63c 62b 62b 61c 60b 60b 60b

51 73d 66c 65b 64c 63b 63b 63b 62c 61b 61b

52 74d 67c 66b 66b 65c 64b 64b 63c 62b 62b

53 75d 68c 67b 66c 65b 65b 65b 64c 63b

54 76d 69c 68b 67c 66b 66b 66b 65c 64b

55 77d 70c 69b 69b 68c 67b 67b 66c 65b

56 78d 78e 71c 70b 70b 69c 68b 68b 68b 67c

57 73b 72c 71b 70c 69b 69b 69b 68c

58 74b 73c 72b 72b 71c 70b 70b 70b

59 75b 74c 73b 73b 72c 71b 71b 71b

60 84d 76b 76b 75c 74b 73c 72b 72b 72b

Table 1. γ×k (n, 2) for some values of n and k.
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We implemented it in CPLEX solver [29] to obtain k-tuple dominating sets that
allowed us to determine an upper bound of γ×k (n, 2) for certain values of n and k,
which together with the lower bounds obtained using Lemma 17 and Theorem 2,
were tight. Notice that we have determined γ×k (n, 2) for every n and k ≤ 18. For
the general case, fixed k, the amount of values of n for which γ×k (n, 2) remains
unknown is Θ(

√
k). However, for some of them we have upper bounds arising

from solving the ILP.

Table 1 shows the values of γ×k (n, 2) stated by the results in this paper.
Rows correspond to values of k while columns correspond to values of n. The
superscript in each entry of the table indicates from which result it follows, and
the bounds arise from k-tuple dominating sets obtained using CPLEX solver for
(16) and monotonicity. (a) Domination number [18]. (b) Theorem 22.1. (c)
Theorem 22.2. (d) Corollary 30. (e) Proposition 31. (f) Lower bound from
Lemma 17 and upper bound from γ×k-sets found by ILP (16). (g) Lower bound
from Monotonicity (Theorem 2) and upper bound from γ×k-sets found by ILP
(16).
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