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Abstract

We present an infinite sequence of “minimal” graphs over every odd (at
least nine) vertices, each of which contains monochromatic triangles for any
edge 2-coloring. This result complements generalized Graham graphs, which
constitutes an infinite sequence of minimal such graphs over every even (at
least eight) vertices. These two results give an infinite sequence of minimal
such graphs over every natural number (at least eight) of vertices.
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1. Introduction

Ramsey theory, initiated by Ramsey [13], is one of the most important areas
of combinatorics. Ramsey theory studies how many elements of some structure
there need to be to guarantee that a particular property on the structure holds.
(See [8] as a classical textbook.) The simplest problem in graph theoretic Ramsey
theory is to ask for the minimum number of vertices of complete graphs, say, Kn

over n vertices, such that there is (at least) one monochromatic triangle (i.e., K3)
for any edge 2-coloring. The answer to this question is six, that is, K6. Thus,
any graph containing K6 satisfies such a property. Here, we say that a graph
G = (V,E) is (p, q)-Ramsey if for every 2-coloring to E, there exists a Kp of the
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first color or a Kq of the second color. We focus on the case of p = q = 3, i.e.,
(3, 3)-Ramsey graphs.

From this fact, it is natural to ask for a structure of graphs with such a
property that does not contain K6, which was posed by Erdős and Hajnal [5]. In
what follows, we consider graphs that do not contain K6, called K6-free graphs.
Answering the question, Graham [7] presented a K6-free (3, 3)-Ramsey graph,
called here the Graham graph, which is on eight vertices. In fact, it is unique of
all K6-free (3, 3)-Ramsey graphs on at most eight vertices.

More generally, a graph is minimal (with respect to the (3, 3)-Ramsey) if
the graph does not properly contain any (3, 3)-Ramsey graph. Thus, K6 as well
as the Graham graph are both minimal. Following the Graham graph, Nenov
[10] presented a minimal graph on nine vertices (as a graph next to the Graham
graph), called here the Nenov graph, and it is unique of all minimal graphs on
nine vertices. All minimal graphs on at most thirteen vertices are listed in [1].

Along the research of this stream, it furthermore is natural to ask if for
each natural number n ≥ 8, there exists a minimal (3, 3)-Ramsey graph over n
vertices. Indeed, a partial answer to this question has been given by Burr, Erdös,
and Lovász [2]. For each pair of positive integers p, q ≥ 3, there exist infinitely
many minimal (p, q)-Ramsey graphs1. Moreover, Nenov and Khadzhiivanov [12]
proposed a simple construction which gives an infinite sequence of minimal (3, 3)-
Ramsey graphs over every even (at least six) vertices. (We also find it in [6, 14].
See the related results below.) The graphs are K3 ⊗ C2r+1 for all r ≥ 1, where
Cn is the cycle graph over n vertices, and the operation ⊗ of G1 ⊗ G2 for two
graphs G1, G2 is some kind of graph products of adding edges to all the pairs
of vertices between G1 and G2. In fact, the graphs of r = 1, 2 are identical
to K6 and the Graham graph, respectively. For each odd number n (at least
nine), Nenov [11] showed the existance of a minimal (3, 3)-Ramsey graph with
n vertices. However, his proof is not constructive. In this paper, we present a
(rather) simple construction which is a new constructive proof of the above result,
as follows, where the graph G(r) is defined in the next subsection.

Theorem 1. For every positive integer r ≥ 2, the graph G(r) is a minimal

(3, 3)-Ramsey graph with 2r + 5 vertices.

Our idea

Before presenting our idea, we note that the graph K3 ⊗ G cannot be minimal
(3, 3)-Ramsey for any graph G over even vertices. This comes from the fact that
G is non-bipartite if and only if K3 ⊗ G is (3, 3)-Ramsey. The direction of the
only if part above is the lemma itself in [14]. For the sake of complementing the
lemma as well as showing the impossibility, we prove the direction of the if part

1An asymptotic result is given in [3].
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in the next section. Suppose that K3 ⊗ G (over odd vertices) for some graph G
(over even vertices) is (3, 3)-Ramsey. Then G must be non-bipartite from the if
part of the fact, and hence G contains an odd cycle. Thus, the graph K3 ⊗ G
contains K3 ⊗ C2r+1 for some r ≥ 1, and hence it is not minimal. Therefore, we
cannot attain our goal simply by extending the construction by [6, 12, 14].

Our construction is inspired by a structure of the Nenov graph. Let K−

4
be

the graph obtaining from K4 by deleting an edge of K4. Then the Nenov graph
is the graph K−

4
⊗′ C5, where the operation ⊗′ is some kind of graph products

as follows. Let {v1, . . . , v4} (respectively, {u1, . . . , u5}) be the vertices of K−

4

(respectively, C5). See Figure 1, where indices i and j of vertices vi and uj are
displayed. Then, about edges between K−

4
and C5,

• for i = 2, 3, we add an edge between vi and uj for all j = {1, . . . , 5},

• for i = 1, 4, we add an edge between v1 (respectively, v4) and u1, . . . , u4
(respectively, u1, u4, u5.).
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Figure 1. Nenov graph.

See the following figure, where edges in the first item above (i.e., on v2 and v3)
are omitted. Once we figure out this structure of the Nenov graph, it is not
hard to attain our goal by extending this graph, replacing C5 with C2r+1 for
r ≥ 2. Note here that K−

4
is the graph obtained from two triangles by identifying

two vertices and the edge between them. The graphs K3 ⊗ C2r+1 make use
of the triangle, and our construction also makes use of two triangles, but it is
not so simple as the graphs K3 ⊗ C2r+1 to show that those are minimal (3, 3)-
Ramsey. Indeed, the edges between K−

4
and C2r+1 are (somewhat) asymmetric,

and used in an elaborate way. The graphs G(r) generated by our construction
are K−

4
⊗′ C2r+1 for all r ≥ 2, where the operation ⊗′ is a generalization of the

case of r = 2, i.e., the Nenov graph, in particular, v1 is connected to vertices uj
for j ∈ {1, . . . , 2r−1, 2r}, and v4 is connected to vertices uj for j ∈ {1, 2r, 2r+1}.
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The vertices v2 and v3 are connected to all the vertices of C2r+1. (See Figure 2
in the main section.)

Related results

As is mentioned above, following the Graham graph, Nenov [10] presented a min-
imal graph on nine vertices. They focused on the “minimality” with respect to
(3, 3)-Ramsey, that is, a deletion of any edge gives a non-(3, 3)-Ramsey graph.
This implies the definition of minimal with respect to (3, 3)-Ramsey, as is men-
tioned above. On the other hand, [6, 14] studied on the “maximality” with
respect to (3, 3)-Ramsey, which is called co-critical there. That is, an addition
of any edge gives a (3, 3)-Ramsey graph. In this vein of the notion, a co-critical
graph is minimal if a deletion of any vertex is not co-critical. Note that the
minimality for co-critical is different from that for (3, 3)-Ramsey. Thus, a min-
imal co-critical graph may contain a co-critical graph as a proper subgraph. If
a minimal co-critical graph does not properly contain any co-critical graph, the
graph is called strongly minimal. It is not known [4] whether there exists an
infinite sequence of strongly minimal co-critical graphs while there does exist for
minimal co-critical graphs [6]. In constructing co-critical graphs (not necessarily
minimal), the maximum degree as small as possible has been focused. Szabó
[14] proposed a construction in which the maximum degree is O(n3/4), slightly
improving O(n3/4 logn) [6], while the lower bound is Ω(n1/2).

2. Preliminaries

In this paper, we mostly follow the standard notation and concepts of graph
theory. For example, Pn, Cn, and Kn are a path graph, a cycle graph, and a
complete graph on n vertices, respectively. For a graph G = (V,E), a path
v1, . . . , vk ∈ V (respectively, a cycle u1, . . . , uℓ, u1 ∈ V ) in G is denoted by Pk =
v1v2 · · · vk (respectively, Cℓ = u1u2 · · ·uℓ). Thus, an edge e ∈ E is denoted by
e = uv for the end vertices u and v. We call K3 a triangle. We denote by K−

4

the graph obtaining from K4 by deleting an edge of K4. For a graph G = (V,E),
the set of vertices of G is denoted by V (G), and the set of edges of G by E(G).
(That is, V = V (G) and E = E(G).) We say that a graph G = (V,E) contains
a graph G′ = (V ′, E′) if V ′ ⊆ V and E′ ⊆ E. Furthermore, for a subset E′ ⊆ E,
we (crudely) denote the graph G′ = (V,E \ E′) by G′ = G \ E′.

In this paper, we focus on the simplest case of graph theoretic Ramsey theory,
that is, edge 2-colorings and monochromatic triangles. In what follows, we use
red and blue as two colors.

Definition 1. For natural numbers p, q, a graph G = (V,E) is (p, q)-Ramsey if
for every edge 2-coloring, there exists a Kp colored with red or a Kq colored with
blue.
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Definition 2. For two graphs G1, G2, we denote by G1⊗G2 the graph obtained
by completely joining a copy of G1 to a copy of G2, i.e., adding edges between
V (G1) and V (G2).

Lemma 2 [12, 14]. For any graph G, if G is non-bipartite, K3 ⊗ G is (3, 3)-
Ramsey.

Lemma 3. For any graph G, if G is bipartite, K3 ⊗G is non-(3, 3)-Ramsey.

Proof. Let G = (X,Y,E) be a bipartite graph, where [X,Y ] is the bipartition
of G. Let V (K3) = {vx, vy, vz}. We color E(K3 ⊗G) in the following way. First,
color (vx, vz), (vy, vz) with red and (vx, vy) with blue. Then color every edge of
G with red. Finally,

1. color (vx, v) with blue for every v ∈ X and (vx, v) with red for every v ∈ Y ,

2. color (vy, v) with red for every v ∈ X and (vy, v) with blue for every v ∈ Y ,

3. color (vz, v) with blue for every v ∈ X ∪ Y .

Then it is easy to check there is no monochromatic triangle in K3⊗G under this
coloring. Therefore, K3 ⊗G is non-(3, 3)-Ramsey.

Corollary 1. Any graph G is non-bipartite if and only if K3⊗G is (3, 3)-Ramsey.

Fact 1. Any edge 2-coloring of K5 with no monochromatic triangle must consist

of two monochromatic Hamilton cycles. This implies that for each vertex v of

K5, exactly two edges incident to v are colored with red, and the others with blue.

3. Proof of Theorem 1

The graphs generated by our construction are G(r) = K−

4
⊗′ C2r+1 for all r ≥ 2,

where the operation ⊗′ is the one as defined in Introduction. (See Figure 2, where
indices i and j of vertices vi and uj are displayed.) That is, v1 is connected to
vertices uj for j ∈ {1, . . . , 2r − 1, 2r}, and v4 is connected to vertices uj for
j ∈ {1, 2r, 2r + 1}. The vertices v2 and v3 are connected to all the vertices of
C2r+1. The subscripts of vertices of K

−

4
and C2r+1 are taken modulo 4 and 2r+1,

respectively. We show that the graph G(r) is (3, 3)-Ramsey and minimal in this
order.

3.1. (3, 3)-Ramsey

In this subsection, we show that there is at least one monochromatic triangle for
any edge 2-coloring of G(r). Fix the color of v2v3, say (without loss of generality)
red. Suppose that G(r) is already edge 2-colored by red and blue. Assume to the
contrary that G(r) has no monochromatic triangle under the coloring. In what
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Figure 2. The graph K−

4 ⊗′ C2r+1 for all r ≥ 2.

follows, we simply say that an edge is red (or blue) if the edge is colored with red
(or blue).

Let X = {v1v2, v1v3, v2v4, v3v4}, that is, E(K−

4
)\{v2v3}. By symmetry of v2

and v3, it suffices to consider the following edge 2-colorings of K−

4
so that G(r)

has no monochromatic triangle.

1. All edges in X are blue.

2. v1v2 is red and any other in X is blue.

3. v3v4 is red and any other in X is blue.

4. v1v2, v2v4 are red and any other in X is blue.

5. v1v2, v3v4 are red and any other in X is blue.

Before deriving a contradiction for each case, we present several observations
of the edge 2-coloring of G(r), which are necessary conditions for G(r) to have
no monochromatic triangle.

Observation 1. For any i ∈ {1, 2, . . . , 2r + 1}, if v2ui (respectively, v3ui) is

red, then v3ui (respectively, v2ui) must be blue. (Otherwise, v2v3ui would be

monochromatic.)

Observation 2. If uiui+1 is red (respectively, blue) for some i ∈ {1, 2, . . . , 2r+1},
then at least one of vjui and vjui+1 (if any) is blue (respectively, red) for each

j ∈ {2, 3}. (Otherwise, vjuiui+1 would be monochromatic.)
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Observation 3. If v1v2, v1v3 are blue, then v1uj is red for any j ∈ {1, 2, . . . , 2r}.
(This is because of Fact 1 on K5 over v1, v2, v3, uj , uj+1 except for j = 2r.) Sim-

ilarly, if v2v4, v3v4 are blue, then v4uj is red for any j ∈ {1, 2r, 2r + 1}.

Observation 4. If the colors of v1v2 and v1v3 are different, then the colors of

v1uj and v1uj+1 are different for any j ∈ {1, 2, . . . , 2r − 1}. (This is because of

Fact 1 on K5 over v1, v2, v3, uj , uj+1.) Similarly, if the colors of v2v4 and v3v4 are

different, then the colors of v4uj and v4uj+1 are different for any j ∈ {2r, 2r+1}.

Case (1). For any i ∈ {1, 2, . . . , 2r + 1}, v1ui and v4ui (if any) are red, that
comes from Observation 3, and hence all edges of C2r+1 are blue so that v1uiui+1

for i ∈ {1, . . . , 2r − 1}, v4u2ru2r+1, and v4u2r+1u1 are all not monochromatic.
Then, by Observation 2, at least r + 1 edges between vj and C2r+1 are colored
with red for each j ∈ {2, 3}. This implies that there is a monochromatic triangle
v2v3ui for some i ∈ {1, 2, . . . , 2r + 1}, a contradiction.

Case (2). Firstly, we note v2ui must be blue for all i ∈ {1, 2, . . . , 2r}, which
comes from Fact 1 on K5 over v1, v2, v3, ui, ui+1 for each i ∈ {1, . . . , 2r−1}. Then
uiui+1 is red for any i ∈ {1, 2, . . . , 2r − 1}. On the other hand, by Observation
3, v4ui is red for all i ∈ {1, 2r, 2r + 1}, and hence u2ru2r+1 and u2r+1u1 are
blue. Here, there are two possibilities by Observation 4; (a) for any odd i ∈
{1, 3, . . . , 2r − 1}, v1ui and v1ui+1 are red and blue, respectively, or (b) vice-
versa. In case of (a), v3ui is red if i is even so that v1v3ui is not monochromatic
for even i ∈ {1, . . . , 2r}. On the other hand, v3ui is blue if i is odd so that
v3uiui+1 is not monochromatic for odd i ∈ {1, . . . , 2r}. However, since u2r+1u1,
v2u1, v3u1 are all blue, v2u2r+1 and v3u2r+1 must be both red so that v2u1u2r+1

and v3u1u2r+1 are not chromatic. In this case, v2v3u2r+1 is monochromatic, a
contradiction. In case of (b), the proof is almost same as that for the case (a).
The difference is the reason that v3u2r+1 is red. Since v3ui must be blue if i is even
for i ∈ {1, . . . , 2r}, v3u2r+1 must be red so that v3u2ru2r+1 is not monochromatic.
Therefore, we have the same contradiction as the case (a).

Case (3). Similar to Case (1), for any i ∈ {1, 2, . . . , 2r}, v1ui is red, and
hence ujuj+1 for any j ∈ {1, 2, . . . , 2r − 1} is blue. On the other hand, we note
v3ui must be blue for each i ∈ {1, 2r, 2r + 1}, which comes from Fact 1 on K5

over v2, v3, v4, ui, ui+1 for each i ∈ {2r, 2r + 1}. In particular, v3u1 and v3u2r
are fixed to blue. Since ujuj+1 for all j ∈ {1, 2, . . . , 2r − 1} is blue, by applying
Observation 2 and Observation 1 (in this order alternately), the colors of v3ui
and v3ui+1 are alternate (v2ui and v2ui+1 also), and hence the colors of v3u1 and
v3u2r must be different, a contradiction.

Case (4). Similar to Case (2), v2ui must be blue for all i ∈ {1, 2, . . . , 2r+1},
and hence all edges of C2r+1 are red. (The inclusion of u2r+1 is differ from Case
(2).) Moreover, (by Observation 4) there are two possibilities; (a) for any odd



8 N. Matsumoto and M. Yamamoto

i ∈ {1, . . . , 2r}, v1ui and v1ui+1 are red and blue, respectively, or (b) vice-versa.
In case of (a), v3ui is red (respectively, blue) if i is even (respectively, odd) for
any i ∈ {1, 2, . . . , 2r + 1}. In particular, v3u2r+1 is blue. Then, since v3u1 is
blue, v4u1 must be red, which implies v4u1, v4u2r are red and v4u2r+1 is blue (by
Observation 4), which implies v3v4u2r+1 is monochromatic, a contradiction. In
case of (b), the proof is almost same as that for the case (a). Note that v3u2r+1

must be blue so that v3u1u2r+1 is not chromatic. The difference is the reason
that v4u2r is red. Since v3ui must be blue if i is even for i ∈ {1, . . . , 2r}, v4u2r
must be red so that v3v4u2r is not monochromatic. Therefore, we have the same
contradiction as the case (a).

Case (5). Similar to Case (2), v2ui must be blue for all i ∈ {1, 2, . . . , 2r},
and v3ui must be blue for each i ∈ {1, 2r, 2r + 1}, and hence uiui+1 is red for
any i ∈ {1, 2, . . . , 2r + 1}. Then v1u1 and v1u2r must be red so that v1v3u1 and
v1v3u2r are not monochromatic. Then v1ui and v1ui+1 are red and blue for any
odd i ∈ {1, . . . , 2r − 1}, respectively, but however, this contradicts that v1u2r is
red.

Therefore, since we have a contradiction for each case, that is, there is at
least one monochromatic triangle, we conclude that G(r) is (3, 3)-Ramsey.

3.2. Minimality

In this subsection, we show that for any edge e ∈ E(G(r)), G(r)\{e} is not (3, 3)-
Ramsey, that is, there is an edge 2-coloring of G(r)\{e} without monochromatic
triangles. An edge 2-coloring of a graph is good if the coloring does not contain
a monochromatic triangle. The following theorem is useful for our proof. For
a graph G, a function c : V (G) → {1, 2, . . . , k} is a vertex k-coloring of G if
c(u) 6= c(v) for any uv ∈ E(G).

Theorem 4 [9]. If a graph has a vertex 5-coloring, then it has a good edge 2-
coloring.

In what follows, e denotes the edge deleted from G(r). For subgraphs of G(r)
(or subsets of V (G(r))), H1 and H2, we denote by E(H1, H2) the set of edges
between vertices of H1 and H2. We divide the proof into the following two cases.

Case (i). e /∈ {v1u1, v1u2r}. In this case, we show that G(r)\{e} has a vertex
5-coloring c of G(r) \ {e} depending on which edge is e, as follows.

(i-1) e = v2v3. Since K−

4
\ {e} and C2r+1 have a vertex 2-coloring and a vertex

3-coloring, respectively, G(r) \ {e} clearly has a vertex 5-coloring.

(i-2) e = v1v3. We assign colors to vertices as follows; c(v2) = 1, c(v4) =
c(u2r−1) = 2, c(v1) = c(v3) = 3, c(u2r) = c(ui) = 4 and c(u2r+1) = c(ui+1) = 5
for any odd i ∈ {1, 2, . . . , 2r − 3} except for u2r−1.
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(i-3) e = v2v4. We assign colors to vertices as follows; c(v1) = c(u2r+1) = 1,
c(v2) = c(v4) = 2, c(v3) = 3, c(ui) = 4 and c(ui+1) = 5 for any odd i ∈
{1, 2, . . . , 2r − 1}.

(i-4) e ∈ E(C2r+1). We may assume e = u1u2 since any other case can be proved
similarly. Then we assign colors to vertices as follows; c(v1) = c(v4) = 1, c(v2) =
2, c(v3) = 3, c(u1) = c(ui) = 4 and c(ui+1) = 5 for any even i ∈ {2, 4, . . . , 2r}.

(i-5) e ∈ E({v2, v3}, C2r+1). We may assume e = v2u1 since any other case
can be proved similarly. Then we assign colors to vertices as follows; c(v1) =
c(v4) = 1, c(v2) = c(u1) = 2, c(v3) = 3, c(ui) = 4 and c(ui+1) = 5 for any even
i ∈ {2, 4, . . . , 2r}.

(i-6) e ∈ E({v1, v4}, C2r+1) \ {v1u1, v1u2r}. We first assume e = v1ui for i ∈
{2, 3, . . . , 2r − 1}. Then c(v1) = c(v4) = c(ui) = 1, c(v2) = 2, c(v3) = 3 and
we assign colors 4 and 5 to vertices in V (C2r+1) \ {ui} alternately as previous
cases. Next we assume e = v4ui for i ∈ {1, 2r, 2r + 1}. If i = 2r + 1, then
G(r) \ {e} has a vertex 5-coloring similarly to the previous case. If i 6= 2r + 1,
then c(v1) = c(u2r+1) = 1, c(v2) = 2, c(v3) = 3, c(v4) = c(ui) = 4, and we
assign colors 4 and 5 to vertices in V (C2r+1) \ {ui, u2r+1} alternately so that the
neighbor of ui (not u2r+1) has color 5.

As above, since G(r) \ {e} has a vertex 5-coloring for each case, G(r) \ {e}
has a good edge 2-coloring by Theorem 4.

Case (ii). e ∈ {v1u1, v1u2r}. In this case, since G(r) \ {e} does not have a
vertex 5-coloring, we directly construct a good edge 2-coloring. We color several
edges as follows; all edges in {v1v2, v2v3, v2v4, v3u2r+1, v4u1, v4u2r} ∪ E(C2r+1)
are red and ones in {v1v3, v3v4, v3u1, v3u2r, v4u2r+1}∪E({v2}, C2r+1) are all blue.
Then we complete a good edge 2-coloring depending on which of v1u1 and v1u2r
is e, as follows.

• If e = v1u1, then v1ui is red (respectively, blue) if i is even (respectively,
odd) for any i ∈ {2, . . . , 2r} and v3ui is blue (respectively, red) if i is even
(respectively, odd) for any i ∈ {2, . . . , 2r − 1}.

• If e = v1u2r, then v1ui is red (respectively, blue) if i is odd (respectively,
even) for any i ∈ {1, 2, . . . , 2r − 1} and v3ui is red (respectively, blue) if i is
even (respectively, odd) for any i ∈ {2, . . . , 2r − 1}.

Therefore, since G(r) \ {e} has a good edge 2-coloring for each case, we
conclude that G(r) is minimal.
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