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Abstract

Given a positive integer k, a k-tuple dominating set of a graph G is a
subset of vertices D C V(G) such that every vertex of G has at least k
neighbors in D. The k-tuple domination number of G, denoted v« (G), is
the minimum cardinality of a k-tuple dominating set of G. In this paper we
determine all the minimum k-tuple dominating sets for the Kneser graphs
K (n,r) with n large enough with respect to r. In addition, we relate k-tuple
dominating sets and 2-packings in Kneser graphs, and we compute the 2-
packing number of K (3r —2,r) for r > 3. Finally, we obtain minimum sized
k-tuple dominating sets of K (n,2) for n > O(Vk).

Keywords: Kneser graphs, multiple domination, k-tuple domination, 2-
packings.
2020 Mathematics Subject Classification: 05C69, 05B40.

1. INTRODUCTION

Given a simple graph G, let Ng(v) denote the open neighbourhood of a vertex v in
G and Ng[v] = Ng(v)U{v} the closed neighbourhood of v in G. When the graph
G is clear from the context, we may omit the subscripts and simply write N (v)
and N[v]. Furthermore, let §(G) be the minimum degree among all the vertices
of graph G. A dominating set in G is a subset D C V(G) such that every vertex
v € V(G) verifies that |[N[v] N D| > 1. The domination number of G, denoted
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v(G), is the minimum cardinality of a dominating set in G. Domination in graphs
has been extensively studied in graph theory, and there is rich literature on this
subject (see e.g. [15, 16, 17]).

Some of the most studied variations of domination introduced an integer k,
such as k-tuple domination [6, 7, 11, 25]. Formally, given a graph G and a positive
integer k, a set D C V(G) is called a k-tuple dominating set of G if for every
vertex v € V(G), we have |Ng[v] N D| > k. The k-tuple domination number of
G is the minimum cardinality of a k-tuple dominating set of GG, and is denoted
by vxk (G). A 7yxp-set is a k-tuple dominating set with cardinality yxx (G).
The k-tuple domination number is only defined for graphs with &£ < §(G) + 1.
An excellent brief survey on k-tuple domination appears in the book Topics in
Domination in Graphs [15], as part of a chapter devoted to the study of multiple
domination. Liao and Chang [21] studied the problem from an algorithmic point
of view and proved that, fixed k, determining the k-tuple domination number is
NP-complete (even for split graphs and for bipartite graphs). Considering these
unfavorable outcomes, exploring how this parameter behaves within classes of
graphs exhibiting a nice combinatorial structure, like Kneser graphs, represents
a natural direction for further research.

For positive integers r < n, we denote by [r..n] and [n] the sets {r,...,n}
and {1,...,n}, respectively. If n > 2r, the Kneser graph K(n,r) has as vertices
the r-subsets of [n] and two vertices are adjacent in K(n,r) if and only if they
are disjoint. This class of graphs gained prominence due to the Erdos-Ko-Rado
theorem [10], which determined the independence number of the Kneser graph
K(n,r) to be (:fj), as a result on extremal combinatorics. Lovész’s proof of
Kneser’s conjecture [20, 22|, later complemented by Matousek’s combinatorial
proof [23], provided a determination of the chromatic number of Kneser graphs.
Numerous other graph invariants have been investigated in Kneser graphs. One
of them is the domination number [12, 14, 18, 24]. In particular, the value of the
domination number of K (n,r) is determined for n large enough in [24].

Figure 1. Kneser graph K(5,2).
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Theorem 1 [24, Theorem 2.2]. If n > r?+r, then v(K(n,r)) =7+ 1.

It is also known that y(K(n,2)) = 3 for n > 4 [18]. Furthermore, for the
remaining cases of the domination number of Kneser graphs partial results are
provided, but a complete solution for the domination number, similar to the
case of chromatic and independence numbers, has not yet been achieved. After
these results, different variations of domination have been explored in Kneser
graphs. For instance, Grundy domination numbers and the related zero forcing
numbers [4], the total dominator chromatic number [19] and Roman domination
graph invariants [28]. In addition, another kind of multiple domination, called
k-domination, has been studied and results on k-domination in Kneser graphs
appear in [5] after a first version of the present paper [9] was released.

As we have mentioned, in this work we focus on the study of k-tuple dom-
ination in Kneser graphs. In Section 2 we extend the result in Theorem 1 (no-
tice that vx1 (G) = 7(G)) by proving that yxx (K(n,r)) = k + r if and only
if n > r(k+ r) and we characterize the y«-sets for these cases. Besides, we
prove that vy« (K(n,r)) is not decreasing with respect to n, so we conclude that
Yxk (K(n,r)) is at least k +r + 1 if n < r(k + r). In addition, we calculate
Yxk (K (n,r)) for k large enough. In Section 3 we analyze k-tuple dominating
sets of Kneser graphs, from its relationship with 2-packings in graphs. We show
that 2-packings in Kneser graphs are closely connected to intersecting set fami-
lies. Using this link, we compute the 2-packing number of K (n,r) for n = 3r — 2
and r > 3. Then we obtain yy-sets for the odd graphs K(7,3) and K(11,5) for
every k, from the Steiner systems S(2,3,7) (Fano plane) and S(4,5,11), respec-
tively. Furthermore, in the case of K(7,3), we give all the yyx-sets. Finally, in
Section 4 we give a characterization of the k-tuple dominating sets for K(n,2)
that lead us to provide vy (K(n,2)) for k < a %32, with a = n — 4 if n is even
and a =n — 6+ (n mod 4) if n is odd. We also design an ILP formulation to ob-
tain some k-tuple dominating sets whose cardinality meet the lower bounds given
previously. Table 1 shows the values of vy« (K(n,2)) for n < 26 and k < 60.

2. MONOTONICITY AND RESULTS FOR n LARGE ENOUGH

Similarly to other works on domination in Kneser graphs, we use vy (n,r) to
denote the k-tuple domination number of the Kneser graph K (n,r). Since Kneser
graphs are regular graphs and each vertex in K (n,r) has degree (n;r), then the
Kneser graph K (n,r) can only have a k-tuple dominating set if &k < §(K(n,r)) +
1= (".")+1. Furthermore, if k = (",") 41, the entire set of vertices in K (n,r) is
the only k-tuple dominating set. The Kneser graph K(n,1) is isomorphic to the
complete graph K,,. In this case, v« (n,1) = k for k € [n]. On the other hand,
if n = 2r, then the Kneser graph K (2r,r) is isomorphic to %(2:) copies of Ko. It
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follows that vy« (2r,7) = % 2:) Y2 (2r,7) (QT) and no k-tuple dominating set
exists for these graphs if £ > 3. Thus, for the subsequent discussion, we consider
n>2r+1andr > 2.

The known general bounds for k-tuple domination number of graphs [6, 7,
11, 25] are not efficient to determine the vy« (n,r) for n > 2r + 1. Moreover,
some of these upper bounds applied to v« (n,7) are increasing with respect to
n whereas, as we will prove in Theorem 2, the parameter vy (n,r) is decreasing
with respect to n.

Note that if D is a (k 4+ 1)-tuple dominating set of a graph G and v € D,
then D \ {v} is a k-tuple dominating set (k > 1). Therefore, for any graph
G, we have yxi (G) < Yx(r+1) (G) whenever §(G) > k — 1. Then it turns out
thatif n > 2r+1and 2 < k£ < (";r), we have yxk (n,7) < V1) (7, 7), Le.,
Yxk (n,7) is strictly increasing with respect to k. In addition, in general, there
is no monotonicity for the k-tuple domination number with respect to induced
subgraphs. However, in the case of Kneser graphs, if 2r < m < n, K(m,r) is
an induced subgraph of K (n,r) and we will show that vy (m,r) > vy« (n,r) for
every k > 21if k < (mrfr) +1. This is, for each fixed k > 2, v« (n,r) is decreasing
with respect to n.

Theorem 2. If D is a k-tuple dominating set of K(n,r) with k > 2, then D is a
k-tuple dominating set of K(n+ 1,r). In consequence, we have vy (n+ 1,r) <
Yxk (n, 1) for every n.

Proof. Let D be a k-tuple dominating set of K(n,r). In order to see that D is

a k-tuple dominating set of K(n + 1,7), it is enough to show that every vertex u
of K(n+ 1,r) containing the element n + 1 satisfies

[Nn1[u] N D| > k,

where N¢[u] denotes the closed neighborhood of the vertex w in the graph K (¢, 7).
Let @ be a (r — 1)-subset of [n] and uw = @ U {n + 1}. Let us define, for
€ [n]\ 4, up = wU {b}. Note that if b € [n] \ a, then

k—1, ifu, € D,

NpiilulNnDl=H{we D :|lwnua|l =0} > |N,(uy) N D| >
[Nt 1 D] = [{w € D [w @] = 0} > [Na(uy) N D) {k -

Therefore, if there exists b € [n] \ @ such that u, ¢ D, then |N,yi[u] N D| > k.

Otherwise, consider u; for some b € [n] \ @. We have u;, € D and in con-
sequence, |Np(up) N D| > k — 1. Consider z € N,(up) N D, and let = be an
element from z. Now, consider the vertex u,. Note that w N @ = @ for every
w € Ny (uz) N D. Besides, @ Nz = 0 since z € Ny(up). It follows that

|INpt1[u] N D] = {w € D :lwna| =0} > |Np(uz) N D]+ 1> k.

Therefore D is a k-tuple dominating set of K (n + 1,7). ]
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In Theorem 1 it is shown that if n > r? + r, then vy1 (n,7) = y(K(n,r)) =
r 4+ 1. Moreover, for every k we state the following result.

Lemma 3. Let n, k, and r be positive integers such that n > r(k +r). Then
Yxk (n,1m) =k + 7.

Proof. Let D = {u,...,urs,} be aset of vertices of K (n, ) such that u;Nu; =0
for all ¢ # j. This is possible since n > r(k + r). Consider a vertex u of K(n,r).
If w € D, then there exists ¢ € {1,...,k + r} such that u = ;. Since uNwu; =10
for all j # i, we have D \ {u;} € N(u). Thus,

IDNNu]| =|D|=k+r>k.
If u ¢ D, we have |[{i:u; Nu# 0} <r. So
|IDNN[u]| > |D| —r=k.
Therefore D is a k-tuple dominating set of K(n,r) with cardinality k& + r, and

Yk (n,7) < k47
Now, assume that there exists a k-tuple dominating set D with cardinality

|D| = k4 r — 1. Let us consider r distinct vertices ui,...,u, of D. Let a; € u;
and for each 2 < i < r we choose a; € w; such that a; ¢ {a1,...,a;_1}. Let
w = {a1,...,a,}. If w # u; for every i € [r], then we have w Nwu; # 0, and so

u; ¢ N[w] for all ¢ € [r]. It turns out that
IDNN[w]| <|D|—r<k-1,

contradicting the fact that D is a k-tuple dominating set.
If w = u; for some j, note that we can choose b € [n] \ (J;_; u;). This is

possible since ||J;_, ui| <n — 1. In fact, u; C (U#j ul> U{a;} and then

< Uul +1<r(r—=1)+1<r(k+r)<n.
i#]

T
Uu
i=1

Let w' = [w\ {a;}]U{b}. We have w’ # u; for every i € [r]. Besides, a; € w' Nw;
for i # j, and w' Nu; = w\ {a;}. Therefore w’' Nu; # 0. Thus, u; ¢ N[w'] for all
i € [r]. Then

IDNN[W']| <|D|—r<k-1,
which contradicts the fact that D is a k-tuple dominating set.

Therefore, it does not exist a k-tuple dominating set of K (n,r) with cardi-
nality less than k 4+ r. We conclude that vy (n,7) =k + 7. ]
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Note that the condition n > r(k + r) in Lemma 3 guarantees the existence
of a set of k + r pairwise disjoint vertices of K(n,r). In the next result, we state
that, unless &k = 1 and r = 2, these set families are all the yyx-sets in K (n,r) for
n>r(k+r).

We introduce the following notation, which will be used throughout the pa-
per. Given a set of vertices D in K(n,r) and x € [n], the occurrences of the ele-
ment x in D, denoted by i, (D), represent the number of vertices in D that contain
the element z. In other words, i,(D) is the cardinality of the set {u € D : z € u}.
For a positive integer a, we define X, (D) as the set of elements in [n] such that
their occurrences in D are equal to a, i.e., X,(D) = {z € [n] : i,(D) = a}.
Similarly, we define XZ(D) = {x € [n] : i,(D) > a}, and X=(D) = {x € [n] :
iz(D) < a}. When the set D is clear from the context, we shall omit it in the
notation. It is important to note that the sum of the occurrences of all elements
in D is equal to r times the cardinality of D, i.e., er[n] iz =1|D|.

Lemma 4. Let k and r be positive integers with k > 2 ifr = 2, and let n > 2r+1.
If D is a k-tuple dominating set of K (n,r) with cardinality k+r, then the vertices
of D are pairwise disjoint.

Proof. Let D be a k-tuple dominating set of K(n,r) with cardinality k& + r.
Assume that the vertices in D are not pairwise disjoint. Let a € [n] such that
ig = maX;c |y iz. Under our assumption, ¢, > 2.

If i, > 3, let uy,uo,ug in D such that a € uy Nus Nus. Let us consider
Uy ..., Upp1 vertices in D\ {ug,uo,us}. Let by = a. For j =2,...,r — 1, we
choose b; € wjqo \ {b1,...,bj—1}. Let b = {by,...,b.—1}. Since n > 2r 41, it
follows that |[n] \ b] = n — (r — 1) > r 4+ 2. Thus, there exists = € [n] such that
w=>bU{x} #u;for j=1,...,7+1. As a result, for every j we have wNu; # ()
and w # u;. Then,

(1) [DON[w]| <[D] = {ut, .y uria}| = [Df = (r+1) =k = 1,

which contradicts the fact that D is a k-tuple dominating set. So, i, = 2. Let uy
and uo be the two vertices that contain the element a.

If r > 2, let us,...,ur+1 be vertices in D \ {uj,uz}. Let by = a and for
Jj=2,...,r, we choose b; € ujq1\ {b1,...,bj—1}. Let w = {b1,...,b.}. Note
that b is a vertex that is not adjacent to any w; for j =1,...,r+1. If w # u; for

each j, then (1) holds, contradicting the fact that D is k-tuple dominating. Then
w = u; for some j. Since the only vertices that contain the element b; = a are u;
and ug, without loss of generality, assume w = u1. Then we have b; € uq Nujyq
forevery j =1,...,r. Let € ug \w and let w' = w\{b1}U{x} = {x,ba,...,b.}.
Let us see that w' # u; and w’ Nuj # 0 for every j. In fact, as b; € ug N ;1
for j = 2,...,r, then w' Nwu; # 0 for every j € 1,...,7 + 1. Moreover, if
w' = uy for some ¥, then since a ¢ w', ¢ > 3 and for j # ¢, j > 2 we have that
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bj—1 € w1 Nuj Nug. Thus, iy, , > 3 but max,ep,) iz = 2. Therefore, w' # u; for
every j, and in consequence (1) holds for w’.

If r = 2, we have u; = {a,c}, us = {a,d} for some ¢,d € [n]. Since k > 2,
there exists a vertex ug € D \ {u1,u2} such that us # {¢,d}. Let = € ug \ {c, d}.
Since i, = 2, * # a. Consider the vertex w = {a,z}. We have w # u; and
w Nu; # 0 for every j. Then (1) holds.

Fither r > 2 or » = 2, we arrive at a contradiction since D is a k-tuple
dominating set.

Therefore, we conclude that the vertices in D are pairwise disjoint. |

This result does not hold when k& = 1 and r = 2. In fact, in [18] it is shown
that the dominating sets of K(n,2) for n > 5 are the sets of 3 vertices that are
either pairwise disjoint or mutually intersecting.

As a by product of Lemmas 3 and 4 we have the following result for n large
enough.

Theorem 5. For k> 2, vy (n,r) =k +7r if and only if n > r(k+r).
In addition, from monotonicity on n we have the following.

Corollary 6. For k > 2, yxi (n,r) > k +r. Moreover, if n < r(k+r), then
Yk (n,7r) > k+71r+1.

The remaining of this section is devoted to obtain vy -sets for k = (";r) —t
when n is large enough with respect to both r and ¢. As we have mentioned, if
k= (""") 4+ 1, the only yxi-set of K(n,r) is the set of vertices itself. On the
other hand, when n > 3r — 1, the diameter of the Kneser graph K(n,r) is equal
to 2 [27]. In these cases, any pair of vertices in K(n,r) are adjacent or they
have a common neighbor. Thus, for k = (".") and n > 3r — 1, it follows that
Yxk (N, 1) = (:f) — 1. In a similar way, we prove that for a positive integer t,
when n > (t + 3)r — [152], every set of ¢ + 2 vertices in K (n,r) is contained in
the closed neighborhood of some vertex and in consequence, for k = (";T) —t, it

follows that vy (n,7) = (1) — (¢t + 1).

Remark 7. Let t > 2, and let S be a set of ¢ vertices of K(n,r) such that each
vertex u € S intersects at least one vertex in S\ {u}. It holds

Uw gtr—B]

ves
Lemma 8. Lett > 2. Ifn > (t+1)r—[5] and S is a set of t vertices of K(n,r),
then there exists a vertex w of K(n,r) such that S C N[w].

(2)
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Proof. Let t,r,n be positive integers such that ¢ > 2 and n > (t+1)r— (%1, and
let S be a set of ¢ vertices of K(n,r). If there exists w € S such that wNu =10
for every uw € S\ {w}, the result holds. Now, assume that each vertex of S
intersects at least another vertex in S. Thus, by Remark 7, it follows (2). Since
n > (t+ 1)r — [£], we have |[n] \ U,cgv| = n — |Upegv| = r and there exists
at least one vertex w € [n] \ U egv. Since wNwv = 0 for each v € S, we have

S C NJw], and the statement holds. ]

Theorem 9. For a nonnegative integert, n > (t+3)r—[52] and k = (") —t,
it holds vy, (n,7) = (') — (t + 1). Moreover, for every set S C V(K (n,r)) with
cardinality t + 1, V(K (n,r)) \ S is a yxi-set.

Proof. Let S be a set of vertices of K(n,r) with cardinality ¢t + 2. Let us
show that the set D = V(K (n,r))\ S is not a k-tuple dominating set. In fact, by
Lemma 8, we have that there exists a vertex w € V(K (n,r)) such that S C Nw].
Thus, [N[w]ND| = [Nw]| —|S| = ("") + 1 — (t +2) = k — 1. In consequence,
V(K(n,r))\ S is not a k-tuple dominating set of K (n,r). Therefore, v«j (n,r) >

(7) = (t+1).
On the other hand, let S be any set of vertices of K(n,r) with cardinality
t+1,and D =V (K(n,r))\ S. Let u € V(K (n,r)). We have

IN[u] N D| = [N[u]| - |N[u] 0 S| > <";T> F1-(t+1) =k
<Is|

Thus, D is a k-tuple dominating set, and . (n,r) < [D| = () — (¢t + 1).
Therefore, yxj (n,r) = (1) — (t+1). |

To end this section, we remark that the lower bound for n in the previous
theorem is tight. Note that if n = (¢t +3)r — [442] — 1 and k = (") — ¢, then
Yk (n,7) < (7) — (t +1). In fact, we may consider the following set S. For ¢
even,

S — {[§+1..§+T]a[f+r..§+2r—1],fz(:c—l)(27“—1), with z Bﬂ] }
and for ¢ odd,
S {[§+1..g+r],[£+r..g+2r—1},g_ (z — 1)(2r — 1), with = € [m +1] }
U {[g+1..g+r],[§+r..g+2r—1H£+2r..g+3r—2],g: m (27‘—1)}.

In both cases, S is a set of t 4+ 2 vertices and V(K (n,r)) \ S is a k-tuple
dominating set. Thus, yx (n,r) < (1) — (t +2).
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3. 2-PACKINGS AND k-TUPLE DOMINATING SETS IN ODD GRAPHS

Packings and dominating sets have been extensively studied in graphs. Given a
graph G, a subset S C V(G) is called a 2-packing of G if for every pair of vertices
u,v € S, their closed neighborhoods satisfy N[u] N N[v] = 0. In other words, no
two vertices in the 2-packing have any common neighbor. The 2-packing number
of a graph G, denoted by p (G), is the maximum cardinality of a 2-packing in G,
see e.g. [3, 8]. In [6], the author establishes a relationship between the 2-packing
number and the k-tuple domination number.

Theorem 10 [6, Theorem 2.3]. Let k > 2. For any graph G of order n and
§(G) = k,
kp(G) < 7x (G) <m—p(G).

It is known that when n > 3r — 1 with » > 2, the diameter of the Kneser
graph K (n,r) is equal to 2 [27]. Therefore, in these cases the 2-packing number
of the Kneser graph K (n,r) is equal to 1. Thus, for the remaining of this section,
we consider 2r +1 < n < 3r — 2. We use p(n,r) to denote the 2-packing number
of the Kneser graph K(n,r).

Let S be a 2-packing in K(n,r). If u and v are two vertices in S, then
uNwv # (). Besides, notice that if |[u Nv| > (3r — 1) — n, then

[P\ (wUo)| = [[n]] = |ul = o] + [uno] =7,

this implies that there exists a vertex w € N(u) N N(v), contradicting the fact
that S is a 2-packing.

Remark 11. Let 2r +1 <n < 3r —2. A set S of r-subsets of [n] is a 2-packing
of K(n,r) if and only if for every pair u,v € S, it holds that

1<|unov| < (3r—1)—n.

Some results on extremal combinatorics and intersecting families can be used
to give upper bounds for the 2-packing number of Kneser graphs. In fact, from

[26], we have
1= (g

Br—1)—n

TCEERD Sl (]

=0

and

In the case n = 3r — 2 both bounds remain
p(n,r) <mn,

which is tight only for r = 3, as we will show in the next Theorem.
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Theorem 12. Let n and r be positive integers such that r > 3 and n = 3r — 2.
Then,

7, ifr=3,
(3) p(n,r) =<5, ifr=4,
3, ifr>5h.

Proof. Let r > 3, n = 3r —2 and S a 2-packing of K(n,r). From Remark 11,
we have that for every pair of vertices u,v € S, it holds |[u Nv| = 1.

Let us see that i, < 3 for every x € [n]. In fact, suppose i, > 4 for some
a € [n], and let w1, ug,u3, us be four vertices in S such that a € u; for j € [4].
We have |u; \ {a}| =r—1and (u; \ {a})N(ue\ {a}) = 0 for j, ¢ € [4] with j # £.
Then

4 4
n > qu :1+Z\uj\{a}]:4r—3:n+7“—1,
J=1 J=1 >0

which cannot be true. Thus, i, < 3 for every x € [n]. Then we have || < 22.

If r = 3, then n = 7 and the cardinality of a 2-packing S is at most 7. In
fact, a set of 7 3-subsets of [7] which mutually intersect in exactly one element,
is a Fano plane (see Figure 2). Thus, we have p (7,3) = 7.

Figure 2. A maximum 2-packing in K(7,3) and the corresponding Fano plane.

If r > 4, let us suppose that i, = 3 for some a € [n| and let the vertices
ui,u2,u3 € S such that a € u; for each j. Without loss of generality, let us
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consider @ = 1 and
up = {1} U[2..r], ug = {1} U [r+1..2r — 1], uz = {1} U [2r.3r — 2].

Suppose there exists another vertex w in S. 1 ¢ w since i; is exactly 3. Then
w={ay,...,a.} with a; € [n]\ {1} for j € [r]. Since {u; \ {1}};_, is a partition
of [n]\{1}, and r > 4, by the pigeonhole principle there exist at least two elements
a; and a, that belongs to uy for some k € [3]. This is, |uy Nw| > 2 but this leads
to a contradiction with Remark 11.

Therefore, if there exists a € [n] such that i, = 3, then |S| < 3. On the
contrary, if i, < 2 for every a € [n], we have |S| < 22,

If r = 4, then n = 10 and the cardinality of a 2-packing S is at most 5. In
fact, we have p (10,4) = 5 and if S is a maximum 2-packing of K(10,4), then, up
to automorphism, we have

S = {{1, 2,3,4},{1,5,6,7},{2,5,8,9},{3,6,8,10},{4,7,9, 10}}.

If r > 5, suppose that i, < 2 for every a € [n]. Let uj,u2,us € S. Without
loss of generality, we may assume that

up ={1,2}U[4..r+1], ug = {1,3}U[r+2..2r—1j, uz =4{2,3}U[2r..3r—3].

The fourth vertex in S must contain exactly one element from each set uy, us, us
and two elements from [n] \ (u1 Uuz Uus). However,

I[n]\ (u1 Uua Uug)| = (3r —2) — (3r —3) = 1.

We can conclude that |S| < 3, and S = {u1, us, uz} is a 2-packing of maximum
cardinality.
Therefore, if r > 5, p(3r — 2,7) = 3. [

As a by-product of the previous proof, we have the following result.

Corollary 13. Let n and r be positive integers such that r > 5 and n = 3r — 2.
If S is a mazimum 2-packing of K(n,r), then, up to automorphism,

S={{1,2y U[4.r +1],{1,3} U [r +2.2r — 1],{2,3} U [2r..3r — 3]},

S={{1yu2.r, {1} Ulr+1.2r - 1], {1} U [2r.3r — 2]}.

Let us notice that 2-packings in Kneser graphs are related to Steiner systems.
A Steiner system S(t,7,n) is a collection of r-subsets of [n], called blocks, with
the property that each t-subset of [n] is contained in exactly one block. It is not
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hard to see that for 2r+1 < n < 3r — 2, if a Steiner system S(3r —n,r,n) exists,
then
p(n,r) <|S(3r —mn,r n).

This relationship is useful to study 2-packings in odd graphs. To this end,
we consider perfect 1-codes in graphs [13]. A subset of vertices C of a graph
G is a perfect 1-code of G if the family of closed neighbourhood {N[v]}, .. is a
partition of V(G). Notice that if a perfect 1-code of a graph G exists, then it
is also a maximum 2-packing of G. In particular, it is known that a set C' is a
Steiner system S(r — 1,7,2r + 1) if and only if C is a perfect 1-code in the odd
graph K (2r + 1,7) [13]. Thus, the case 7 = 3 in Theorem 12 also follows from the
fact that the Fano plane is a Steiner system S(2,3,7). Similarly, since a Steiner
system S(4,5,11) exists [1], then the odd graph K(11,5) has a perfect 1-code
and

p(11,5) = 66.

The well known conjecture due to Biggs [2] asserts that there is no perfect
1-code if r # 3,5. Although it has been verified for some values of r, it has not
yet been settled in general.

Notice that the existence of a perfect 1-code in the odd graph K (2r 4 1,r)
would give the following lower bound for the k-tuple domination number
(2r+1) L

r

r+2

Yxk (2r+1,7) > kp(2r+1,r) =

)

which we will show is tight for r = 3, 5.

Lemma 14. Let G be a vertex-transitive graph, and k a positive integer. If
Yxk (G) = kp (G) and D is a yxi-set, then |[N[v] N D| =k for every v € V(G).

Proof. Let S be a maximum 2-packing of G and D a yxp-set of G. From
definition |N[u] N D| > k for every vertex u € V(G). On the other hand, the sets
{N]u]}ues are pairwise disjoint. So, we have

(4) Yk (G) =|D| =Y " IN[u] N D| > k|S| = kp (G) = vk (G) .
ueST

In consequence, |N[u| N D| = k for every u € S.
Besides, let v € V(G). Since G is a vertex-transitive graph, it is possible to
find a maximum 2-packing S” such that v € S’. Thus, |[N[v] N D| = k. |

As it is well-known that Kneser graphs are vertex-transitive graphs, we have
that if vy (n,7) = kp(n,r) and D is a yxg-set of K(n,r), then |[N[u|ND| =k
for every u € V(K (n,r)).
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Remark 15. Let us notice that if Dy is a k-tuple dominating set of K (n,r) with
cardinality |Dy,| = kp (n,r), then the set V(K (n,r))\ Dy is a k-tuple dominating
set of K(n,r), with k = (") 4+ 1 — k. In fact, for every vertex u € V(K (n,r)),
by Lemma 14 we have

n—r
VI 0 (VK )\ Dl = (V] - (¥ D = (") 1
—— N——— r
(" 7)1 F
It is known that there exist exactly two disjoint Fano planes. Thus the union

of these two Fano planes is a yx2-set of K(7,3). Moreover, we provide 7y x-sets
of K(7,3) for each k € [5].

Remark 16. For r = 3 and n = 7, from Theorem 12 it turns out that p (7,3) = 7.
A bound for v« (7,3) is given by Theorem 10 and we have vy (7,3) > 7k. In
fact, let us see that this bound is tight, i.e., v« (7,3) = 7k for k € [5].

Figure 3. A yx2-set of K(7,3).

To this end, it is enough to consider two disjoint Fano planes F}, F5 and the
sets

Dy = Fy, Dy = F1 U Fy, D3 =V \ Dy, Dy =V \ Dy, Ds =7V,

where V = V(K (7,3)). For each k € [5], Dy, turns out to be a k-tuple dominating
set with cardinality |Dy| = 7k and in consequence is a yyj-set.
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In Remark 16 we provide vy j-sets of K(7,3). In fact, by exhaustive methods
we can prove that these sets are unique up to automorphism. Regarding Steiner
systems S(4, 5, 11), it is also known that there are exactly two disjoint such Steiner
systems. We know that the union of them is a yx2-set of K(11,5). We also find,
for k € {3,4,5,6}, a yxg-set of K(11,5) with cardinality 66k = p(11,5)k (a
construction of these sets can be found in [9]).

4. Ek-TupLE DOMINATION IN KNESER GRAPHS K (n,2)

The study of subsets of vertices satisfying certain restrictions in Kneser graphs
K (n,2) deserves particular attention, as this subclass of Kneser graphs has a
remarkable structure. As we have mentioned, in [18] it is shown that vx1 (n,2) =
3 for every n > 4. In this section we focus on the k-tuple domination number
Yxk (n,2) for k > 2. First, we provide a characterization of the k-tuple dominating
sets of K(n,2) in terms of the occurrences of the elements in [n].

Lemma 17. Let n > 5 and D C V(K (n,2)). Then, D is a k-tuple dominating
set of K(n,2) if and only if for every pair a,b € [n]

iy < |D| — k+2, if{a,b} €D,
¢ B ’D|_k7 Zf{aﬂb}¢D

Proof. Let D be a set of vertices of K(n,2) and let v = {a,b} be a vertex of
K (n,2). The number of vertices in D that contain either the element a or b is
exactly iq + 7 — 1 when v € D and ¢4 + i, otherwise.

On the one hand, if u € D, then we have,

IDNNul|=|D|—{veD:v#uivnu# 0}
(5) =|D|-({veD:acvVbev} —1)
=|D| = (la+ip—1)+1=|D|+2— (iq +ip).
On the other hand, whether u ¢ D it holds
(6) IDNN[u]| =|D|—{veD:acvVbe v} =|D|—(iqg+ip) = |D|— (iag+1p).

From (5) and (6) it turns out that D is a k-tuple dominating set if and only
if for every pair of elements a, b € [n] it holds

ID| +2 — (iq +1ip) > k, if {a,b} € D,
|D| = (ia +ip) = k, if {a,b} ¢ D,

ie.,

o |D| — k+2, if {a,b} € D,
g +1p <
|D| — k&, if {a,b} ¢ D. |
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Remark 18. Note that if D is a k-tuple dominating set and {a,b} € D, then
from Lemma 17 together with the fact that i, > 1, we have that for any a € [n],
it holds i, < |D| —k + 1.

From Theorem 5 with » = 2, we have that v« (n,2) = k + 2 if and only
if n > 2(k 4 2). In addition, from monotonicity, it follows that for & > 2 and
n < 2(k+2), vk (n,2) > k 4+ 3. Moreover, in the following result we state that
the only value of n for which this bound is tight is n = 2k 4+ 3. We introduce the
following notation. Given a set A and a positive integer r < |A|, we denote by
(‘;‘) the set of all the r-subsets of A.

Theorem 19. Let k > 2. Then vyxi (n,2) = k+ 3 if and only if n = 2k + 3.

Proof. Let k > 2 and n < 2k + 3. Let us suppose that there exists a k-tuple
dominating set D = {uq,...,uxr3} of K(n,2) with cardinality k£ + 3. We will
prove that n must be equal to 2k + 3. Note that it is enough to prove that
n > 2k + 3. Let us consider a vertex u, and let a € u. By Remark 18 we have
iq < 4. Moreover, we can prove the following.

Claim 20. i, < 2 for every a € [n].

Proof. Suppose, on the contrary, that i, > 3 for some a € [n].

Note that there exists b € [n]\ {a} such that {a,b} ¢ D and i, > 1. In fact,
if for every element x # a with i, > 1 we have {a,z} € D, then there are at
most i, + 1 elements in [n] that appear in vertices of D. Let = be an element
different from a such that i, > 1. It turns out that {a,x} € D and by Lemma 17
g + iz < 5.

Then if i, = 4, we have i, = 1 and k + 3 = |D| = 4 which contradicts that
k > 2. On the other hand, if ¢, = 3 then it turns out that ¢, < 2 for every y # a
with 4, > 1, and we have

n
2(k+3) =2|D| =) iy <iq + 2 = 9.
y=1
We also get k + 3 = 4, which does not hold since k& > 2.

Therefore, it is possible to choose b € [n] such that i, > 1 and {a,b} ¢ D.
Thus ¢ > 3, 7, > 1, and in consequence ¢, +1 > 4, which leads to a contradiction
since by Lemma 17 we have i, + i < 3.

We conclude i, < 2 for all a € [n]. 0

Let n1 = | X1| and ng = | X3|. We have n > ny +ny and 2|D| = 2na + n;. So
nzng—i-nl22]D|—n2:2(/<:—|—3)—n2:2(/€+2)+(2—n2).

Since n < 2(k + 2), it turns out that ne > 3. Let us see that ny is exactly 3.
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Claim 21. ny = 3.

Proof. Suppose that a and b are two elements in [n] such that i, = i, = 2, and
let v ={a,b}. If v ¢ D, by Lemma 17 i, + i, < 3 which leads to a contradiction.
Thus, v € D. If no > 4, let us consider aj,as,as,aq such that la; = 2 for
1 <j <4. Then {ai,a;} € D for every 2 < j <4, and 44, > 3 which contradicts
the fact that i, = 2. Thus, ny = 3. 0O

Therefore we have n > ng + n1 = 2k + 3. In consequence, it turns out that
if vk (n,2) =k + 3, then n = 2k + 3.

On the other hand, if n = 2k 43, then from Theorem 5 and monotonicity, we
have vy (n,2) > k+3. Now, let us see that there exists a k-tuple dominating set
D with cardinality k£ + 3. From the reasoning above, we have that D=X 1 U X,
|X2| = 3 and (XQ) C D. In fact, consider the set D given by

D= <[2]> U{{2a,2a+1}:2<a<k+1}.

D is a k-tuple dominating set of K (n,2) with |D| = k + 3. Therefore, we have
v (2k +3,2) = k + 3.
We conclude that for k > 2, yxx (n,2) =k +3if and only if n =2k +3. =

As a by-product of the proof of Theorem 19 we have that if n = 2k + 3 with
k> 2, and D is a yxk-set of K(n,2), then up to automorphism

D= <[2]> U{{2a,2a+1}:2<a<k+1}.

Note that in Theorems 5 and 19, we provide 7yxi (n,2) for n > 2k + 3. From
monotonicity on n it follows that if n < 2k+2, then vy (n,2) > k+4. Moreover,
in the remaining of this section we will prove Theorem 22, where we obtain
vxk (n,2) if n is large enough with respect to k.

Theorem 22. Letn>7and”3<k<a = 3 where a =n —4 if n is even and
a=n—>64 (n mod 4) if n is odd. Let o = {n—%—‘ It holds

Loyxk (n,2) =k +20a, if 2Zk+4<n< 27k +3;
2. Yk (n,2) =k+2a+1, ifn= [%k—‘ +3.

Table 1 illustrates the results of Theorem 22 in different colors (item 1 in
light blue and item 2 in blue).

In order to prove Theorem 22, we first give lower bounds for 7y (n,2) in
Proposition 23. We then demonstrate that these bounds are tight by construct-
ing k-tuple dominating sets for K (n,2) with the desired cardinality. Since the
construction of these sets is somewhat laborious, we present it in a separate
section.
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Proposition 23. Let a,n be positive integers with a > 2 and n > 2a+ 3 + («
mod 2)

Loywk (0,2) > k+20, if 2k +4 <n< 25k +3;
2. Yk (n,2) > k+2a+1, ifn=[2k] + 3.

«

Proof. Let a,n be positive integers with a > 2 and n > 2a + 3 + (@ mod 2).
First, we prove the two following claims.

Claim 24. If K(n,2) admits a k-tuple dominating set with cardinality k + 2«
then an > 2k + 4a.

Proof. Let D be a k-tuple dominating set of K(n,2) with cardinality |D| =

k+2a. Our goal is to prove that an > 2(k + 2a) = 2|D|. Let us suppose, on the
contrary, that an < 2|D].

On the one side, by Lemma 17 for every pair of elements a,b € [n] we have

- ia+ib§{|D|—k+2:2(a+1), %f{a,b}eD,

|D| — k = 2a, if {a,b} ¢ D.

Since an < 2|D[ =3,
for which i, > a + 1. For every other element b € Xg, it holds i, + iy > 2a + 1,
and by (7) {a,b} € D.

If |XZ| > 1, then we have that for every x € X2, i, < o + 2. In fact, if for
some element y it holds i, > « + 2, then by (7) for every other z € [n]

iz, We have that there is at least one element a € [n]

ip <2(a+1)—iy <2(a+1)—(a+2) =0,

and y would be the only element in X2, but | XZ| > 1.
Let us see that |XZ| > 1. Otherwise, Xz = {a} with i, > a + 1 and in
consequence
<a-—1
—~~
an <2[D| =Y iz =iat+ Y iz <ia+(n—1)(a—1)
z€[n] z€[n]\{a}

=iqt+tan—n—a+1.

Then, i, > n + (o — 1) > n, which cannot be true since i, < n — 1 for
every element x € [n]. Therefore, |XZ| > 1. In consequence, i, < a + 2 for
every x € XZ. What is more, if y € X412, then for every z € XZ we have
iz < 2(a+1)—1i, = a and it turns out that i, = . Then either XZ = XoUXq11
or X2 = XoU Xgio with |Xaio| = 1.
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Case 1. X§ = Xo U X411. Since for a € Xoy1 and every b € XO% we have
{a,b} € D, then | XZ| <i,+1=a+ 2, and we have

2D = ip= Y it D ix <[XZ|[(@+1)+|X5l(a—1)
z€[n] xEXg ‘TEX§71 n—|X2\

= n(a— 1)+ 2|XZ| < na —n+2(a + 2).

Since 2|D| > an + 1, it turns out that n < 2(a + 2) — 1. By hypothesis, we
have
S 2(a+2), if v is odd,
2(a+2)—1, if «is even.

Thus, « is even and n = 2(a + 2) — 1. Therefore
an+1<2|D|<na—n+2(a+2)=an+1.

It turns out that 2|D| = an + 1. But 2|D| is even whereas an + 1 is odd.

Case 2. XZ = XqU Xqp2 with X9 = {a}. Since for every b € X, we have
{a,b} € D, then |X7| < o+ 3, and we have

2D =Y iy =iat P dixt P ia<(a+2)+ |Xo| at|XI |(@—1)
N~ N——
|

TEN zeX, <
[n] e zeXy 4 |X§‘—1 n—|X

=n(a—1)+|XZ|+2<na—n+a+b.

Qv

Since 2|D| > amn, it turns out that n < a4+ 5. By hypothesis, n > 2« + 3,
then 2a + 3 < o + 5, that implies o < 2, which cannot be true since o > 2.

In both cases, we arrive at a contradiction. Therefore, we can conclude that
an > 2k + 4« as claimed. 0

Claim 25. If K(n,2) admits a k-tuple dominating set with cardinality k+2a—1,
then (a — 1)n > 2k + 3(a — 1).

Proof. Let D be a k-tuple dominating set of K(n,2) with cardinality |D| =
k+2a—1. We are intended to prove that (« —1)n > 2k+3(a—1) or equivalently
(e —1)n+a+1 > 2|D|. Let us suppose, on the contrary, that (¢ —1)n+a+1 <
2| D).
By Lemma 17 for every pair of elements a,b € [n] we have
- ia+ib<{|D\—k+2:2a+1, %f{a,b}eD,
|D| — k =2a —1, if {a,b} ¢ D.
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Since (o — 1)n < 2[D| = 3_ ¢, ia, We have that there is at least one element

a € [n] for which i, > «. For every other element b € Xz, it holds i, + i, > 2a,
and by (8) {a,b} € D.
Let us see that | XZ| > 1. On the contrary, X2 = {a} and

(a—l)n+a+1<2|D|:sz—la+Z <ig+ (a—1)n— (a—1).
z€[n] x;ﬁa<a 1

Thus, i > 2c, which cannot be true since i, < 2« for every element x € [n]
by Remark 18. Therefore, | XZ| > 2.

Then, we have that for every z € X2, i, < a+1. In fact, if for some element
y it holds that i, > o + 1, then by (8) for every other x € [n]

ip <20+1—iy <2a+1—-(a+1)=aq,

and y would be the only element in X2, but |XZ| > 1. Therefore, i, < o+ 1
for every x € XZ. What is more, there is at most one element in X, since if
x,y € Xoy1, then iy + iy = 2a + 2 and this cannot be true by (8).

Therefore, either X2 = X, or XZ = X, U Xo 41 with [ Xo01] = 1.

Case 1. XZ = X,. For every pair a,b € X, we have {a,b} € D since
iq + iy = 2 and it holds (8). Thus (XQ‘*) C D and we have | X,| < a+ 1. Then

2D =) ip = ixt Y ia<|[Xala+|XSl(a—1)
z€[n] ze€Xqy zeXS_, m

=nla—1)+ Xy <nla—1)+a+1.

But we have assumed that 2|D| > n(a —1) + a + 1.

Case 2. XZ = Xo U Xop1 with Xoy1 = {a}. For every other b € X= |

we have i, + i > 2a thus {a,b} € D and in consequence ]X ] < a+2 If
X =X, 1UX,, we have

2D =) ip=ia+ Y et D, i<(a+D)+ |X| a+ [XI,|(a—2)
z€n] z€X rexs. > —
a? 1X5al-1 n—|X5 1l
n(a—2)+2/X= | +1<n(a—1)—n+2a+5.
Since 2|D| > (a« —1)n+a+ 1, it turns out that n < a4 4, but by hypothesis
n>2a+3> a+ 5, since a > 2.

In both cases, we arrive at a contradiction. Therefore, we can conclude that
(o — 1)n > 2k + 3(a — 1) as claimed. O
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Assume that n = [%kz] + 3. Suppose that K(n,2) admits a k-tuple dominat-

ing set with cardinality £+ 2«. From the first claim, it follows that an > 2k+4a,
or, equivalently,

2
(0%

which does not hold. Thus, there does not exist any k-tuple dominating set with
k + 2« vertices and

Yxk (1,2) >k +2a+ 1.

Similarly, if %k:+4 <n< %k +3 and K(n,2) admits a k-tuple dominating
set with cardinality k + 2« — 1, from the second claim it follows that (o — 1)n >
2k +3(a—1), ie.,

n > k+3,

a—1
which is not true. Then there does not exist any k-tuple dominating set with
k + 2a — 1 vertices and

Yxk (n,2) > k + 2.

Construction of k-tuple dominating sets for K (n,2)

In order to provide k-tuple dominating sets of K (n,2) whose cardinalities achieve
the lower bounds for 7yxi (n,2) given in Proposition 23, let us introduce the
following definition.

Definition. Let m € N. For i € N, i < %, we define Dz[m] as the set

DI = {{g,6+i}: € € [m]},

where the sums are taken modulo m. And for @ € N, o > 2, such that m > «,
let a = L%J We define D™ as the set given by

D™ = (O DE"”) uD,
=1
with
B {{{575+ (2]} ¢e[[%]]}, ifaisodd,

0, if o is even.

Example 26. e Let « =3, m =6 > o and a = L%J = 1. The set D™ = D63
is given by
6,3 6N
D% =ply D,
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where

DY = {{1,2},{2,3},{3,4}.{4,5}, {5,6},{6, 1} },
D = {{1,4},{2,5},{3,6}}.

D%3 is a set of vertices of K(n,2) for every n > 6 and the occurrences of the
elements in [n] for the set D%3 are

, {3—@, if z € [6],
iy =

0, otherwise.

Figure 4. Set D%3 in the Kneser graph K (6,2).

leta=4, m=14>aand a = L%J = 2. The set D™ = D44 is given by

[14]

14,4 _ 14
p'*4 = piy pi,

where
DM = {{1,2},{2,3}, {3,4},{4,5}, {5,6}, {6, 7},{7,8}, {8,9},
{9,10}, {10, 11}, {11, 12}, {12, 13}, {13, 14}, {14,1} },
DM = {{1,3},{2,4}, {3,5},{4,6}, {5, 7}, {6,8},{7,9}, {8, 10},
{9,11},{10,12},{11,13},{12,14},{13, 1}, {14, 2} }.

D4 is a set of vertices of K(n,2) for every n > 14 and the occurrences of the
elements in [n] for the set D44 are

, 4=q, ifze[l4],
7 =
‘ 0, otherwise.
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eleta=3, m=11>a,and a = L%J = 1. The set D™ = D3 is given by
p'3 = pyp

where

DI = {{1,2},{2.3},{3,4}, {4,5},{5,6}, {6, 7},
{7,8},{8,9},{9,10},{10,11}, {11,1} },
D = {{1,6},{2,7},{3,8},{4,9}, {5,10} }.

D3 is a set of vertices of K(n,2) for every n > 11 and the occurrences of the
elements in [n] for the set D3 are

3=uq, if x € [10],
p=<2=a-—1, ifx=11,
0, otherwise.

Let us observe that D™ C ([ZL]). In consequence, D™ is a set of vertices
of K(n,2) for every n > m, and any element in [m] has at most « occurrences
in D™, In fact, m > a +1 > 2a, ie., a < §. So, each element x € [m]
appears in exactly two vertices of Dl[m] for each 1 < i < a. Moreover, for i # j,
Dz[m} N Dj[m] = () since i + j < 2a < m. On the other hand, for o odd, a vertex

in D is not in Dl[m] for any 7. Furthermore, every element x € [m] appears in
exactly one vertex of Difmis even, and every element x € [m — 1] appears in
exactly one vertex of D if m is odd.

Thus, for both @ and m odd we have

a, if x € [m — 1],
9) g (D™*) =< a—1=2a, ifz=m,
0, otherwise.

and if either o or m are even, then

a, if x € [m],

0, otherwise.

(10) i (D™%) = {
In any case, we have

(1) =2 S =2

z€[n]
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Lemma 27. Let o,k e Nwitha>2 andn > a+2. Ifn> %k + 4, then there
exists a k-tuple dominating set of K(n,2) with cardinality k + 2c.

Proof. Due to Lemma 17 a set D is a k-tuple dominating set if and only if it
verifies, for every pair of elements z and y in [n]

i i< |ID| —k+2=2a+2, if{z,y}eD,
YT D) -k = 20, if {z,y} ¢ D.

Therefore, it is enough to find a set D of vertices with cardinality k 4 2a such
that i, < « for each z € [n]. Let a = |$]. Since n > a+2 > 2a + 1, we
have a < L%J Thus, let us consider the set D™ as in Definition 4. Note that
|D™| = [9| by (11). Moreover, |D™®| > k + 2. In fact, as 2k +4 < n, we
have an > 2(k + 2«). If either a or n are even, then

2|D™% = na > 2(k + 2a).
On the other hand, if both « and n are odd, then

2|D’I’L,OL

=na—12>2(k+2a)—1.

As 2|D™%| is an even integer and 2(k + 2a) — 1 is an odd integer, it turns out
that 2|D™%| > 2(k + 2a) — 1 and in consequence 2|D™| > 2(k + 2a).

In any case, |D™%| > k + 2« as claimed.

Note that i, (D™*) < « for every x € [n], by (9) and (10). Thus, eliminating
any |D™%| — (k + 2«) vertices from D™ gives as a result a set of vertices D with
cardinality k + 2« such that i,(D) < i,(D™®) < « for every = € [n]. This is, a
k-tuple dominating set with cardinality k£ + 2a.

Therefore, K (n,2) admits a k-tuple dominating set with cardinality k+2a. m

Lemma 28. Let o,k € N with a > 2 andn > 2a+ 3. If n = [2k]| + 3, then
there exists a k-tuple dominating set of K(n,2) with cardinality k + 2c + 1.

Proof. Due to Lemma 17 a set D is a k-tuple dominating set if and only if for
every pair of elements x and y in [n] it holds

L |D| —k+2=2a+3, if{x,y} e D,
Iy + 1y < .
|D| —k=2a+1, if {z,y} ¢ D.

Therefore it is enough to find a set D of vertices with cardinality k4 2« + 1 such
that a < i, < a+1 for each = € [n], and {z,y} € D for every pair z,y € Xo41.

Let A € Nsuch that k = aA+bwith0<b<a—1. And let a = L%J We
will give such a set D in terms of b considering the cases b =0, 1 < b < ¢ and
a+1<b<a-1.
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In order to do so, let us consider for h € N, 1 < h < n — « the set

n—h—{—l..n])'

(12) LXh):aD”maLJ([ )

Let us note that if (n — h)a is even, then using (10) we have that each element
x € [n — h] has exactly a occurrences in D"~ and none in ([nfhﬂ“”]), and

n—ht L]y

each z € [n — h + 1..n] has exactly h — 1 occurrences in ( and none in

DM In consequence

a, if x € [n — hl,

(13) iz(D(h)) = {h 1, ifzefn—h+1ml.

Furthermore, by (11) we have

+‘<[n—h2+ 1..n])‘ _ (n—2h)a .\ (Z)

In the first case, b = 0, we will prove that for h = o+ 2 the set D(h) is itself
a k-tuple dominating set with cardinality k 4 2«. In the remaining cases, we will
consider the set D(h) for h = 2b+ 2 and h = 2b — « + 2 respectively and modify
them with the aim of giving k-tuple dominating sets of the desired cardinality.

Casel. b=0. Let h=a+2. Sincen > 2a+3,wehaven—h >a+1> a.
So, we consider the set D = D(h) as in (12). Note that n = [2k] +3 = 2\ + 3.
Thus, for a odd, we have both n and h are odd and in consequence n — h is
even. Thus, (n — h)a is even. From (13) it turns out that o < i, < a+ 1 for
each = € [n], and {x,y} € D for every pair x,y € Xo4+1. Thus, D is a k-tuple

dominating set. What is more,

2|D| = Zix:(n—h)oz—l—h(a+1):an+h

z€[n|

(14)  [D(r)| = D he

2
:a<ak+3>+a+2:2(k+2a—|—1).

Therefore, |D| is a k-tuple dominating set with cardinality k + 2« + 1.

Case 2. 1 < b<a. Let h=2b+ 2. his an even integer between 4 and
2a+2 < a+2. Since n > 2a+3, we have n—h > (2a+3) — (a+2) =a+1> a.
So, we consider the set D(h) as in (12).

Note that n = [%kﬂ 4+ 3 = 2X + 4. Thus, both n and h are even and in
consequence also n — h. From (14),

2|D(h)|=(n—h)a+h(h—1)=(na+h)—h(a—h+2)

—_————
a—2b

(15) =2(k+2a+1) — h(a— 2b),

——
>0
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since 2(k+2a+1) = 2k+4a+2 = 2(Aa+b)+4a+2 = (2A+4)a+(2b+2) = na+h.
If b < a, let us consider the following set D.

D :[D(h)\ ( U {{f,fﬂ'}})]

1<j<b+1

1<£<a—2b
Dy
1<5<b+1
1<E<a—2b

Do

where the sums in D; are taken modulo n — h.

Let us see that D; € D(h). In fact, we have that b+ 1 < a, so for each j it
holds {&,£ 4+ j} € D][-n_h} C D(h). Moreover, o — 2b < o« < n — h, so for fixed j,
the vertices {&,& + j} are different. In consequence, |D1| = (b+ 1)(« — 2b).

On the other hand, Do N D(h) = () since no vertex in D(h) has an element in
[n — h] and other in [n — h+ 1..n]. Besides the vertices in D9 are different. Thus,
|Da| =2(b+1)(a — 2b).

Note that for each = € [n], we have

Z:v(D) = Zm(D(h’)) - Zm(Dl) + Zx(D2)
For x € [n — h|, we have i, (D) = i,(D2), and in consequence
iz(D) = ix(D(h)) = o,

and for z € [n — h + 1..n], we have iy(D;) = 0 and i,(D2) = o — 2b, and in
consequence
iz(D) =iy (D(h))+a—2b=a+1.
—_——
h—1
We have a < iy(D) < a+ 1 for each = € [n], and {z,y} € D for every pair
z,y € Xoqt1. Thus, D is a k-tuple dominating set. Furthermore,

|D| = |D(h)| — |D1| + |D2| = k + 2a + 1.

Therefore, |D| is a k-tuple dominating set with cardinality k + 2a + 1.
If b = a and « is even then the set D(h) is itself a k-tuple dominating set
with cardinality k& + 2a + 1 since (15) holds. If « is odd, then let us consider the



26 M.G. CORNET AND P. TORRES

following set D.

D _[D(h)\ ( U {&¢+ 1}}> ]

1<E<b+1

Dy

U ( U {{g,n—h+2§—1},{§+1,n—h+25}}>.

1<€<b+1

Dy

Note that D; C D[lnfh] C D(h). Moreover, since « is odd, we have « = 2a+ 1 =
2b+1. Thus, n —h > (2a+3) — (2b+2) = o+ 2 > b+ 1. So, the vertices in
D, are different and |D1| = b+ 1. As in the case b < a, Do N D(h) = () and the
vertices in Dy are different. Thus, |Dy| = 2b 4 2. We have that for each x € [n]
it holds

Z:p(D) = Zm(D(h)) - Zm(Dl) + lm(D2)

We have i,(D1) = iy(D2) if x € [n — h] and i,(D1) = 0, ip(D2) = 1 if z €
[n — h + 1..n]. In consequence

(D) Q, if x € [n— hl,
Zx =
h=a+1, ifxe[n—h+1.n].

This is, a < ix(D) < a + 1 for each x € [n], and {z,y} € D for every pair
z,y € Xaqt1. D is a k-tuple dominating set with cardinality

|D| = |D(h)| — |D1| + |D2| = k + 22+ 1.

Case 3. a+1<b<a—-—1. Let h=2b—a+2. Wehave 3<h <a, and h
has the same parity as o, and n —h > (2a+3) —a = o+ 3 > «a. So, we consider
the set D(h) as in (12).

Note that n = [%/ﬂ +3 =2X+5. Besides, if « is odd, then both n and h are
odd and in consequence n — h is even. So, in any case, (n — h)a is even. From

(14),

2|D(h)|=(n—h)a+h(h—1)=(na+h) —h(a—h+2)

—_———
20—2b
=2(k+2a+1)—2h(a—0),
>0

since 2(k+2a+1) = 2k+4a+2 = 2(Aa+b)+4a+2 = (2A+5)a+(2b—a+2) =
na + h.
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The procedure is similar to Case 2. This is, we eliminate h(a — b) vertices
from D(h) and add another 2h(ca—b) vertices in order to get a k-tuple dominating
set with cardinality k£ 4+ 2a + 1.

If o is even, let us consider the following set D.

D :[D(h)\ ( U {{£,§+j}}>]

1<j<b—a+1
1<€<2a-2b
Dy
1<j<b—a+1
1<€<2a—2b

Do

where the sums in D; are taken modulo n — h.

Let us see that D; C D(h). In fact, we have that b—a+1 < a —a = a,
so for each j it holds {&,& + j} € Dg.n_h] C D(h). And, since n > 2a + 3 and
h=2b—a+2,wehaven—h >3a—2b+1>2a—2b. So,2a—2b< a<n-—h,
thus for fixed j, the vertices {£,& + j} are different. In consequence, |D;| =
(b—a+1)2a —2b) = h(a = D).

On the other hand, Dy N D(h) = ) since no vertex in D(h) has an element
in [n — h| and other in [n — h + 1..n]. Thus, the vertices in Dy are different and
it turns out that |Da| = 2(b — a + 1)(2a — 2b) = 2h(a — b).

If o is odd, let us consider the set D = [D(h) \ D;] U Dy, where

() fle )

1<€<20—2b

Dy =< U {{s,n—mzj—1},{5+j,n—h+2j}}>
1<j<b—a
1<€<2a—2b

- <1§§L§Ja—b{{§7n} ’ {§+ n;h“}}>

and the sums in Dj are taken modulo n — h.

Let us see that D; C D(h). In fact, we have that b —a < aa—1—a = a,
so for each j it holds {&,& + j} € Dj[.n_h] C D(h). And, since n > 2a + 3 and
h=2b—a+2,wehaven—h >3a—2b+1>2a—2b. So,2a—2b< a<n-—h,
thus for fixed j, the vertices {¢,& + j} are different. On the other hand, for
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1<é<a-b< %_h, we have {¢, ¢+ %} eDC D(h). In consequence,

|Di| = (b—a)(2ac —2b) + (a —b) = (2b —2a+ 1)(a — b) = h(ax — b).
h

Besides, Dy N D(h) = 0 since no vertex in D(h) has an element in [n — h]
and other in [n — h+ 1..n]. Thus, the vertices in Dy are different and it turns out
that |Da| = 2(b — a)(2a — 2b) + 2(ov — b) = 2h(a — b).

Either if « is even or odd, the set D is a k-tuple dominating set with cardi-
nality k£ 4+ 2a + 1. In fact, note that for each = € [n] we have

Zx(D) = lm(D(h)) - Zx(Dl) + 'L:E(DZ)
For x € [n — h|, we have i,(D;) = i,(D2), and in consequence
(D) = in(D(W) = a.

And for x € [n — h + 1..n], we have i,(D;) = 0 and i(D2) = 2a — 2b, and in
consequence

iz(D) = ig(D(h)) +2a — 2b = o + 1.
h—1

We have a < (D) < a+ 1 for each x € [n], and {x,y} € D for every pair
z,y € Xqt1. Thus, D is a k-tuple dominating set. Furthermore,

|D| = |D(h)| — |D1] + |D2| = k + 2 + 1.

Therefore, either if « is even or odd, we obtain a k-tuple dominating set with
cardinality k + 2a + 1. [

Combining Proposition 23 with Lemmas 27 and 28 yields the following result.

Theorem 29. Let a,n € N with a > 2 and n > 2a+ 3+ (o mod 2). We have,
Loyk (n,2) = b+ 20, if 3k +4 <n < 2k +3,
2. Yk (n,2) =k +2a+1, if n=[2k] +3.

o

Let us see two remarks about the statement of Theorem 29.
Note that condition 2k 4+ 3 < n < —2:k + 3 is equivalent to o = [ 2k —‘

n—3
Further, for a = [%—‘ > 2, the inequality n > 2a+ 3+ (o mod 2) is equivalent

to 252 < k < a 2 where a =n —4if nis even and a = n — 6 + (n mod 4) if
n is odd, with n > 7. Thus, Theorem 29 can be restated as Theorem 22.
Finally, it is worth noting that whereas in Theorem 22 the values of vy« (n, 2)
are computed for ”T_?’ <k< a”T_?’, witha =n—4ifnisevenand a =n—6+(n
mod 4) if n is odd, Theorems 5 and 19 provide the values of vy (n, 2) for k < 253

In consequence, we have determined vy (n,2) for all 2 < k < a ”T_?’.
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5. FURTHER REMARKS

Regarding yxg-sets of K(n,2) for large values of k, recall that for k = (n;Z) +1,
we have vy (n,2) = (5), whereas for k = (”;2), Yxk (n,2) = () — 1. Together
with Theorem 9 for » = 2, we have the following.

Corollary 30. Fort € N, if k = (";2) —t and n > 2(t + 3) — [2], then
Yxk (N,2) =k +2n — 4.

Besides, in order to complete the study of vyxx-sets of K(n,2) for large val-
ues of k, we have also studied properties of the ~yyj-sets of K(n,2) for k €
{(n;4) + 2, (”;3) + 1}. In fact, we obtain the following result. We omit the
proof here for the sake of readability (it can be found in [9]).

Proposition 31. e Ifk = (") +2 and 6 < n < 10, then vy, (n,2) = ("52) +1.
Moreover, D = (["52]) U{{n—1,n}} is a yxi-set.

o If k= (”53) +1 and n > 5, then vy (n,2) = (”;1) Moreover, D = ([”;1]) is
a Yxk-Set.

Notice that although the set (["52}) U {{n —1,n}} given in the first item of
Proposition 31 is a k-tuple dominating set of K(n,2) for every n > 6, it is not
true that it is a y«x-set for every n. For instance, for n = 11 and k& = 23 the set

[6] [7..11] -
D<2>U< ; )UD,
where D = {{1,7},{2,7},{2,8},{3,8},{3,9}, {4,9}, {4,10}, {5,10}, {5, 11} }, is
a k-tuple dominating set with cardinality (”52) = (g) = 36.

With the aim of summarizing the results in this paper for K(n,2), Table 1
contains several values for vy (n,2). Some of these values are obtained taking
into account Lemma 17, Theorem 2, and upper bounds obtained by Integer Linear
Programming. In this regard, we consider the following ILP formulation for the
k-tuple dominating problem. The set of variables is given by {z,,u € V'}, where

1, ifue D,
Ty =
0, otherwise,

(16) s/t Z Ty >k, Yvev,
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Fnla]l 5] 6] 7]8]09 10 11 12 13 4 [15]16]1r[s]19]20[21]22]23]247]25]2
1

2 |6t] 6 | 67 4 | ogb | gb 40 40 40 4b gb b | gb | g | 4b | g gb [ gb g | gb | gb | gb
3 of [ e | | 7 50 58 58 58 ORGS0 52 s s s sz s e s s s
4 104 | 10° g | 8 | & 6 6 6 6 6 |6 [ |6 |6 6|6 6 |6 |6 |6
5 137 | 11¢ oo o | N ¢ 7 7Pl |r[r|r 2P P[P [P
6 147 | 147 | 129 100 | 10° | 10® 10 10 g | g | 8 | g | g g | g g | g | 8 | &
7 15¢ | 15¢ | 139 | 139 T I T I T I b | 9 | 9b 9b | 9b 9b | 9b | ot | ¢
|8 | 17/ | 16° | 149 | 14° 120 120 120 120 120|120 | 120 [NEEEN| 10° 10° | 10° 10° | 10° | 10° | 10°
o | 197 | 170 | 16/ | 150 | 15" 13 13* 13b 13| 13% |13 | 13° | 13® A 110 11 | 1® | 11t | 11®
10 207 | 207 | 187 160 | 16 |

11 214 | 21° | 207 | 199 17

12 229 | 22¢ | 209 18"

13 257 | 239 | 219 | 210

14 26¢ | 249 | 247 | 220 | 220

15 279 | 27/ | 259 23"

16 289 | 28° | 269 24°

17 299 | 29¢ | 219

[ 18 | 324 | 300 | 289

[ 19 | 330 | 319 | 2030 | 297

[ 20 | 344 | 3233 | 3032 | 30¢

21 357 | 33-35 | 31-33 | 319 319

22 367 | 36° | 3234 | 32.33 329

23 379 | 3336 | 3335 339

24 38-39 | 34-38 | 34-36 | 34-35

25 414 | 35-39 | 35-37 | 35-36

26 424 | 37.40 | 37-39 | 37-38

27 434 | 3842 | 38-41 | 38-39

[ 28 | 449 [ 40-14 | 40-42 | 20-41

[ 29 | 450 | 45 [ 4143 | 4122

[ 30 | 469 | 4245

31 47-48 | 43-47 | 4345

32 504 | 44-48 | 44-46

33 519 | 4549 | 45-48

34 524 | 4750 | 47-49

35 53¢ 48-51

36 549 | 49-54 | 49-52

37 55¢ | 55¢ | 51-53

[ 38 | 569 | 52-55

[ 39 | 579 | 53-57

[ 40 | 60¢ | 5458

41 619 | 55-59

42 627 | 56-60

43 637 | 57-62

44 649

45 657 | 59-65

46 664 66°

47 679

[ 48 | 689

[ 49 | 69-70

[ 50 | 724

51 73¢

52 74¢

53 52

54 767

55 771

56 787

57

58

59

[ 60 |

Table 1. v« (n,2) for some values of n and k.
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We implemented it in CPLEX solver [29] to obtain k-tuple dominating sets that
allowed us to determine an upper bound of v« (n, 2) for certain values of n and k,
which together with the lower bounds obtained using Lemma 17 and Theorem 2,
were tight. Notice that we have determined 7y (n, 2) for every n and k < 18. For
the general case, fixed k, the amount of values of n for which vy (n,2) remains
unknown is @(\/E) However, for some of them we have upper bounds arising
from solving the ILP.

Table 1 shows the values of v«j (n,2) stated by the results in this paper.
Rows correspond to values of k while columns correspond to values of n. The
superscript in each entry of the table indicates from which result it follows, and
the bounds arise from k-tuple dominating sets obtained using CPLEX solver for
(16) and monotonicity. (a) Domination number [18]. (b) Theorem 22.1. (c)
Theorem 22.2. (d) Corollary 30. (e) Proposition 31. (f) Lower bound from
Lemma 17 and upper bound from ~yyg-sets found by ILP (16). (g) Lower bound
from Monotonicity (Theorem 2) and upper bound from vyx-sets found by ILP
(16).
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