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Abstract

We present an infinite sequence of “minimal” graphs over every odd (at
least nine) vertices, each of which contains monochromatic triangles for any
edge 2-coloring. This result complements generalized Graham graphs, which
constitutes an infinite sequence of minimal such graphs over every even (at
least eight) vertices. These two results give an infinite sequence of minimal
such graphs over every natural number (at least eight) of vertices.
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1. INTRODUCTION

Ramsey theory, initiated by Ramsey [13], is one of the most important areas
of combinatorics. Ramsey theory studies how many elements of some structure
there need to be to guarantee that a particular property on the structure holds.
(See [8] as a classical textbook.) The simplest problem in graph theoretic Ramsey
theory is to ask for the minimum number of vertices of complete graphs, say, K,
over n vertices, such that there is (at least) one monochromatic triangle (i.e., K3)
for any edge 2-coloring. The answer to this question is six, that is, Kg. Thus,
any graph containing Ky satisfies such a property. Here, we say that a graph
G = (V,E) is (p, q)-Ramsey if for every 2-coloring to E, there exists a K, of the
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first color or a K of the second color. We focus on the case of p = ¢ = 3, i.e.,
(3,3)-Ramsey graphs.

From this fact, it is natural to ask for a structure of graphs with such a
property that does not contain Kg, which was posed by Erdés and Hajnal [5]. In
what follows, we consider graphs that do not contain Kg, called Kg-free graphs.
Answering the question, Graham [7] presented a Kg-free (3,3)-Ramsey graph,
called here the Graham graph, which is on eight vertices. In fact, it is unique of
all Kg-free (3,3)-Ramsey graphs on at most eight vertices.

More generally, a graph is minimal (with respect to the (3,3)-Ramsey) if
the graph does not properly contain any (3, 3)-Ramsey graph. Thus, Kg as well
as the Graham graph are both minimal. Following the Graham graph, Nenov
[10] presented a minimal graph on nine vertices (as a graph next to the Graham
graph), called here the Nenov graph, and it is unique of all minimal graphs on
nine vertices. All minimal graphs on at most thirteen vertices are listed in [1].

Along the research of this stream, it furthermore is natural to ask if for
each natural number n > 8, there exists a minimal (3,3)-Ramsey graph over n
vertices. Indeed, a partial answer to this question has been given by Burr, Erdés,
and Lovész [2]. For each pair of positive integers p,q > 3, there exist infinitely
many minimal (p, ¢)-Ramsey graphs'. Moreover, Nenov and Khadzhiivanov [12]
proposed a simple construction which gives an infinite sequence of minimal (3, 3)-
Ramsey graphs over every even (at least six) vertices. (We also find it in [6, 14].
See the related results below.) The graphs are K3 ® Co,41 for all » > 1, where
C,, is the cycle graph over n vertices, and the operation ® of G; ® G4 for two
graphs G1,Go is some kind of graph products of adding edges to all the pairs
of vertices between Gy and Go. In fact, the graphs of r = 1,2 are identical
to K¢ and the Graham graph, respectively. For each odd number n (at least
nine), Nenov [11] showed the existance of a minimal (3, 3)-Ramsey graph with
n vertices. However, his proof is not constructive. In this paper, we present a
(rather) simple construction which is a new constructive proof of the above result,
as follows, where the graph G(r) is defined in the next subsection.

Theorem 1. For every positive integer r > 2, the graph G(r) is a minimal
(3,3)-Ramsey graph with 2r + 5 vertices.

Our idea

Before presenting our idea, we note that the graph K3 ® G cannot be minimal
(3,3)-Ramsey for any graph G over even vertices. This comes from the fact that
G is non-bipartite if and only if K3 ® G is (3,3)-Ramsey. The direction of the
only if part above is the lemma itself in [14]. For the sake of complementing the
lemma as well as showing the impossibility, we prove the direction of the if part

! An asymptotic result is given in [3].



ON INFINITE SEQUENCES OF MINIMAL GRAPHS CONTAINING ... 3

in the next section. Suppose that K3 ® G (over odd vertices) for some graph G
(over even vertices) is (3,3)-Ramsey. Then G must be non-bipartite from the if
part of the fact, and hence G contains an odd cycle. Thus, the graph K3 ® G
contains K3 ® Co,y1 for some r > 1, and hence it is not minimal. Therefore, we
cannot attain our goal simply by extending the construction by [6, 12, 14].

Our construction is inspired by a structure of the Nenov graph. Let K, be
the graph obtaining from K4 by deleting an edge of K. Then the Nenov graph
is the graph K, ®' C5, where the operation ®' is some kind of graph products
as follows. Let {vi,...,v4} (respectively, {ui,...,us}) be the vertices of K,
(respectively, Cs). See Figure 1, where indices i and j of vertices v; and u; are
displayed. Then, about edges between K, and Cs,

e for i = 2,3, we add an edge between v; and u; for all j = {1,...,5},

e for i = 1,4, we add an edge between v; (respectively, v4) and wui, ..., uyg
(respectively, u1, uq, us.).

Figure 1. Nenov graph.

See the following figure, where edges in the first item above (i.e., on ve and vs3)
are omitted. Once we figure out this structure of the Nenov graph, it is not
hard to attain our goal by extending this graph, replacing Cs with Co,41 for
r > 2. Note here that K is the graph obtained from two triangles by identifying
two vertices and the edge between them. The graphs K3 ® Ca,4+1 make use
of the triangle, and our construction also makes use of two triangles, but it is
not so simple as the graphs K3 ® C,41 to show that those are minimal (3, 3)-
Ramsey. Indeed, the edges between K, and Cy,4; are (somewhat) asymmetric,
and used in an elaborate way. The graphs G(r) generated by our construction
are K, ® Cy,yq for all r > 2, where the operation ®’ is a generalization of the
case of r = 2, i.e., the Nenov graph, in particular, v; is connected to vertices u;
for j € {1,...,2r—1,2r}, and v4 is connected to vertices u; for j € {1,2r,2r+1}.
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The vertices vy and vs are connected to all the vertices of Co,4;1. (See Figure 2
in the main section.)

Related results

As is mentioned above, following the Graham graph, Nenov [10] presented a min-
imal graph on nine vertices. They focused on the “minimality” with respect to
(3,3)-Ramsey, that is, a deletion of any edge gives a non-(3, 3)-Ramsey graph.
This implies the definition of minimal with respect to (3, 3)-Ramsey, as is men-
tioned above. On the other hand, [6, 14] studied on the “maximality” with
respect to (3,3)-Ramsey, which is called co-critical there. That is, an addition
of any edge gives a (3,3)-Ramsey graph. In this vein of the notion, a co-critical
graph is minimal if a deletion of any werter is not co-critical. Note that the
minimality for co-critical is different from that for (3,3)-Ramsey. Thus, a min-
imal co-critical graph may contain a co-critical graph as a proper subgraph. If
a minimal co-critical graph does not properly contain any co-critical graph, the
graph is called strongly minimal. It is not known [4] whether there exists an
infinite sequence of strongly minimal co-critical graphs while there does exist for
minimal co-critical graphs [6]. In constructing co-critical graphs (not necessarily
minimal), the maximum degree as small as possible has been focused. Szabd
[14] proposed a construction in which the maximum degree is O(n3/ 4), slightly
improving O(n%/*logn) [6], while the lower bound is Q(n'/?).

2. PRELIMINARIES

In this paper, we mostly follow the standard notation and concepts of graph
theory. For example, P,,C),, and K, are a path graph, a cycle graph, and a
complete graph on n vertices, respectively. For a graph G = (V,FE), a path
v1,...,0, € V (respectively, a cycle uy,...,up,u; € V) in G is denoted by P, =
v1vy - - - vy (respectively, Cp = ujug---uy). Thus, an edge e € E is denoted by
e = wv for the end vertices u and v. We call K3 a triangle. We denote by K,
the graph obtaining from K4 by deleting an edge of K4. For a graph G = (V| E),
the set of vertices of G is denoted by V(G), and the set of edges of G by E(G).
(That is, V = V(G) and E = E(G).) We say that a graph G = (V, E) contains
a graph G' = (V/,E") if V' C V and E' C E. Furthermore, for a subset £’ C E,
we (crudely) denote the graph G' = (V,E\ E') by G' =G\ E'.

In this paper, we focus on the simplest case of graph theoretic Ramsey theory,
that is, edge 2-colorings and monochromatic triangles. In what follows, we use
red and blue as two colors.

Definition 1. For natural numbers p, q, a graph G = (V, E) is (p, q)-Ramsey if
for every edge 2-coloring, there exists a K, colored with red or a K, colored with
blue.
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Definition 2. For two graphs G1, Gy, we denote by G; ® G2 the graph obtained

by completely joining a copy of G1 to a copy of Ga, i.e., adding edges between
V(G1) and V(G2).

Lemma 2 [12, 14]. For any graph G, if G is non-bipartite, K3 @ G is (3,3)-
Ramsey.

Lemma 3. For any graph G, if G is bipartite, K3 ® G is non-(3, 3)-Ramsey.

Proof. Let G = (X,Y, E) be a bipartite graph, where [X, Y] is the bipartition
of G. Let V(K3) = {vg, vy, v;}. We color E(K3® G) in the following way. First,
color (vg, ), (vy,v;) with red and (vs,v,) with blue. Then color every edge of
G with red. Finally,

1. color (vg,v) with blue for every v € X and (vg,v) with red for every v € Y,
2. color (vy,v) with red for every v € X and (v,,v) with blue for every v € Y,
3. color (v,,v) with blue for every v € X UY.

Then it is easy to check there is no monochromatic triangle in K3 ® GG under this
coloring. Therefore, K3 ® G is non-(3, 3)-Ramsey. [

Corollary 1. Any graph G is non-bipartite if and only if Ks®G is (3, 3)-Ramsey.

Fact 1. Any edge 2-coloring of K5 with no monochromatic triangle must consist
of two monochromatic Hamilton cycles. This implies that for each vertex v of
K5, exactly two edges incident to v are colored with red, and the others with blue.

3. PROOF OF THEOREM 1

The graphs generated by our construction are G(r) = K, ®' Co,4; for all r > 2,
where the operation ®' is the one as defined in Introduction. (See Figure 2, where
indices ¢ and j of vertices v; and u; are displayed.) That is, v1 is connected to
vertices u; for j € {1,...,2r — 1,2r}, and vy is connected to vertices wu; for
j € {1,2r,2r + 1}. The vertices vy and v3 are connected to all the vertices of
C2r41. The subscripts of vertices of K, and Cy,1 are taken modulo 4 and 2r+1,
respectively. We show that the graph G(r) is (3,3)-Ramsey and minimal in this
order.

3.1. (3,3)-Ramsey

In this subsection, we show that there is at least one monochromatic triangle for
any edge 2-coloring of G(r). Fix the color of vavs, say (without loss of generality)
red. Suppose that G(r) is already edge 2-colored by red and blue. Assume to the
contrary that G(r) has no monochromatic triangle under the coloring. In what
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C2r+1

Figure 2. The graph K; ® Ca,41 for all r > 2.

follows, we simply say that an edge is red (or blue) if the edge is colored with red
(or blue).

Let X = {v1v2, v1v3, V204, v3v4 }, that is, E(K )\ {vavs}. By symmetry of vy
and vs, it suffices to consider the following edge 2-colorings of K so that G(r)
has no monochromatic triangle.

1. All edges in X are blue.

2. v1v9 is red and any other in X is blue.

3. v3vy is red and any other in X is blue.

4. vivg,vov4 are red and any other in X is blue.
5

. V1v2,v3v4 are red and any other in X is blue.

Before deriving a contradiction for each case, we present several observations
of the edge 2-coloring of G(r), which are necessary conditions for G(r) to have
no monochromatic triangle.

Observation 1. For any i € {1,2,...,2r + 1}, if vou; (respectively, vsu;) is
red, then vsu; (respectively, vou;) must be blue. (Otherwise, vovsu; would be
monochromatic.)

Observation 2. If u;u;t is red (respectively, blue) for somei € {1,2,...,2r+1},
then at least one of vju; and vjuir1 (if any) is blue (respectively, red) for each
Jj € {2,3}. (Otherwise, vju;uit1 would be monochromatic.)
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Observation 3. If viva, vivs are blue, then viu; is red for any j € {1,2,...,2r}.
(This is because of Fact 1 on Ks over vi,vs,v3,uj, uj41 except for j = 2r.) Sim-
ilarly, if vava, v3va are blue, then vau; is red for any j € {1,2r,2r + 1}.

Observation 4. If the colors of vive and vivs are different, then the colors of
viuj and viujir are different for any j € {1,2,...,2r — 1}. (This is because of
Fact 1 on K5 over vy, va, v3, uj, wjt1.) Similarly, if the colors of vovs and vzvs are
different, then the colors of vau; and vaujyq are different for any j € {2r,2r+1}.

Case (1). For any i € {1,2,...,2r + 1}, viu; and vqu; (if any) are red, that
comes from Observation 3, and hence all edges of C, 1 are blue so that vju;u; 1
for i € {1,...,2r — 1}, vqug,rug,+1, and vqugy41uy are all not monochromatic.
Then, by Observation 2, at least r 4+ 1 edges between v; and C,11 are colored
with red for each j € {2,3}. This implies that there is a monochromatic triangle
vousu; for some i € {1,2,...,2r 4+ 1}, a contradiction.

Case (2). Firstly, we note vou; must be blue for all + € {1,2,...,2r}, which
comes from Fact 1 on K5 over vy, va, v3, u;, u;y1 for each i € {1,...,2r—1}. Then
uiuiq1 is red for any ¢ € {1,2,...,2r — 1}. On the other hand, by Observation
3, vqu; is red for all i € {1,2r,2r 4+ 1}, and hence ug,ug,41 and wugriiu; are
blue. Here, there are two possibilities by Observation 4; (a) for any odd i €
{1,3,...,2r — 1}, viu; and vju;y; are red and blue, respectively, or (b) vice-
versa. In case of (a), vgu; is red if ¢ is even so that vjvzu; is not monochromatic
for even ¢ € {1,...,2r}. On the other hand, vsu; is blue if i is odd so that
v3u;Uu; 41 1S not monochromatic for odd i € {1,...,2r}. However, since ug,41u1,
vou1, vaup are all blue, voug,41 and vsuo,41 must be both red so that voujguo, i1
and vsujugy41 are not chromatic. In this case, vovzug,4+1 is monochromatic, a
contradiction. In case of (b), the proof is almost same as that for the case (a).
The difference is the reason that vzusg,y1 is red. Since vsu; must be blue if 7 is even
fori e {1,...,2r}, vgug,+1 must be red so that v3ug,ugy4+1 is not monochromatic.
Therefore, we have the same contradiction as the case (a).

Case (3). Similar to Case (1), for any i € {1,2,...,2r}, viu; is red, and
hence wju;yq for any j € {1,2,...,2r — 1} is blue. On the other hand, we note
vsu; must be blue for each i € {1,2r,2r + 1}, which comes from Fact 1 on K35
over vy, v3, U4, Ui, Ui+l for each i € {2r,2r 4+ 1}. In particular, vzu; and wvsug,
are fixed to blue. Since uju;i; for all j € {1,2,...,2r — 1} is blue, by applying
Observation 2 and Observation 1 (in this order alternately), the colors of vzu;
and vsu; 1 are alternate (vou; and veu, 41 also), and hence the colors of vgu; and
v3ug, must be different, a contradiction.

Case (4). Similar to Case (2), vou; must be blue for all ¢ € {1,2,...,2r + 1},
and hence all edges of Co,.;1 are red. (The inclusion of ug,41 is differ from Case
(2).) Moreover, (by Observation 4) there are two possibilities; (a) for any odd
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i€{l,...,2r}, viu; and viu;4; are red and blue, respectively, or (b) vice-versa.
In case of (a), vsu; is red (respectively, blue) if i is even (respectively, odd) for
any i € {1,2,...,2r + 1}. In particular, vsug,+1 is blue. Then, since vsu; is

blue, v4uq must be red, which implies vquy, v4ug, are red and vqug,41 is blue (by
Observation 4), which implies vsvqug,4+1 is monochromatic, a contradiction. In
case of (b), the proof is almost same as that for the case (a). Note that vsug,4+1
must be blue so that vzujug,41 is not chromatic. The difference is the reason
that vqug, is red. Since vzu; must be blue if i is even for i € {1,...,2r}, viug,
must be red so that vgviue, is not monochromatic. Therefore, we have the same
contradiction as the case (a).

Case (5). Similar to Case (2), vou; must be blue for all ¢ € {1,2,...,2r},
and vzu; must be blue for each i € {1,2r,2r 4+ 1}, and hence w;u;+1 is red for
any ¢ € {1,2,...,2r + 1}. Then viu; and vjug, must be red so that vivsu; and
v1V3U9, are not monochromatic. Then viu; and viu;y1 are red and blue for any
odd i € {1,...,2r — 1}, respectively, but however, this contradicts that vjug, is
red.

Therefore, since we have a contradiction for each case, that is, there is at
least one monochromatic triangle, we conclude that G(r) is (3, 3)-Ramsey.

3.2. Minimality

In this subsection, we show that for any edge e € E(G(r)), G(r)\ {e} is not (3, 3)-
Ramsey, that is, there is an edge 2-coloring of G(r) \ {e} without monochromatic
triangles. An edge 2-coloring of a graph is good if the coloring does not contain
a monochromatic triangle. The following theorem is useful for our proof. For
a graph G, a function ¢ : V(G) — {1,2,...,k} is a vertex k-coloring of G if
c(u) # ¢(v) for any uv € E(G).

Theorem 4 [9]. If a graph has a vertex 5-coloring, then it has a good edge 2-
coloring.

In what follows, e denotes the edge deleted from G(r). For subgraphs of G(r)
(or subsets of V(G(r))), Hi and Ha, we denote by E(Hp, Hs) the set of edges
between vertices of Hy and Hy. We divide the proof into the following two cases.

Case (i). e ¢ {viu1, viug, }. In this case, we show that G(r)\ {e} has a vertex
5-coloring ¢ of G(r) \ {e} depending on which edge is e, as follows.

(i-1) e = vovs. Since K, \ {e} and Cy,41 have a vertex 2-coloring and a vertex
3-coloring, respectively, G(r) \ {e} clearly has a vertex 5-coloring.

(i-2) e = viv3. We assign colors to vertices as follows; c(v2) = 1, c(vq) =
c(ugr—1) = 2, c(vy) = c(vs) = 3, c(ug,) = c(u;) = 4 and c(uzr41) = c(uip1) =5
for any odd i € {1,2,...,2r — 3} except for ug,_;.
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(i-3) e = vavs. We assign colors to vertices as follows; c(v1) = c(ug,41) = 1,
c(vg) = c(vg) = 2, c(vy) = 3, c(u;) = 4 and c(uj+1) = 5 for any odd i €
(1,2,...,2r — 1},

(i-4) e € E(Car41). We may assume e = ujug since any other case can be proved
similarly. Then we assign colors to vertices as follows; c(v1) = c(v4) = 1, ¢(v2) =
2, c(v3) = 3, c(u1) = ¢(u;) = 4 and c(u;41) =5 for any even i € {2,4,...,2r}.

(i-5) e € E({va,v3},Co41). We may assume e = vguj since any other case
can be proved similarly. Then we assign colors to vertices as follows; c(vy) =
c(va) =1, c(v2) = c(ur) = 2, ¢(vs) = 3, ¢(u;) = 4 and c(u;4+1) = 5 for any even
ie{2,4,...,2r}

(i-6) e € E({v1,vsa}, Cort1) \ {viur,viug,}. We first assume e = vju; for i €
{2,3,...,2r — 1}. Then c(v1) = ¢(vs) = c(u;) = 1, c(v2) = 2, c(vz) = 3 and
we assign colors 4 and 5 to vertices in V(Co,41) \ {u;} alternately as previous
cases. Next we assume e = wvqu; for i € {1,2r,2r + 1}. If i = 2r + 1, then
G(r) \ {e} has a vertex 5-coloring similarly to the previous case. If i # 2r + 1,
then c(v1) = c(ugr41) = 1, c¢(v2) = 2, c(vs) = 3, c¢(va) = ¢(u;) = 4, and we
assign colors 4 and 5 to vertices in V(Cor41) \ {wi, u2r41} alternately so that the
neighbor of w; (not ug,+1) has color 5.

As above, since G(r) \ {e} has a vertex 5-coloring for each case, G(r) \ {e}
has a good edge 2-coloring by Theorem 4.

Case (ii). e € {viui,viug,}. In this case, since G(r) \ {e} does not have a
vertex 5-coloring, we directly construct a good edge 2-coloring. We color several
edges as follows; all edges in {viva, vavs, Vav4, V3UL 41, VaUL, VaUs } U E(Copiq)
are red and ones in {vyv3, v3v4, V3U1, V3U, VaUort1 } UE({va}, Coppq) are all blue.
Then we complete a good edge 2-coloring depending on which of viuq and viusg,
is e, as follows.

o If ¢ = vyuj, then vyu; is red (respectively, blue) if ¢ is even (respectively,
odd) for any ¢ € {2,...,2r} and wvsu; is blue (respectively, red) if i is even

(respectively, odd) for any i € {2,...,2r — 1}.

o If ¢ = vjug,, then viu; is red (respectively, blue) if ¢ is odd (respectively,
even) for any i € {1,2,...,2r — 1} and wv3u; is red (respectively, blue) if i is
even (respectively, odd) for any i € {2,...,2r — 1}.

Therefore, since G(r) \ {e} has a good edge 2-coloring for each case, we
conclude that G(r) is minimal.
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