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Abstract

Graph isomorphism, subgraph isomorphism, and maximum common sub-
graphs are classical well-investigated objects. In the present paper, for a
given set of forests, we study maximum common induced subforests and
minimum common induced superforests. We show that finding a maximum
subforest is NP-hard for two given subdivided stars while finding a minimum
superforest is tractable for two trees but NP-hard for three trees. For a given
set of k trees, we present an efficient greedy (g - % + %)—approximation al-
gorithm for the minimum superforest problem. Finally, we present a poly-
nomial time approximation scheme for the maximum subforest problem for
any given set of forests.
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1. INTRODUCTION

We consider finite, simple, and undirected graphs and all considered subgraphs
are induced. As usual, a forest is a graph without cycles and a tree is a connected
forest. In particular, we consider trees that are unrooted and unlabeled. For a
graph G and a vertex u of G, let n(G) denote the order of G and let dg(u) denote
the degree of u in G. If two graphs G and H are isomorphic, we write G ~ H.
Let N be the set of positive integers, and let Ny = NU{0}. For a positive integer
k, let [k] denote the set of positive integers at most k, and let [k]o = [k] U {0}.
Let G be a set of graphs. A subgraph of G is a graph H such that, for every
graph G in G, the graph G has an induced subgraph that is isomorphic to H.
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A supergraph of G is a graph H such that, for every graph G in G, the graph
H has an induced subgraph that is isomorphic to G. A subgraph that is a forest
or tree is called a subforest or subtree, respectively. A supergraph that is a forest
or tree is called a superforest or supertree, respectively.

In this paper we consider the following natural optimization problems.

MAXIMUM SUBFOREST

Instance: A set F of forests.
Task: Determine a subforest F' of F of maximum order.

MINIMUM SUPERFOREST

Instance: A set F of forests.
Task: Determine a superforest F' of F of minimum order.

Both problems are NP-hard even when restricted to instances F = {F, F»},
where F7 and F5 are unions of paths. Let I be an instance of the strongly
NP-complete problem 3-PARTITION, cf. problem [SP15] in the appendix of [10]
containing a list of NP-complete problems. Let I consist of 3m positive integers
ai,...,asm with A/4 < a; < A/2 for each i € [3m], where A = L(a;+-- +agn).
The task for I is to decide whether there is a partition of [3m] into m sets

Ii,..., I, each containing exactly three elements such that > jer, a5 = A for
each i € [m]. Let F} be the forest with 3m components that are paths of order
ai,...,a3m and let Fy be the forest with m components that are paths of order

A + 2. Note that n(Fy) = n(Fy) + 2m.
Obviously, the following statements are equivalent.

(i) I is a yes-instance of 3-PARTITION.

(ii) F} is isomorphic to an induced subtree of F.
(iii) Fy is a maximum subforest of {Fy, Fa}.
(iv) F3 is a minimum superforest of {F1, Fa}.

These equivalences imply the stated hardness of MAXIMUM SUBFOREST and MIN-
IMUM SUPERFOREST. They also show that these problems are closely related
to the very well-studied subtree/subgraph isomorphism problem [1,7,12,15,16].
Maximum common (induced and non-induced) subgraphs were first studied by
Bokhari [8] in the context of array processing and are applied in areas ranging
from molecular chemistry [17] to pattern matching [18]. The maximum common
connected induced subgraph problem was shown to be NP-hard for 3-outerplanar
labeled graphs of maximum degree and treewidth at most 4 [5,6] and for two
biconnected series-parallel graphs [14]. It can be solved efficiently [19] for a
degree-bounded partial k-tree and a connected graph, whose number of spanning
trees is polynomial. For the maximum common induced subgraph problem the
parameterized complexity is studied in [2, 3].
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Modifying the above NP-hardness comments similarly as in [11] yields the
following. A subdivided star is a tree that arises from a star by repeatedly subdi-
viding edges.

Proposition 1. MAXIMUM SUBFOREST restricted to instances {T1,T>} consist-
ing of two subdivided stars is NP-hard.

Note that all proofs are postponed to Section 2.

If the set F contains only trees and F' is a minimum superforest of F, then
each copy of a tree in F is completely contained in a single component of F'. If F’
would not be connected, then selecting one vertex from each component of F' and
identifying all selected vertices to a single vertex would yield a strictly smaller
superforest of F. This argument implies the following.

Proposition 2. Every minimum superforest of a set of trees is a tree.

For two trees Th and T, minimum supertree 7, of {71, 7>}, and a maximum
subtree T of {711, T»}, the following inclusion-exclusion formula concerning the
orders of these trees is straightforward.

(1) n(Ty) = n(T1) + n(Ts) — n(1h).

Furthermore, given subtrees of 71 and 75 isomorphic to 7, a minimum super-

forest of {T1,T>} can easily be constructed by extending the copy of Tr, within

Ty by adding n(T2) — n(Tn) new vertices and suitable edges creating a copy of

Ty. Refering to Edmonds and Matula, Akutsu [4] showed that, for two given

trees T and T, some maximum subtree of {T},T5} can be determined efficiently

combining a weighted bipartite matching algorithm with dynamic programming.
Together our observations imply the following.

Proposition 3. MINIMUM SUPERFOREST restricted to instances {T1, T2} con-
sisting of two trees can be solved in polynomial time.

In [4] Akutsu also showed that it is NP-hard to determine a maximum subtree
of three given trees. Reflecting this result, we show the following, which does not
follows from Akutsu’s result.

Theorem 4. MINIMUM SUPERFOREST restricted to instances {11,T2, T3} con-
sisting of three trees is NP-hard.

For instances of bounded maximum degree, the problem can be solved effi-
ciently.

Theorem 5. For every A € N, there is some p € N with the following property.
For a given set T = {T1,T>,T3} consisting of three trees of order at most n
and mazimum degree at most A, one can determine in time O(nP) a minimum
superforest T of T .
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By Proposition 3, some minimum supertree, say s(T',7"), of two given trees
T and T can be determined efficiently. Repeated applications of this lead to the
following natural simple greedy algorithm.

Input: A set {T1,...,T}} of trees.
Output: A supertree T of {T1,...,T)}.
begin
for i =1 to k do
S+ T;
for j =2 to k do
‘ S; <= 5(Si, Ti+j—1), where indices are identified modulo k;
end
end
¢« argmin{n(S;) : i € [k]};
return Sy;

end
Algorithm 1: Greedy Supertree.

Theorem 6. Greedy Supertree is a (% - % + %)—approximation algorithm with
polynomial running time for MINIMUM SUPERFOREST restricted to instances
{T1,..., Ty} consisting of k trees.

For k = 3, Theorem 6 provides the approximation factor 4/3. In Section 2
we show that our analysis of Greedy Supertree is essentially best possible and
that this factor cannot be improved. The appearance of the factor 4/3 in this
context is actually not surprising. A natural simple dynamic programming algo-
rithm that determines a minimum supertree of two given trees uses a maximum
bipartite matching algorithm as a subroutine. Extending this dynamic program-
ming approach from two to three trees would require to replace this subroutine
with a 3-dimensional matching algorithm. Now, 4/3 + € is the best known ap-
proximation factor for 3-dimensional matching [9] with no improvement during
the past decade. More generally, the approximation factor in Theorem 6 reflects
that the best known [13] approximation factor for the k-set packing problem is
k/2 4 €. Altogether, a natural challenging problem in this context is to improve
the approximation factor of 4/3 for MINIMUM SUPERFOREST for sets {71, T, T3}
of three given trees.

In contrast to that MAXIMUM SUBFOREST allows a polynomial time approx-
imation.

Theorem 7. For every € > 0, there is some p € N with the following property.
For a given set F = {F1,...,Fy} consisting of k forests of order at most n, one
can determine in time O(kn?) a subforest F' of F with n(F) > (1 — €)n(Fopt),
where Fopy s some mazimum subforest of F.
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2. PROOFS

For convenience, we restate the results from Section 1 whose proofs are given
here.

Proposition 1. MAXIMUM SUBFOREST restricted to instances {Th,T>2} consist-
ing of two subdivided stars is NP-hard.

Proof. Let I be an instance of 3-PARTITION that consists of 3m positive integers
ai,...,asm with A/4 < a; < A/2 for each i € [3m], where A = L(a;+---+asm).
Let F} be the forest with 3m components that are paths of order ay,...,as,, and
let F5 be the forest with m components that are paths of order A + 2. Let T3
arise from F} by adding one new vertex r; as well as 3m new edges between 7
and one endvertex in each component of Fj. Similarly, let 75 arise from F5 by
adding one new vertex ro as well as m new edges between ro and one endvertex
in each component of F5. Note that 77 and T5 are subdivided stars.

In order to complete the proof, we show that [ is a yes-instance of 3-
PARTITION if and only if a maximum subforest of {77, 75} has order n(T}) — 1 =
n(F1) = ay + -+ + asy,. Clearly, we may assume that m > 8. Note that, since T5
contains no vertex of degree dr, (r1) = 3m, 17 is not a subtree of T, and, hence,
a maximum subforest of {77,7>} has order at most n(77) — 1.

If I is a yes-instance of 3-PARTITION, then removing from T} only the vertex
r1 and removing from 75 the vertex ro as well as two further vertices from each
component of F5 corresponding to a feasible solution for I yields two forests
that are both isomorphic to F;. Conversely, suppose now that F is an induced
subforest of T of order n(7T7) — 1 that is isomorphic to an induced subforest F’
of T5. Note that F arises from T} by removing a single vertex. Suppose, for a
contradiction, that 1 belongs to F. This implies dp(ry) > dp (r1)—1=3m—1 >
m. Since m is the maximum degree of T, this is impossible, which implies
F =T, —ry = F|. Suppose, for a contradiction, that ry belongs to F’. Since F
is the union of paths, this implies that there are m — 2 neighbors w1, ..., um—2
of r9 in Ty that do not belong to F’. Let Py,..., P,_o be the components of F
such that P; contains w; for ¢ € [m — 2]. Since each P; — u; is a path of order
A+ 1 and each a; is strictly less than A/2, for each P;, there are at least three
vertices that do not belong to F’. Since m > 8, this implies the contradiction
n(F') <n(Ty) —3(m—2) < n(Ty) —2m—1=n(Ty) — 1 = n(F) = n(F). Hence,
ro does not belong to F’, that is, F” is an induced subforest of F. Again, since
each component of F5 is a path of order A + 2 and each a; is strictly less than
A/2, for each component of Fy, there are at least two vertices that do not belong
to F'. Since n(F') = n(F) = n(T2) — 2m — 1 = n(Fs) — 2m, it follows that each
component of Fy contains exactly two vertices that do not belong to F’. These
two vertices from each component of F» indicate a feasible solution for I, which
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implies that I is a yes-instance of 3-PARTITION. |

Theorem 4. MINIMUM SUPERFOREST restricted to instances {T1,T5, T3} con-
sisting of three trees is NP-hard.

Proof. We show this result by a polynomial-time reduction of the well-known
NP-complete problem 3-DIMENSIONAL MATCHING (3DM), cf. [SP1] in [10], to
MINIMUM SUPERFOREST. Let I be an instance of 3DM consisting of three dis-
joint sets X = {z1,..., 24}, Y ={y1,...,yq}, and Z = {z1,...,2,} as well as a
set M C X xY x Z of triples. As 3DM remains NP-complete under this restric-
tion [10], we assume that every element of X UY U Z occurs in some triple but
no element of X UY U Z occurs in more than three triples. For each i € [q], let

To(z;) be the tree that arises from the disjoint union of an isolated vertex r(x;)
and three paths P;, P», and Ps, each of order 2¢, by adding an edge between
r(x;) and an endvertex of each Py. The three vertices in Ty(x;) at distance j from
r(x;) are associated with y; and the three vertices in Ty(z;) at distance ¢ + k
from r(x;) are associated with z.

If x; is contained in three triples from M, then the tree T'(z;) arises from
To(z;) by associating each triple (x;, y;, 2) from M containing z; with a different
path P, and attaching one new endvertex to each of the two vertices in that Py
at distances j and g + k from r(z;), that is, the two vertices associated with y;
and zj, respectively. See Figure 1 for an illustration.

7(z;)
Y2
e Y3
Ya
21
q 2
24

Figure 1. The tree T(x;) if ¢ = 4 and xz; is contained in the three triples (z;, y2, 21),
(i, Y3, 24), and (2, ya, 22).

If x; is contained in less than three triples, then proceed as before for the one
or two triples containing x; and attach a new endvertex to each of the 2¢ vertices
of those P, that are not associated with some triple containing x;. See Figure 2
for an illustration.
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Figure 2. The left shows T'(x;) if ¢ = 4 and z; is contained in exactly the two triples
(z4,Y3,24) and (z;,y4, 22). The right shows T'(z;) if ¢ = 4 and x; is contained in only
one triple (z;, ya, 22).

For each j € [q], let T'(y;) be the tree that arises from the disjoint union of
an isolated vertex r(y;) and three paths P, P», and P3, each of order 2¢, by

e adding an edge between 7(y;) and an endvertex of each Py,
e attaching a new endvertex to each of the 2q vertices of two of the Py, and

e attaching one new endvertex to the vertex at distance j from r(y;) on the
third Py, which we call the relevant branch for y; in what follows.

Let T'(zx) be defined similarly. In particular, T'(zx) has an endvertex attached to
a vertex at distance ¢ + k from r(zy); see Figure 3 for an illustration.

r(22)
7(y3)
q
1 Y3
q q .

Figure 3. T'(y3) on the left and T'(z2) on the right.
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Now, let T, arise from the disjoint union of an isolated vertex r, and the
trees T'(z1),...,T(zq4) by adding ¢ new edges between 7, and r(z1),...,7(zq).
Let T}, and T be defined similarly. Note that the trees T}, T}, and T are rooted
in the vertices 7, ry, and r, of degree g, respectively. The order of T}, and T,
is n = 10¢%> 4+ 2¢ + 1 while the order of T depends on the instance I. In order
to complete the proof, we show that I is a yes-instance of 3DM if and only if a
minimum superforest for {7}, T,,T.} has order at most 10g% + 3q + 1.

Suppose that I is a yes-instance of 3DM. Let M* C M be such that every
element of X UY U Z belongs to exactly one triple from M*. Let the tree T arise
from T, as follows. For each j € [¢], consider the unique triple, say (x;,y;, 2k),
from M™ that contains y;, and attach a new endvertex to the vertex at distance
q + k from r(y;) associated with zj; that belongs to the relevant branch for y;.
Clearly, the order of T is n(Ty) + ¢ = 10¢% 4+ 3¢ + 1 and it is easy to verify that
T contains three induced subtrees isomorphic to 77, T}, and T, respectively.

Conversely, suppose that a minimum superforest T" for {7}, Ty, T.. } has order
at most 10¢® + 3¢ + 1, which equals n(Ty) + g. By renaming vertices, we may
assume that 7" arises from T by adding at most g vertices and suitable edges.
The structure of T, and T, implies that T arises from T}, by attaching one new
endvertex to some vertex of each of the g relevant branches within T); these ¢
additional vertices are attached to vertices associated with the distinct elements
of Z. Since T, is an induced subgraph of T" and r, is the only vertex of T' of
degree ¢, for a copy of T, within T, the root vertex r, of T, is mapped to r,
and the ¢ children of r, in T, are mapped in a bijective way to the ¢ children of
ry within 7. This bijective mapping indicates how to choose, for each i € [¢], a
triple from M containing x;, for which the set M* of all ¢ selected triples is such
that every element of X UY U Z is contained in exactly one triple from M*. This
completes the proof. [ |

Theorem 5. For every A € N, there is some p € N with the following property.
For a given set T = {T11,T>,T3} consisting of three trees of order at most n
and mazimum degree at most A, one can determine in time O(nP) a minimum
superforest T of T.

Proof. Let A be a fixed positive integer. Let T = {T3,75,73} be the set of
the three given trees of order at most n and maximum degree at most A. For
notational simplicity, assume that the trees 7; have disjoint sets of vertices. We
explain how to determine in time polynomially bounded in n supertrees T of T
that

e cither contain disjoint copies of two of the three trees (type 1),

e or contain copies of all three trees that pairwise intersect (type 2)
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and are of minimum order subject to this condition. Returning the smallest such
supertree yields a minimum supertree of 7. Note that the polynomial bound on
the running time will depend on the fixed A.

Firstly, consider supertrees of type 1 that contain disjoint copies of T5 and T5;
the other two pairs can be treated symmetrically. Let {T},...,T;} be the set of
all trees that arise from disjoint copies of 15 and T3 and a path P of order between
2 and n by identifying some vertex w in T5 with one endvertex of P and some
vertex v of T3 with the other endvertex of P. Since there are at most n choices
for the length of P, for the vertex u, and for the vertex v, we have ¢ = O(n?). By
Proposition 3, the O(n?®) minimum supertrees of {T1, Ty}, {T1,Ts}, ..., {11, T,}
can be determined in polynomial time, and a smallest of all these trees is a
supertree of 7 containing disjoint copies of To and T3 that is of minimum order
subject to this condition.

Secondly, consider a supertree T' of type 2. Let T} be an induced copy of T;
within 7" such that 77, T3, and Tj pairwise intersect. By the Helly property of
subtrees of a tree, some vertex, say r, belongs to Ty, T4, and Tj. For all possible
at most O(n3) choices for vertices ry in 17, ro in 15, and 73 in T3 corresponding
to r, we proceed as follows for every ¢ € [3].

e Root T} in r;.

e For u; € V(T;), let T;(u;) be the subtree of T; rooted in u; that is induced by
u; and all its descendants within T;.

o Let f({ui}) = n(Ti(ui)).

e Let f({u1,u2,us}) be the minimum order of a supertree T of the set {77 (u1),
T5(us2), T5(uz)} rooted in some vertex s such that 7' contains a copy of T; in
which s corresponds to u; for every i € [3].

e Let f({u1,u2}) be the minimum order of a supertree T' of {11 (u1), To(us2)}
rooted in some vertex s such that T contains a copy of 7; in which s corre-
sponds to u; for every i € [2]. Define f({u1,us}) and f({ug,us}) symmet-
rically. By Proposition 3, f({u1,u2}), f({u1,us}), and f({uz,us}) can be
determined efficiently.

Note that f({ri,r2,r3}) is the minimum order of a supertree T of {T1,T5,T5}
rooted in some vertex r that contains a copy of T; in which r corresponds to r;
for every i € [3]. Since we consider all O(n3) choices for the r;, the smallest such
tree is a minimum supertree of type 2.

In order to complete the proof, we explain how to determine the values
f({u1,u2,us}) by dynamic programming in polynomial time. If u; is an endvertex
of Th, then f({u1,u2,us}) = f({ue,us}); similarly, if uy or ug are endvertices.
Hence, we may assume that uq, ue, and us are not endvertices. Let U; be the set
of children of u; in T;. The definitions imply that f({ui,u2,us}) is the minimum



10 D. RAUTENBACH AND F. WERNER

of
k

FP)Y=14>" f(e;)

J=1

over all partitions P = {ey, ..., e, } of U1 UUyUUs into sets e; with |e;NU;| < 1 for
every i € [3] and j € [k]. Since |Uy UUz U Us| < 3A, there are finitely many such
partitions; since k < 3A, a trivial upper bound on the number of these partitions
is (3A)32. Tt follows that the values f(-) (together with suitable realizers) can be
determined efficiently by dynamic programming, which completes the proof. m

By an inductive argument also considering type 1 and type 2 supertrees and
using the Helly property, Theorem 5 easily generalizes to MINIMUM SUPERTREE
for given sets of k trees with the polynomial bounding the running time depending
on k.

Theorem 6. Greedy Supertree is a (g — % + %)—approzimatz’on algorithm with
polynomial running time for MINIMUM SUPERFOREST restricted to instances
{T1,..., Ty} consisting of k trees.

Proof. Let T = {Ti,...,T;} be the given set of k trees. By Proposition 3, for
two given trees T and 7", some minimum supertree s(7,7") of {T,T'} can be
found efficiently. The trees S; determined by Greedy Supertree are of the form

Si = s(---s(s(s(Ti, Tit1), Tiv2), Tit3), - - -, Tiv—1) for i € [k,

where indices are identified modulo k. We show that returning the smallest of the
S; yields a (% — % + %)—approximation algorithm for MINIMUM SUPERFOREST on
T. Therefore, let T be a minimum superforest of 7. Let n = n(T'). For i € [k],
let n; = n(T;) and let V; C V(T') be such that T[V;] ~ T;. For ij € ([];]), let

ny; = |[ViNVj|. Clearly,

n; +nj —n;; < n for every ij € ([’5]), and

Yo Y

i€[k] Z‘je([g])

IN

n.

Adding these (g) + 1 inequalities yields

(2) k%}%ni—z > ny < <<§)+1> n,

ije('5))
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and, hence,
1 2
OO DILEED SIS ) DI D
jelk] \u€lk] i€[k]\{5} i€[k] ije ()
2 1 (/(k k11
< - =\ls -5tz |n
(3) _k;<<2>+1)n <2 2+k>n

Since n;(i41) is the order of some possibly not largest subtree of {7}, T;1}, we

1
have n(s(T;,Ti+1)) (g) ni + Nit1 — My(i41). Since n;yoy is the order of some
subtree of {T;,T;12} and the tree s(T;,T;+1) contains a copy of T;, we have
n(s(s(T;, Tit1), Tiv2)) < n(s(Ti, Tit1)) + nit2 — Nyiga) < M+ N1 — Mgy +
Ni+2—"Nj(i42)- Using that n;; is the order of some subtree of {7}, T} and that each
tree of the form s(...s(s(T;, Ti+1), Tit2), ..., Ti+¢) for some ¢ contains a copy of
T;, it now follows inductively that

(4) ’I’L(Sj) < Zni— Z Nij.
i€lk] ielk\{7}

Altogether, we obtain

: . 1 4) 1
min{n(S;) :i € [k]} < Z Z n(S;) < Z Z an - Z Ngj
JEk] Jelk] \i€lk] i€[k\{7}
(2) k1 1
=\lgatg)m
which completes the proof. [ |

The analysis of Greedy Supertree is essentially best possible. We give an exam-
ple for & = 3 showing that the factor 4/3 cannot be improved. For non-negative
integers nq,...,ny, let the tree T'(ny,...,n,) arise from a path P : uj ---u, of
order p by attaching, for every i € [p|, exactly n; new endvertices to u;. For
positive integers a, b, and ¢ with a > b > ¢ > 1, consider the three trees

T, =7(0,b,a,a,c0),
T, =1(0,b,0,a,0,0,0,a,0), and
T3 =1(0,b,0,0,0,0,0,a,0,c,a,0)
illustrated in Figure 4.
It is easy to verify that
o s(T1,T5) ~T(0,b,a,a,c,0,0,a,0) does not contain 7'(0,a,0,0,a,0),
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e s(T1,T5) € {7(0,b,0,0,0,0,b,a,a,c,a,0),7(0,b,0,0,0,0,c,a,a,b,a,0)} and
does not contain 7°(0, a, 0, 0,0, a,0), and

o 5(1y,713) ~7(0,b,0,a,0,0,0,a,0,c,a,0) does not contain 7'(0, a, a,0).

b a a c

Figure 4. Three trees Ty, 15, and T5.

It follows that all three trees
s(s(Th, Ts),T3), s(s(T1,T3),T2), and s(s(Ts,T3),T1)
have order at least 4a, while the tree
7(0,b,0,0,b,b,a,a,c,c,a,0)

of order 3a + 3b + 2¢ + 12 shown in Figure 5 contains 717, 15, and T5.

AN Ay Dy ey e By By
b b b a a C c

a

Figure 5. A supertree for {T1,Ts, T5}.

Choosing a large shows that the factor 4/3 cannot be improved. Note that every
supertree of {T1,T5} that contains 7'(0, a, 0,0, a,0) and can therefore accomodate
T3 in a more efficient way has at least b vertices more than s(77,7%). Choosing
a, b, and ¢ such that 4dea > b > en(s(T1,T2)) = €(3a + b+ ¢+ 9) shows that the
factor 4/3 can only be improved marginally if the subroutine for s(-,-) is allowed
to return slightly suboptimal trees.

For the proof of Theorem 7, we need an auxiliary statement.

Let A € N. Let Ta = {Th,...,T,;} be the set of all trees of order at most A.
Let Fa be the set of all forests whose components belong to Ta. For a forest F,
let t(F) = (t1,...,tq) € [n(F)]¢ be such that ¢; is the number of components of
F that are isomorphic to T; for every i € [q] and let

{(F) = {t(F') : F' is an induced subforest of F'}.
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For every t = (t1,...,t,) from #(F), an induced subforest F' of I with t(F’) =t

is a realizer of t within F. Note that t(F') counts only small components of F’

but that F may have large components. Note furthermore, that £(F) C [n(F)]{.
For two sets A,Be N}, let A B={a+b:ac Aandbec B}

Lemma 8. For every A € N, there is some p € N with the following property.
For every forest F of order at most n, t(F) as well as realizers within F can be
determined in time O(nP).

k
Proof. 1If F has components F1,..., Fy, then t(F) = @ t(F;). Since t(F;) C
i=1

[n(F;)]{ and @ is associative, in order to show the desired statement, we may
assume that F' is a tree. Root of F' is some vertex r. Let R be the set of all pairs
(S, s) such that S € Ta and s € V(S), that is, R captures all possible ways of
selecting root vertices for the trees in Ta. Let u be some vertex of F. Let F,, be
the subtree of F' rooted in w that contains u and all its descendants.

For every (S, s) € R, let {(g,5 (F,) be the set of all (t1,...,t,) € [n(F,)]] such
that

e F, has an induced subforest K that consists of ¢; disjoint copies of T; for
every i € [q],

e the vertex u is contained in some component L of K that is isomorphic to .5,
and

e some isomorphism 7 between S and L maps s to u.
See Figure 6 for an illustration.

Figure 6. The structure of induced subgraphs K of F,, contributing to f(sﬁs)(Fu).
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Note that f( 5,5)(Fu) is empty, if F,, does not contain a suitable copy of S.
Similarly, let #y(F,) be the set of all (t1,...,t;) € [n(F,)]¢ such that

e F, has an induced subforest K that consists of ¢; disjoint copies of T; for
every i € [g] and

e the vertex u does not belong to K.

Clearly,
tA(Fu) = (Z)(FU) U U tA(S,s) (Fu)
(S,8)ER
Let u have the children vq,...,v4 in F.
We have

f@(Fu) = f(F'Ul) @f(sz) D ®t<de)'

Now, let (S,s) € R. Let s1,...,ss be the neighbors of s in S and let S; be the
component of S — s containing s;. Since S has order at most A, we have d’ < A.
Furthermore, we have

2?(S,s) (Fu) = U @ {’:(Si,Si)(F'Uf(i)) S @ -E(Z)(F’Uz) )

Fildr)—macctivey 1y \F€ld] i€[d]\f([d'])
where the O(d?) injective functions f capture the different ways of associating
the neighbors of s in S with the children of v in F. See Figure 7 for an illustration.
Using these formulas, a simple dynamic programming approach allows to
determine ¢(F) as well as suitable realizers within F' in time O(nP). [ ]

Theorem 7. For every € > 0, there is some p € N with the following property.
For a given set F = {F},..., Fy} consisting of k forests of order at most n, one
can determine in time O(knP) a subforest F' of F with n(F') > (1 — €)n(Fopt),
where Fopg s some mazximum subforest of F.

Proof. Let € > 0 be fixed. Let F = {F1,...,F}} be a given set of k forests
of order at most n. For ¢ € [k], let n; = n(F;), and let n; = min{ny,...,ng}.
Let Fypt be some maximum subforest of F. Since each forest F; in F has an
independent set of order at least n;/2 > n1/2, we have n(Fyp) > ni/2.

Let A = [%] Let Fa be as above, that is, Fa is the set of all forests whose
components all have order at most A. Rooting each component of F} in some
vertex and iteratively removing vertices v of maximum depth for which u has at
least A descendants, yields a set X of at most ni/A < 2n(Fope)/A vertices of
Fy such that F| = F} — X belongs to Fa. Let Fy, be a maximum subforest
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— _/
F”f(2) F”f(d’) hd

ie[d)\f([d'])

Figure 7. Embedding S (as well as the rest of K) into F,, mapping the root s of S to u
and the children s; of s in S to children vy(;) of u as selected by f.

of (F\{F1})U{F]}. Clearly, F!

opt 18 @ subforest of F that belongs to Fa and
satisfies

Fge) 2 n(Fope) = X1 2 (1= 5 ) nlFs) 2 (1= O(Fop).

Therefore, in order to complete the proof, it suffices to show that a subforest of
F that belongs to FA and has maximum possible order subject to this condition,
can be found efficiently.

By Lemma 8, we can determine #(F;) as well as suitable realizers within F
in time O(nP!) for every i € [k]. Since

max{n(F) : F € Fa is a subforest of F}

q k
= max{ztin(Ti) : (tl,... ,tq) S ﬂtA(FZ)} 5
=1

i=1
the desired statement follows. []

It seems interesting to study tradeoffs between supergraphs that are required
to belong to different graph classes. For a set F of trees, for instance, a supergraph
of minimum order may be much smaller than a minimum supertree. Indeed, if
F={T(a,0,a),T7(a,0,0,a),...,T(a,0,...,0,a)} for positive integers a and k at

——

k times

least 3, then suitably identifying vertices of degree a + 1 yields a supergraph of
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Foforder24+2a+1+4+2+---+k=2a+ (k;rl) + 2, while every supertree of F

has order €2 (\/ECL).

As stated at the very beginning, all considered subgraphs were induced. Sev-
eral of our results can be adapted by small yet careful changes to non-induced
subgraphs.
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