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Abstract

Graph isomorphism, subgraph isomorphism, and maximum common sub-
graphs are classical well-investigated objects. In the present paper, for a
given set of forests, we study maximum common induced subforests and
minimum common induced superforests. We show that finding a maximum
subforest is NP-hard for two given subdivided stars while finding a minimum
superforest is tractable for two trees but NP-hard for three trees. For a given
set of k trees, we present an efficient greedy

(
k
2 −

1
2 + 1

k

)
-approximation al-

gorithm for the minimum superforest problem. Finally, we present a poly-
nomial time approximation scheme for the maximum subforest problem for
any given set of forests.
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1. Introduction

We consider finite, simple, and undirected graphs and all considered subgraphs
are induced. As usual, a forest is a graph without cycles and a tree is a connected
forest. In particular, we consider trees that are unrooted and unlabeled. For a
graph G and a vertex u of G, let n(G) denote the order of G and let dG(u) denote
the degree of u in G. If two graphs G and H are isomorphic, we write G ≃ H.
Let N be the set of positive integers, and let N0 = N∪{0}. For a positive integer
k, let [k] denote the set of positive integers at most k, and let [k]0 = [k] ∪ {0}.

Let G be a set of graphs. A subgraph of G is a graph H such that, for every
graph G in G, the graph G has an induced subgraph that is isomorphic to H.
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A supergraph of G is a graph H such that, for every graph G in G, the graph
H has an induced subgraph that is isomorphic to G. A subgraph that is a forest
or tree is called a subforest or subtree, respectively. A supergraph that is a forest
or tree is called a superforest or supertree, respectively.

In this paper we consider the following natural optimization problems.

Maximum Subforest

Instance: A set F of forests.
Task: Determine a subforest F of F of maximum order.

Minimum Superforest

Instance: A set F of forests.
Task: Determine a superforest F of F of minimum order.

Both problems are NP-hard even when restricted to instances F = {F1, F2},
where F1 and F2 are unions of paths. Let I be an instance of the strongly
NP-complete problem 3-partition, cf. problem [SP15] in the appendix of [10]
containing a list of NP-complete problems. Let I consist of 3m positive integers
a1, . . . , a3m with A/4 < ai < A/2 for each i ∈ [3m], where A = 1

m(a1+ · · ·+a3m).
The task for I is to decide whether there is a partition of [3m] into m sets
I1, . . . , Im each containing exactly three elements such that

∑
j∈Ii aj = A for

each i ∈ [m]. Let F1 be the forest with 3m components that are paths of order
a1, . . . , a3m and let F2 be the forest with m components that are paths of order
A+ 2. Note that n(F2) = n(F1) + 2m.

Obviously, the following statements are equivalent.

(i) I is a yes-instance of 3-partition.

(ii) F1 is isomorphic to an induced subtree of F2.

(iii) F1 is a maximum subforest of {F1, F2}.
(iv) F2 is a minimum superforest of {F1, F2}.

These equivalences imply the stated hardness ofMaximum Subforest andMin-
imum Superforest. They also show that these problems are closely related
to the very well-studied subtree/subgraph isomorphism problem [1, 7, 12, 15, 16].
Maximum common (induced and non-induced) subgraphs were first studied by
Bokhari [8] in the context of array processing and are applied in areas ranging
from molecular chemistry [17] to pattern matching [18]. The maximum common
connected induced subgraph problem was shown to be NP-hard for 3-outerplanar
labeled graphs of maximum degree and treewidth at most 4 [5, 6] and for two
biconnected series-parallel graphs [14]. It can be solved efficiently [19] for a
degree-bounded partial k-tree and a connected graph, whose number of spanning
trees is polynomial. For the maximum common induced subgraph problem the
parameterized complexity is studied in [2, 3].
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Modifying the above NP-hardness comments similarly as in [11] yields the
following. A subdivided star is a tree that arises from a star by repeatedly subdi-
viding edges.

Proposition 1. Maximum Subforest restricted to instances {T1, T2} consist-
ing of two subdivided stars is NP-hard.

Note that all proofs are postponed to Section 2.
If the set F contains only trees and F is a minimum superforest of F , then

each copy of a tree in F is completely contained in a single component of F . If F
would not be connected, then selecting one vertex from each component of F and
identifying all selected vertices to a single vertex would yield a strictly smaller
superforest of F . This argument implies the following.

Proposition 2. Every minimum superforest of a set of trees is a tree.

For two trees T1 and T2, minimum supertree T∪ of {T1, T2}, and a maximum
subtree T∩ of {T1, T2}, the following inclusion-exclusion formula concerning the
orders of these trees is straightforward.

n(T∪) = n(T1) + n(T2)− n(T∩).(1)

Furthermore, given subtrees of T1 and T2 isomorphic to T∩, a minimum super-
forest of {T1, T2} can easily be constructed by extending the copy of T∩ within
T1 by adding n(T2) − n(T∩) new vertices and suitable edges creating a copy of
T2. Refering to Edmonds and Matula, Akutsu [4] showed that, for two given
trees T1 and T2, some maximum subtree of {T1, T2} can be determined efficiently
combining a weighted bipartite matching algorithm with dynamic programming.

Together our observations imply the following.

Proposition 3. Minimum Superforest restricted to instances {T1, T2} con-
sisting of two trees can be solved in polynomial time.

In [4] Akutsu also showed that it is NP-hard to determine a maximum subtree
of three given trees. Reflecting this result, we show the following, which does not
follows from Akutsu’s result.

Theorem 4. Minimum Superforest restricted to instances {T1, T2, T3} con-
sisting of three trees is NP-hard.

For instances of bounded maximum degree, the problem can be solved effi-
ciently.

Theorem 5. For every ∆ ∈ N, there is some p ∈ N with the following property.
For a given set T = {T1, T2, T3} consisting of three trees of order at most n
and maximum degree at most ∆, one can determine in time O(np) a minimum
superforest T of T .
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By Proposition 3, some minimum supertree, say s(T, T ′), of two given trees
T and T ′ can be determined efficiently. Repeated applications of this lead to the
following natural simple greedy algorithm.

Input: A set {T1, . . . , Tk} of trees.
Output: A supertree T of {T1, . . . , Tk}.
begin

for i = 1 to k do
Si ← Ti;
for j = 2 to k do

Si ← s(Si, Ti+j−1), where indices are identified modulo k;
end

end
ℓ← argmin{n(Si) : i ∈ [k]};
return Sℓ;

end
Algorithm 1: Greedy Supertree.

Theorem 6. Greedy Supertree is a
(
k
2 −

1
2 + 1

k

)
-approximation algorithm with

polynomial running time for Minimum Superforest restricted to instances
{T1, . . . , Tk} consisting of k trees.

For k = 3, Theorem 6 provides the approximation factor 4/3. In Section 2
we show that our analysis of Greedy Supertree is essentially best possible and
that this factor cannot be improved. The appearance of the factor 4/3 in this
context is actually not surprising. A natural simple dynamic programming algo-
rithm that determines a minimum supertree of two given trees uses a maximum
bipartite matching algorithm as a subroutine. Extending this dynamic program-
ming approach from two to three trees would require to replace this subroutine
with a 3-dimensional matching algorithm. Now, 4/3 + ϵ is the best known ap-
proximation factor for 3-dimensional matching [9] with no improvement during
the past decade. More generally, the approximation factor in Theorem 6 reflects
that the best known [13] approximation factor for the k-set packing problem is
k/2 + ϵ. Altogether, a natural challenging problem in this context is to improve
the approximation factor of 4/3 for Minimum Superforest for sets {T1, T2, T3}
of three given trees.

In contrast to that Maximum Subforest allows a polynomial time approx-
imation.

Theorem 7. For every ϵ > 0, there is some p ∈ N with the following property.
For a given set F = {F1, . . . , Fk} consisting of k forests of order at most n, one
can determine in time O(knp) a subforest F of F with n(F ) ≥ (1 − ϵ)n(Fopt),
where Fopt is some maximum subforest of F .
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2. Proofs

For convenience, we restate the results from Section 1 whose proofs are given
here.

Proposition 1. Maximum Subforest restricted to instances {T1, T2} consist-
ing of two subdivided stars is NP-hard.

Proof. Let I be an instance of 3-partition that consists of 3m positive integers
a1, . . . , a3m with A/4 < ai < A/2 for each i ∈ [3m], where A = 1

m(a1+ · · ·+a3m).
Let F1 be the forest with 3m components that are paths of order a1, . . . , a3m and
let F2 be the forest with m components that are paths of order A + 2. Let T1

arise from F1 by adding one new vertex r1 as well as 3m new edges between r1
and one endvertex in each component of F1. Similarly, let T2 arise from F2 by
adding one new vertex r2 as well as m new edges between r2 and one endvertex
in each component of F2. Note that T1 and T2 are subdivided stars.

In order to complete the proof, we show that I is a yes-instance of 3-
partition if and only if a maximum subforest of {T1, T2} has order n(T1)− 1 =
n(F1) = a1 + · · ·+ a3m. Clearly, we may assume that m ≥ 8. Note that, since T2

contains no vertex of degree dT1(r1) = 3m, T1 is not a subtree of T2, and, hence,
a maximum subforest of {T1, T2} has order at most n(T1)− 1.

If I is a yes-instance of 3-partition, then removing from T1 only the vertex
r1 and removing from T2 the vertex r2 as well as two further vertices from each
component of F2 corresponding to a feasible solution for I yields two forests
that are both isomorphic to F1. Conversely, suppose now that F is an induced
subforest of T1 of order n(T1) − 1 that is isomorphic to an induced subforest F ′

of T2. Note that F arises from T1 by removing a single vertex. Suppose, for a
contradiction, that r1 belongs to F . This implies dF (r1) ≥ dT1(r1)−1 = 3m−1 >
m. Since m is the maximum degree of T2, this is impossible, which implies
F = T1 − r1 = F1. Suppose, for a contradiction, that r2 belongs to F ′. Since F
is the union of paths, this implies that there are m − 2 neighbors u1, . . . , um−2

of r2 in T2 that do not belong to F ′. Let P1, . . . , Pm−2 be the components of F2

such that Pi contains ui for i ∈ [m − 2]. Since each Pi − ui is a path of order
A + 1 and each ai is strictly less than A/2, for each Pi, there are at least three
vertices that do not belong to F ′. Since m ≥ 8, this implies the contradiction
n(F ′) ≤ n(T2)− 3(m− 2) < n(T2)− 2m− 1 = n(T1)− 1 = n(F1) = n(F ). Hence,
r2 does not belong to F ′, that is, F ′ is an induced subforest of F2. Again, since
each component of F2 is a path of order A + 2 and each ai is strictly less than
A/2, for each component of F2, there are at least two vertices that do not belong
to F ′. Since n(F ′) = n(F ) = n(T2)− 2m− 1 = n(F2)− 2m, it follows that each
component of F2 contains exactly two vertices that do not belong to F ′. These
two vertices from each component of F2 indicate a feasible solution for I, which
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implies that I is a yes-instance of 3-partition.

Theorem 4. Minimum Superforest restricted to instances {T1, T2, T3} con-
sisting of three trees is NP-hard.

Proof. We show this result by a polynomial-time reduction of the well-known
NP-complete problem 3-dimensional matching (3DM), cf. [SP1] in [10], to
Minimum Superforest. Let I be an instance of 3DM consisting of three dis-
joint sets X = {x1, . . . , xq}, Y = {y1, . . . , yq}, and Z = {z1, . . . , zq} as well as a
set M ⊆ X × Y ×Z of triples. As 3DM remains NP-complete under this restric-
tion [10], we assume that every element of X ∪ Y ∪ Z occurs in some triple but
no element of X ∪ Y ∪ Z occurs in more than three triples. For each i ∈ [q], let

T0(xi) be the tree that arises from the disjoint union of an isolated vertex r(xi)
and three paths P1, P2, and P3, each of order 2q, by adding an edge between
r(xi) and an endvertex of each Pℓ. The three vertices in T0(xi) at distance j from
r(xi) are associated with yj and the three vertices in T0(xi) at distance q + k
from r(xi) are associated with zk.

If xi is contained in three triples from M , then the tree T (xi) arises from
T0(xi) by associating each triple (xi, yj , zk) from M containing xi with a different
path Pℓ and attaching one new endvertex to each of the two vertices in that Pℓ

at distances j and q + k from r(xi), that is, the two vertices associated with yj
and zk, respectively. See Figure 1 for an illustration.

r(xi)r(xi)r(xi)

y2
y3

y4

q

q

z1

z4

z2

Figure 1. The tree T (xi) if q = 4 and xi is contained in the three triples (xi, y2, z1),
(xi, y3, z4), and (xi, y4, z2).

If xi is contained in less than three triples, then proceed as before for the one
or two triples containing xi and attach a new endvertex to each of the 2q vertices
of those Pℓ that are not associated with some triple containing xi. See Figure 2
for an illustration.
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r(xi)r(xi)r(xi)

q

q

r(xi)r(xi)

q

q

Figure 2. The left shows T (xi) if q = 4 and xi is contained in exactly the two triples
(xi, y3, z4) and (xi, y4, z2). The right shows T (xi) if q = 4 and xi is contained in only
one triple (xi, y4, z2).

For each j ∈ [q], let T (yj) be the tree that arises from the disjoint union of
an isolated vertex r(yj) and three paths P1, P2, and P3, each of order 2q, by

• adding an edge between r(yj) and an endvertex of each Pℓ,

• attaching a new endvertex to each of the 2q vertices of two of the Pℓ, and

• attaching one new endvertex to the vertex at distance j from r(yj) on the
third Pℓ, which we call the relevant branch for yj in what follows.

Let T (zk) be defined similarly. In particular, T (zk) has an endvertex attached to
a vertex at distance q + k from r(zk); see Figure 3 for an illustration.

r(y3)r(y3)

q

q

y3

r(z2)r(z2)

q

q
z2

Figure 3. T (y3) on the left and T (z2) on the right.
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Now, let Tx arise from the disjoint union of an isolated vertex rx and the
trees T (x1), . . . , T (xq) by adding q new edges between rx and r(x1), . . . , r(xq).
Let Ty and Tz be defined similarly. Note that the trees Tx, Ty, and Tz are rooted
in the vertices rx, ry, and rz of degree q, respectively. The order of Ty and Tz

is n = 10q2 + 2q + 1 while the order of Tx depends on the instance I. In order
to complete the proof, we show that I is a yes-instance of 3DM if and only if a
minimum superforest for {Tx, Ty, Tz} has order at most 10q2 + 3q + 1.

Suppose that I is a yes-instance of 3DM. Let M∗ ⊆ M be such that every
element of X ∪Y ∪Z belongs to exactly one triple from M∗. Let the tree T arise
from Ty as follows. For each j ∈ [q], consider the unique triple, say (xi, yj , zk),
from M∗ that contains yj , and attach a new endvertex to the vertex at distance
q + k from r(yj) associated with zk that belongs to the relevant branch for yj .
Clearly, the order of T is n(Ty) + q = 10q2 + 3q + 1 and it is easy to verify that
T contains three induced subtrees isomorphic to Tx, Ty, and Tz, respectively.

Conversely, suppose that a minimum superforest T for {Tx, Ty, Tz} has order
at most 10q2 + 3q + 1, which equals n(Ty) + q. By renaming vertices, we may
assume that T arises from Ty by adding at most q vertices and suitable edges.
The structure of Ty and Tz implies that T arises from Ty by attaching one new
endvertex to some vertex of each of the q relevant branches within Ty; these q
additional vertices are attached to vertices associated with the distinct elements
of Z. Since Tx is an induced subgraph of T and ry is the only vertex of T of
degree q, for a copy of Tx within T , the root vertex rx of Tx is mapped to ry
and the q children of rx in Tx are mapped in a bijective way to the q children of
ry within T . This bijective mapping indicates how to choose, for each i ∈ [q], a
triple from M containing xi, for which the set M∗ of all q selected triples is such
that every element of X ∪Y ∪Z is contained in exactly one triple from M∗. This
completes the proof.

Theorem 5. For every ∆ ∈ N, there is some p ∈ N with the following property.
For a given set T = {T1, T2, T3} consisting of three trees of order at most n
and maximum degree at most ∆, one can determine in time O(np) a minimum
superforest T of T .

Proof. Let ∆ be a fixed positive integer. Let T = {T1, T2, T3} be the set of
the three given trees of order at most n and maximum degree at most ∆. For
notational simplicity, assume that the trees Ti have disjoint sets of vertices. We
explain how to determine in time polynomially bounded in n supertrees T of T
that

• either contain disjoint copies of two of the three trees (type 1),

• or contain copies of all three trees that pairwise intersect (type 2)
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and are of minimum order subject to this condition. Returning the smallest such
supertree yields a minimum supertree of T . Note that the polynomial bound on
the running time will depend on the fixed ∆.

Firstly, consider supertrees of type 1 that contain disjoint copies of T2 and T3;
the other two pairs can be treated symmetrically. Let {T4, . . . , Tq} be the set of
all trees that arise from disjoint copies of T2 and T3 and a path P of order between
2 and n by identifying some vertex u in T2 with one endvertex of P and some
vertex v of T3 with the other endvertex of P . Since there are at most n choices
for the length of P , for the vertex u, and for the vertex v, we have q = O(n3). By
Proposition 3, the O(n3) minimum supertrees of {T1, T4}, {T1, T5}, . . . , {T1, Tq}
can be determined in polynomial time, and a smallest of all these trees is a
supertree of T containing disjoint copies of T2 and T3 that is of minimum order
subject to this condition.

Secondly, consider a supertree T of type 2. Let T ′
i be an induced copy of Ti

within T such that T ′
1, T

′
2, and T ′

3 pairwise intersect. By the Helly property of
subtrees of a tree, some vertex, say r, belongs to T ′

1, T
′
2, and T ′

3. For all possible
at most O(n3) choices for vertices r1 in T1, r2 in T2, and r3 in T3 corresponding
to r, we proceed as follows for every i ∈ [3].

• Root Ti in ri.

• For ui ∈ V (Ti), let Ti(ui) be the subtree of Ti rooted in ui that is induced by
ui and all its descendants within Ti.

• Let f({ui}) = n(Ti(ui)).

• Let f({u1, u2, u3}) be the minimum order of a supertree T of the set {T1(u1),
T2(u2), T3(u3)} rooted in some vertex s such that T contains a copy of Ti in
which s corresponds to ui for every i ∈ [3].

• Let f({u1, u2}) be the minimum order of a supertree T of {T1(u1), T2(u2)}
rooted in some vertex s such that T contains a copy of Ti in which s corre-
sponds to ui for every i ∈ [2]. Define f({u1, u3}) and f({u2, u3}) symmet-
rically. By Proposition 3, f({u1, u2}), f({u1, u3}), and f({u2, u3}) can be
determined efficiently.

Note that f({r1, r2, r3}) is the minimum order of a supertree T of {T1, T2, T3}
rooted in some vertex r that contains a copy of Ti in which r corresponds to ri
for every i ∈ [3]. Since we consider all O(n3) choices for the ri, the smallest such
tree is a minimum supertree of type 2.

In order to complete the proof, we explain how to determine the values
f({u1, u2, u3}) by dynamic programming in polynomial time. If u1 is an endvertex
of T1, then f({u1, u2, u3}) = f({u2, u3}); similarly, if u2 or u3 are endvertices.
Hence, we may assume that u1, u2, and u3 are not endvertices. Let Ui be the set
of children of ui in Ti. The definitions imply that f({u1, u2, u3}) is the minimum
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of

f(P) = 1 +
k∑

j=1

f(ej)

over all partitions P = {e1, . . . , ek} of U1∪U2∪U3 into sets ej with |ej∩Ui| ≤ 1 for
every i ∈ [3] and j ∈ [k]. Since |U1 ∪U2 ∪U3| ≤ 3∆, there are finitely many such
partitions; since k ≤ 3∆, a trivial upper bound on the number of these partitions
is (3∆)3∆. It follows that the values f(·) (together with suitable realizers) can be
determined efficiently by dynamic programming, which completes the proof.

By an inductive argument also considering type 1 and type 2 supertrees and
using the Helly property, Theorem 5 easily generalizes to Minimum Supertree
for given sets of k trees with the polynomial bounding the running time depending
on k.

Theorem 6. Greedy Supertree is a
(
k
2 −

1
2 + 1

k

)
-approximation algorithm with

polynomial running time for Minimum Superforest restricted to instances
{T1, . . . , Tk} consisting of k trees.

Proof. Let T = {T1, . . . , Tk} be the given set of k trees. By Proposition 3, for
two given trees T and T ′, some minimum supertree s(T, T ′) of {T, T ′} can be
found efficiently. The trees Si determined by Greedy Supertree are of the form

Si = s(· · · s(s(s(Ti, Ti+1), Ti+2), Ti+3), . . . , Ti+k−1) for i ∈ [k],

where indices are identified modulo k. We show that returning the smallest of the
Si yields a

(
k
2 −

1
2 + 1

k

)
-approximation algorithm for Minimum Superforest on

T . Therefore, let T be a minimum superforest of T . Let n = n(T ). For i ∈ [k],
let ni = n(Ti) and let Vi ⊆ V (T ) be such that T [Vi] ≃ Ti. For ij ∈

(
[k]
2

)
, let

nij = |Vi ∩ Vj |. Clearly,

ni + nj − nij ≤ n for every ij ∈
(
[k]
2

)
, and∑

i∈[k]

ni −
∑

ij∈([k]2 )

nij ≤ n.

Adding these
(
k
2

)
+ 1 inequalities yields

k
∑
i∈[k]

ni − 2
∑

ij∈([k]2 )

nij ≤
((

k

2

)
+ 1

)
n,(2)
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and, hence,

1

k

∑
j∈[k]

∑
i∈[k]

ni −
∑

i∈[k]\{j}

nij

 =
∑
i∈[k]

ni −
2

k

∑
ij∈([k]2 )

nij

(2)

≤ 1

k

((
k

2

)
+ 1

)
n =

(
k

2
− 1

2
+

1

k

)
n.(3)

Since ni(i+1) is the order of some possibly not largest subtree of {Ti, Ti+1}, we

have n(s(Ti, Ti+1))
(1)

≤ ni + ni+1 − ni(i+1). Since ni(i+2) is the order of some
subtree of {Ti, Ti+2} and the tree s(Ti, Ti+1) contains a copy of Ti, we have
n(s(s(Ti, Ti+1), Ti+2)) ≤ n(s(Ti, Ti+1)) + ni+2 − ni(i+2) ≤ ni + ni+1 − ni(i+1) +
ni+2−ni(i+2). Using that nij is the order of some subtree of {Ti, Tj} and that each
tree of the form s(. . . s(s(Ti, Ti+1), Ti+2), . . . , Ti+ℓ) for some ℓ contains a copy of
Ti, it now follows inductively that

n(Sj) ≤
∑
i∈[k]

ni −
∑

i∈[k]\{j}

nij .(4)

Altogether, we obtain

min{n(Si) : i ∈ [k]} ≤ 1

k

∑
j∈[k]

n(Sj)
(4)

≤ 1

k

∑
j∈[k]

∑
i∈[k]

ni −
∑

i∈[k]\{j}

nij


(3)

≤
(
k

2
− 1

2
+

1

k

)
n,

which completes the proof.

The analysis of Greedy Supertree is essentially best possible. We give an exam-
ple for k = 3 showing that the factor 4/3 cannot be improved. For non-negative
integers n1, . . . , np, let the tree T (n1, . . . , np) arise from a path P : u1 · · ·up of
order p by attaching, for every i ∈ [p], exactly ni new endvertices to ui. For
positive integers a, b, and c with a > b > c ≥ 1, consider the three trees

T1 = T (0, b, a, a, c, 0),

T2 = T (0, b, 0, a, 0, 0, 0, a, 0), and

T3 = T (0, b, 0, 0, 0, 0, 0, a, 0, c, a, 0)

illustrated in Figure 4.
It is easy to verify that

• s(T1, T2) ≃ T (0, b, a, a, c, 0, 0, a, 0) does not contain T (0, a, 0, 0, a, 0),
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• s(T1, T3) ∈ {T (0, b, 0, 0, 0, 0, b, a, a, c, a, 0), T (0, b, 0, 0, 0, 0, c, a, a, b, a, 0)} and
does not contain T (0, a, 0, 0, 0, a, 0), and

• s(T2, T3) ≃ T (0, b, 0, a, 0, 0, 0, a, 0, c, a, 0) does not contain T (0, a, a, 0).

b a a c

b a a

b a c a

Figure 4. Three trees T1, T2, and T3.

It follows that all three trees

s(s(T1, T2), T3), s(s(T1, T3), T2), and s(s(T2, T3), T1)

have order at least 4a, while the tree

T (0, b, 0, 0, b, b, a, a, c, c, a, 0)

of order 3a+ 3b+ 2c+ 12 shown in Figure 5 contains T1, T2, and T3.

b b b a a c c a

Figure 5. A supertree for {T1, T2, T3}.

Choosing a large shows that the factor 4/3 cannot be improved. Note that every
supertree of {T1, T2} that contains T (0, a, 0, 0, a, 0) and can therefore accomodate
T3 in a more efficient way has at least b vertices more than s(T1, T2). Choosing
a, b, and c such that 4ϵa ≥ b > ϵn(s(T1, T2)) = ϵ(3a+ b+ c+ 9) shows that the
factor 4/3 can only be improved marginally if the subroutine for s(·, ·) is allowed
to return slightly suboptimal trees.

For the proof of Theorem 7, we need an auxiliary statement.
Let ∆ ∈ N. Let T∆ = {T1, . . . , Tq} be the set of all trees of order at most ∆.

Let F∆ be the set of all forests whose components belong to T∆. For a forest F ,
let t(F ) = (t1, . . . , tq) ∈ [n(F )]q0 be such that ti is the number of components of
F that are isomorphic to Ti for every i ∈ [q] and let

t̂(F ) =
{
t(F ′) : F ′ is an induced subforest of F

}
.
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For every t = (t1, . . . , tq) from t̂(F ), an induced subforest F ′ of F with t(F ′) = t
is a realizer of t within F . Note that t(F ) counts only small components of F
but that F may have large components. Note furthermore, that t̂(F ) ⊆ [n(F )]q0.

For two sets A,B ∈ Nq
0, let A⊕B = {a+ b : a ∈ A and b ∈ B}.

Lemma 8. For every ∆ ∈ N, there is some p ∈ N with the following property.
For every forest F of order at most n, t̂(F ) as well as realizers within F can be
determined in time O(np).

Proof. If F has components F1, . . . , Fk, then t̂(F ) =
k⊕

i=1
t̂(Fi). Since t̂(Fi) ⊆

[n(Fi)]
q
0 and ⊕ is associative, in order to show the desired statement, we may

assume that F is a tree. Root of F is some vertex r. Let R be the set of all pairs
(S, s) such that S ∈ T∆ and s ∈ V (S), that is, R captures all possible ways of
selecting root vertices for the trees in T∆. Let u be some vertex of F . Let Fu be
the subtree of F rooted in u that contains u and all its descendants.

For every (S, s) ∈ R, let t̂(S,s)(Fu) be the set of all (t1, . . . , tq) ∈ [n(Fu)]
q
0 such

that

• Fu has an induced subforest K that consists of ti disjoint copies of Ti for
every i ∈ [q],

• the vertex u is contained in some component L of K that is isomorphic to S,
and

• some isomorphism π between S and L maps s to u.
See Figure 6 for an illustration.

Fu

u

r

∼= Tk∼= Ti

∼= Tj

S
π∼= L

π(s) = u

F

Figure 6. The structure of induced subgraphs K of Fu contributing to t̂(S,s)(Fu).
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Note that t̂(S,s)(Fu) is empty, if Fu does not contain a suitable copy of S.

Similarly, let t̂∅(Fu) be the set of all (t1, . . . , tq) ∈ [n(Fu)]
q
0 such that

• Fu has an induced subforest K that consists of ti disjoint copies of Ti for
every i ∈ [q] and

• the vertex u does not belong to K.

Clearly,

t̂(Fu) = t̂∅(Fu) ∪
⋃

(S,s)∈R

t̂(S,s)(Fu).

Let u have the children v1, . . . , vd in F .

We have

t̂∅(Fu) = t̂(Fv1)⊕ t̂(Fv2)⊕ · · · ⊕ t̂(Fvd).

Now, let (S, s) ∈ R. Let s1, . . . , sd′ be the neighbors of s in S and let Si be the
component of S − s containing si. Since S has order at most ∆, we have d′ < ∆.

Furthermore, we have

t̂(S,s)(Fu) =
⋃

f :[d′]
injective−−−−−→[d]

⊕
i∈[d′]

t̂(Si,si)(Fvf(i)) ⊕
⊕

i∈[d]\f([d′])

t̂∅(Fvi)

 ,

where the O(d∆) injective functions f capture the different ways of associating
the neighbors of s in S with the children of u in F . See Figure 7 for an illustration.

Using these formulas, a simple dynamic programming approach allows to
determine t̂(F ) as well as suitable realizers within F in time O(np).

Theorem 7. For every ϵ > 0, there is some p ∈ N with the following property.
For a given set F = {F1, . . . , Fk} consisting of k forests of order at most n, one
can determine in time O(knp) a subforest F of F with n(F ) ≥ (1 − ϵ)n(Fopt),
where Fopt is some maximum subforest of F .

Proof. Let ϵ > 0 be fixed. Let F = {F1, . . . , Fk} be a given set of k forests
of order at most n. For i ∈ [k], let ni = n(Fi), and let n1 = min{n1, . . . , nk}.
Let Fopt be some maximum subforest of F . Since each forest Fi in F has an
independent set of order at least ni/2 ≥ n1/2, we have n(Fopt) ≥ n1/2.

Let ∆ =
⌈
2
ϵ

⌉
. Let F∆ be as above, that is, F∆ is the set of all forests whose

components all have order at most ∆. Rooting each component of F1 in some
vertex and iteratively removing vertices u of maximum depth for which u has at
least ∆ descendants, yields a set X of at most n1/∆ ≤ 2n(Fopt)/∆ vertices of
F1 such that F ′

1 = F1 − X belongs to F∆. Let F ′
opt be a maximum subforest
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π(s) = u

π(s1) = vf(1)

∼=
S1

Fvf(1)

vf(2)

∼=
S2

Fvf(2)

vf(d′)

∼=
Sd′

Fvf(d′)

π∼= S

⋃
i∈[d]\f([d′])

Fvi

Figure 7. Embedding S (as well as the rest of K) into Fu mapping the root s of S to u
and the children si of s in S to children vf(i) of u as selected by f .

of (F \ {F1}) ∪ {F ′
1}. Clearly, F ′

opt is a subforest of F that belongs to F∆ and
satisfies

n(F ′
opt) ≥ n(Fopt)− |X| ≥

(
1− 2

∆

)
n(Fopt) ≥ (1− ϵ)n(Fopt).

Therefore, in order to complete the proof, it suffices to show that a subforest of
F that belongs to F∆ and has maximum possible order subject to this condition,
can be found efficiently.

By Lemma 8, we can determine t̂(Fi) as well as suitable realizers within F
in time O(np1) for every i ∈ [k]. Since

max{n(F ) : F ∈ F∆ is a subforest of F}

= max

{
q∑

i=1

tin(Ti) : (t1, . . . , tq) ∈
k⋂

i=1

t̂(Fi)

}
,

the desired statement follows.

It seems interesting to study tradeoffs between supergraphs that are required
to belong to different graph classes. For a set F of trees, for instance, a supergraph
of minimum order may be much smaller than a minimum supertree. Indeed, if
F = {T (a, 0, a), T (a, 0, 0, a), . . . , T (a, 0, . . . , 0︸ ︷︷ ︸

k times

, a)} for positive integers a and k at

least 3, then suitably identifying vertices of degree a + 1 yields a supergraph of
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F of order 2 + 2a+ 1 + 2 + · · ·+ k = 2a+
(
k+1
2

)
+ 2, while every supertree of F

has order Ω
(√

ka
)
.

As stated at the very beginning, all considered subgraphs were induced. Sev-
eral of our results can be adapted by small yet careful changes to non-induced
subgraphs.

References

[1] A. Abboud, A. Backurs, T.D. Hansen, V.V. Williams and O. Zamir, Subtree iso-
morphism revisited , ACM Trans. Algorithms 14 (2018) 27.
https://doi.org/10.1145/3093239

[2] F.N. Abu-Khzam, Maximum common induced subgraph parameterized by vertex
cover , Inform. Process. Lett. 114 (2014) 99–103.
https://doi.org/10.1016/j.ipl.2013.11.007
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