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Abstract

For integers n ≥ m ≥ 3, let r∗(Cn, Cm) denote the star-critical Ramsey
number for a cycle of length n versus a cycle of length m. The exact value
of r∗(Cn, Cm) was determined for m = 4 by Wu, Sun, and Radziszowski
(Wheel and star-critical Ramsey numbers for quadrilateral, Discrete Appl.
Math. 186 (2015) 260–271). Subsequently, Zhang, Broersma, and Chen
(On star-critical and upper size Ramsey numbers, Discrete Appl. Math.
202 (2016) 174–180) established the exact value for all odd integers m ≥ 3.
However, the case of even m ≥ 6 has remained open. In this paper, we
determine the exact value of r∗(Cn, Cm) for all even integers m ≥ 6 and
n ≥ max{3m/2 + 1,m+ 6}, showing that

r∗(Cn, Cm) =
m

2
+ 3.
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1. Introduction

A red-blue edge-coloring of a graph G refers to an assignment of each edge of
G with one of two colors: red or blue. Given two graphs G1 and G2, we write
G→ (G1, G2) to indicate that for every red-blue edge-coloring of G, there exists
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either a red copy of G1 or a blue copy of G2 as a subgraph. The Ramsey number
r(G1, G2) is defined as

r(G1, G2) = min{r | Kr → (G1, G2)}.

When r = r(G1, G2), it is clear that Kr → (G1, G2), while Kr−1 ̸→ (G1, G2).
A more refined question is: if a graph G is a proper subgraph of Kr and contains
Kr−1 as a proper subgraph, does G → (G1, G2) necessarily hold? To address
this, Hook [10] introduced the notion of the star-critical Ramsey number. The
graph Kr−1⊔K1,k consists of a complete graph Kr−1 together with an additional
vertex that is adjacent to exactly k vertices of Kr−1. The star-critical Ramsey
number r∗(G1, G2) is defined as

r∗(G1, G2) = min{k | Kr−1 ⊔K1,k → (G1, G2),where r = r(G1, G2)}.

Cycles are among the most extensively studied graph classes in Ramsey
theory. The Ramsey numbers of cycles were first investigated by Bondy and
Erdős [1]. Shortly thereafter, Rosta [14, 15] and Faudree and Schelp [9] indepen-
dently determined the Ramsey numbers for all cycles. Their result is as follows

r(Cn, Cm)

=


2n− 1 for 3 ≤ m ≤ n, m odd, (m,n) ̸= (3, 3),

n−1 +m/2 for 4 ≤ m ≤ n, m and n even, (m,n) ̸= (4, 4),

max{n− 1 +m/2, 2m− 1} for 4 ≤ m < n, m even and n odd.

In addition, r(C3, C3) = r(C4, C4) = 6. For other results concerning Ramsey
numbers of cycles, we refer the reader to the dynamic survey [13].

We now turn our attention to star-critical Ramsey numbers. For recent
developments in this area, we refer to the monograph [4] and the survey [11].
For certain pairs of graphs (G1, G2), their star-critical Ramsey number exhibits
a particularly simple form

r∗(G1, G2) = r(G1, G2)− 1.

That is, when r = r(G1, G2), even the removal of a single edge e from Kr yields
Kr − e ̸→ (G1, G2). Such a pair (G1, G2) is said to be Ramsey-full [17].

The pair (C3, C3) serves as a classical example of a Ramsey-full pair. This
fact was first pointed out by Erdős, Faudree, Rousseau, Schelp [7], who attributed
the result to Chvátal. Consider the complete graph with vertex set {vi | i ∈ [5]},
where v1v2v3v4v5v1 forms a red 5-cycle, and v1v3v5v2v4v1 forms a blue 5-cycle.
Then, add a copy v′1 of the vertex v1, preserving the same adjacency and edge-
coloring pattern as v1. This yields a red-blue edge-colored graph K6 − e that
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contains no monochromatic C3. Therefore, (C3, C3) is Ramsey-full. Using a
similar construction, for any m ≥ 3 and n ≥ 3, the graph pair (Km,Kn) is
Ramsey-full.

Erdős and Faudree [8] further proved that the pair (C4, C4) is also Ramsey-
full. They also raised the question of whether it is possible to characterize all
Ramsey-full pairs or to find infinite families of Ramsey-full pairs.

When m is odd, n ≥ m ≥ 3, and (m,n) ̸= (3, 3), the second author of this
paper, together with Broersma and Chen [17], established that

r∗(Cn, Cm) = n+ 1.

When n ≥ m = 4, Wu, Sun, and Radziszowski [16] determined the corre-
sponding star-critical Ramsey number, obtaining

r∗(Cn, C4) = 5.

When m is even and n ≥ m ≥ 6, the determination of r∗(Cn, Cm) has re-
mained open for the past decade. In this paper, we make progress on this problem
by completely determining the corresponding star-critical Ramsey numbers under
a slightly enlarged range of n.

Theorem 1. For even m ≥ 6 and n ≥ max{3m/2 + 1,m+ 6}, we have

r∗(Cn, Cm) = m/2 + 3.

At this point, the only unresolved cases for the star-critical Ramsey numbers
of cycles are

even m ≥ 6 and m ≤ n ≤ max{3m/2,m+ 5}.

In this range, based on the results of Section 3, we have r∗(Cn, Cm) ≥ m/2 + 3.
Furthermore, when n is odd and n ≤ 3m/2, it holds that r(Cn, Cm) = 2m − 1.
In this situation, a stronger lower bound r∗(Cn, Cm) ≥ m+1 can be established.
However, the methods employed in this paper are not sufficient to handle the
remaining cases within this interval.

We now introduce additional notation and terminology. For a positive integer
k, we use [k] to denote the set {1, . . . , k}. For a graph G, we write |G| and e(G) to
denote its number of vertices and edges, respectively, and G for its complement.
Given a vertex set V1 ⊆ V (G), we denote by G[V1] the subgraph induced by V1.
For a vertex v ∈ V (G), let d(v) denote its degree. The minimum and maximum
degrees of G are denoted by δ(G) and ∆(G), respectively. The lengths of the
longest and shortest cycles in G are denoted by c(G) and g(G), respectively. A
graph G is said to be pancyclic if it contains cycles of every length from 3 up to
the order of a Hamiltonian cycle. It is called weakly pancyclic if it contains cycles
of every length from g(G) to c(G). A matching in a graph G is a set of edges no
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two of which share a common endpoint. For a red-blue edge-colored graph H, its
subgraph HR is defined as the graph with the same vertex set as H and whose
edge set consists of all red edges of H; likewise, the subgraph HB has the same
vertex set as H, and its edge set comprises all the blue edges of H.

In Section 2, we present eight lemmas required for establishing the upper
bound in the proof of the main theorem. The lower and upper bounds of Theo-
rem 1 will be proved in Sections 3 and 4, respectively.

2. Useful Lemmas

Lemma 2 (Rosta [14, 15] and Faudree and Schelp [9] independently). r(Cn, C2ℓ) =
n+ ℓ− 1 for n ≥ 3ℓ and ℓ ≥ 2.

Lemma 3 (Brandt [3]). Every nonbipartite graph G with more than (|G|−1)2/4+
1 edges is weakly pancyclic with g(G) = 3.

Lemma 4 (Erdős and Gallai [6]). Let G be a graph of order n and 3 ≤ c ≤ n. If
e(G) > (n− 1)(c− 1)/2 + 1, then c(G) ≥ c.

Lemma 5 (Dirac [5]). Let G be a graph with at least three vertices. If δ(G) ≥
|G|/2, then G is Hamiltonian.

Bondy and Chvátal [2] provided a result indicating that the sufficient condi-
tion δ(G) ≥ |G|/2 for a graph G to be Hamiltonian can be relaxed. The closure
of a graph G = (V,E) is defined as the graph obtained by recursively adding
edges between non-adjacent vertex pairs whose degree sum is at least |V |, until
no such pairs remain.

Lemma 6 (Bondy and Chvátal [2]). A graph is Hamiltonian if and only if its
closure is Hamiltonian.

Lemma 7 (Jackson [12]). Let G = (X,Y ) be a bipartite graph with partite sets X
and Y such that d(x) ≥ k for all x ∈ X, where |X| ≥ 2 and 2 ≤ k ≤ |Y | ≤ 2k−2.
Then G contains all cycles on 2m vertices for 2 ≤ m ≤ min{|X|, k}.

Lemma 8. For any graph G with at least six vertices, either e(G) > (|G| −
1)2/4 + 1 or e(G) > (|G| − 1)2/4 + 1.

Proof. Assume for contradiction that the statement does not hold. Then

|G|(|G| − 1)

2
= e(G) + e(G) ≤ 2

(
(|G| − 1)2

4
+ 1

)
.

This implies |G| ≤ 5, a contradiction.
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Lemma 9. Let G be a graph with a longest cycle Cp, and let X denote the set of
vertices not on Cp. For a vertex x ∈ X, let W be the set of its neighbors on Cp.
Fix an orientation of Cp and let W+ denote the set of successors of the vertices
in W along the orientation. Then W+ ∪{x} forms an independent set, and each
vertex in X \ {x} is adjacent to at most one vertex in W+.

Proof. Given an orientation
−→
Cp of the cycle Cp, let x+i denote the successor

of xi along this orientation. Suppose that x is adjacent to some x+i ∈ W+.
Since x is also adjacent to xi ∈ W , it is adjacent to two consecutive vertices on
Cp. Replacing the edge xix

+
i on Cp with the path xixx

+
i yields a cycle Cp+1,

contradicting the maximality of Cp. Thus, x is not adjacent to any vertex in
W+.

Suppose two vertices x+i and x+j inW+ are adjacent. Then xixxj
←−
Cpx

+
i x

+
j

−→
Cpxi

forms a cycle of length p+1, again a contradiction. Hence, W+ is an independent
set.

Furthermore, suppose there exists a vertex y ∈ X \ {x} that is adjacent to

at least two vertices in W+, say x+i and x+j . Then the path xixxj
←−
Cpx

+
i yx

+
j

−→
Cpxi

forms a cycle of length p + 2, which is again a contradiction. Therefore, each
vertex in X \ {x} is adjacent to at most one vertex in W+.

3. Proof of the Lower Bound

Kn−1

H1

Kℓ−1

H2

u0

u1

Figure 1. Kn+ℓ−2 ⊔K1,ℓ+2 avoiding red Cn and blue C2ℓ.

In this section and the next, to avoid fractional expressions, we replace the
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even integer m in the theorem with 2ℓ. This substitution makes the arguments
cleaner and more readable.

In this section, we establish the lower bound. We relax the conditions on
n and ℓ, and prove that for n ≥ 4, ℓ ≥ 2, and n > ℓ, there exists a red-blue
edge-coloring of the graph Kn+ℓ−2 ⊔ K1,ℓ+2 that contains neither a red copy of
Cn nor a blue copy of C2ℓ. This coloring is illustrated in Figure 1 and described
in detail below.

Let H1 and H2 be two disjoint red cliques on n − 1 and ℓ − 1 vertices,
respectively. Choose a vertex u1 in H1, and color all edges between u1 and the
vertices of H2 red. For every vertex in H1 − u1, color all edges to the vertices in
H2 blue. It is straightforward to verify that the resulting coloring of the complete
graph Kn+ℓ−2 contains neither a red Cn nor a blue C2ℓ.

Next, we introduce an additional vertex u0, and color all edges between u0
and the vertices of H2 blue. Also color the edge u0u1 blue, and between u0 and
the vertices of H1 − u1, include one blue edge and one red edge. This gives a
red-blue edge-coloring of the graph Kn+ℓ−2 ⊔K1,ℓ+2. Since u0 is incident to only
one red edge, it cannot lie on any red cycle Cn.

If u0 is contained in a blue cycle C2ℓ, then such a cycle must include a blue
edge from u0 to H1 − u1 and another from u0 to H2. However, in the complete
graph Kn+ℓ−2, there is no blue path of even length connecting a vertex in H1 to
a vertex in H2. Thus, u0 cannot lie on any blue cycle C2ℓ.

Combining the above observations, we conclude that in this red-blue edge-
coloring of Kn+ℓ−2 ⊔K1,ℓ+2, there exists neither a red Cn nor a blue C2ℓ.

4. Proof of the Upper Bound

In this section, we establish the upper bound. Specifically, we prove that when
n ≥ max{3ℓ + 1, 2ℓ + 6} and ℓ ≥ 3, we have Kn+ℓ−2 ⊔K1,ℓ+3 → (Cn, C2ℓ). Let
G denote the graph Kn+ℓ−2, and let u be the vertex joined to G by ℓ+ 3 edges.
We proceed by contradiction: suppose there exists a red-blue edge-coloring of
Kn+ℓ−2 ⊔K1,ℓ+3 that avoids both a red Cn and a blue C2ℓ.

Since n − 1 ≥ 3ℓ, it follows from Lemma 2 that G contains a red cycle
Cn−1. Denote by H the complete subgraph induced by V (Cn−1), and let X =
V (G) \ V (Cn−1). Then |X| = ℓ− 1. We now present a series of claims.

Claim 10. GR is not bipartite.

Proof. Since n ≥ 3ℓ + 1, we have |G| = n + ℓ − 2 ≥ 4ℓ − 1. If GR is bipartite,
then by the pigeonhole principle, one of its partite sets would contain at least 2ℓ
vertices. Thus, G would contain a blue K2ℓ as a subgraph, which in turn contains
a blue C2ℓ as a subgraph, a contradiction.
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Claim 11. Suppose V (G) is partitioned into two sets A and B with |A| = n− 1
and |B| = ℓ − 1. If each vertex in B is incident to at most one red edge to A,
then u is incident to at most two blue edges to A.

Proof. Suppose not. Then there exist a1, a2, a3 ∈ A such that the edges uai are
blue for each i ∈ [3].

For any b1, b2 ∈ B, each of them is connected to at least two of {a1, a2, a3}
by blue edges. Hence, there exists a matching of two blue edges between {b1, b2}
and {a1, a2, a3}. Without loss of generality, assume a1b1 and a2b2 are blue edges.

In A\{a1, a2, a3}, there are at most |B| vertices adjacent to B via red edges.
The remaining vertices in A \ {a1, a2, a3} are at least

|A \ {a1, a2, a3}| − |B| = (n− 1− 3)− (ℓ− 1) ≥ ℓ+ 3.

All edges between these vertices and B are blue. In other words, the induced
bipartite subgraph between A \ {a1, a2, a3} and B contains a blue Kℓ+3,ℓ−1 as a
subgraph. It is easy to find within this subgraph a blue path of length 2ℓ − 4
with endpoints b1 and b2. Combined with the path b1a1ua2b2, this forms a blue
cycle C2ℓ, leading to a contradiction.

Claim 12. GB is not a bipartite graph.

Proof. We proceed by contradiction. Suppose that GB is bipartite, and let its
two partite sets be denoted by V1 and V2. Without loss of generality, assume
|V1| ≥ |V2|. Clearly, |V1| ≤ n− 1, and hence |V2| ≥ |G| − |V1| ≥ ℓ− 1.

If |V1| = n − 1, then |V2| = ℓ − 1. Since GB is bipartite, G[V1] induces a
red complete subgraph Kn−1. As G does not contain a red Cn, each vertex in
V2 ∪ {u} has at most one red edge to V1. By Claim 11, the vertex u has at most
two blue edges to V1. Therefore, the total degree of u is at most 3+ |V2| ≤ ℓ+2,
which leads to a contradiction. This contradiction implies that |V1| ≤ n− 2, and
hence |V2| ≥ ℓ.

We claim that there does not exist a matching of two red edges between V1

and V2. Otherwise, suppose that v1v2 and v3v4 are red edges with v1, v3 ∈ V1 and
v2, v4 ∈ V2. In G[V1], there exists a red path of order |V1| with endpoints v1 and
v3; similarly, in G[V2], there exists a red path of order n− |V1| with endpoints v2
and v4. The latter path exists since |V2| ≥ n − |V1| ≥ 2. These two red paths,
together with the red edges v1v2 and v3v4, form a red cycle Cn, which is again a
contradiction. Therefore, there is no matching of two red edges between V1 and
V2. It follows that there exists a vertex v0 in GB such that all edges between
V1\{v0} and V2\{v0} are blue. Note that for i ∈ [2], if v0 ̸∈ Vi, then Vi\{v0} = Vi.

Since G has at least 4ℓ− 1 vertices and |V1| ≥ |V2|, it follows that V1 \ {v0}
contains at least 2ℓ − 1 vertices. If V2 \ {v0} contains at least ℓ vertices, then
the graph contains a blue complete bipartite subgraph Kℓ,ℓ, contradicting the
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assumption that G does not contain a blue C2ℓ. Therefore, V2 \ {v0} has at most
ℓ − 1 vertices. Since |V2| ≥ ℓ, we must have |V2| = ℓ and v0 ∈ V2. In this case,
|V1| = n− 2.

If v0 has at least two blue edges to V1, let v5 and v6 be two such neighbors
in V1. Because every vertex in V1 is connected to every vertex in V2 \ {v0} via
blue edges, one can easily find a blue path of length 2ℓ− 2 with endpoints v5 and
v6. This blue path, together with v5v0v6, forms a blue cycle C2ℓ, which yields a
contradiction.

Therefore, we only need to consider the remaining case: v0 has at most one
blue edge to V1, i.e., v0 has at least n− 3 red edges to V1. In this case, if u has at
least two red edges to V1 ∪ {v0}, then by Lemma 6, the subgraph G[V1 ∪ {v0, u}]
contains a red Hamiltonian cycle Cn, which is a contradiction. Hence, the vertex
u has at most one red edge to V1 ∪ {v0}.

The sets V1∪{v0} and V2 \{v0} correspond to the sets A and B, respectively,
in Claim 11. By that claim, u has at most two blue edges to V1 ∪ {v0}.

Consequently, the total degree of u is at most 1+2+(|V2|−1) = ℓ+2, again
a contradiction. Therefore, GB is not bipartite.

Claim 13. The number of edges in GB is at most (|G| − 1)2/4 + 1.

Proof. Suppose the claim is false. By Lemma 3 and Claim 12, the graph GB is
weakly pancyclic with girth g(GB) = 3.

Since |G| ≥ n+ ℓ− 2 ≥ 4ℓ− 1, it follows that

(|G| − 1)2/4 + 1 > (|G| − 1)(2ℓ− 1)/2.

By Lemma 4, we then have c(G) ≥ 2ℓ.

This implies that GB contains a cycle C2ℓ as a subgraph, a contradiction.

Claim 14. The graph GR contains no cycle of length at least n.

Proof. By Lemmas 3 and 8, together with Claims 10 and 13, the graph GR is
weakly pancyclic with girth g(GR) = 3.

If GR contains a cycle of length at least n, then it contains a copy of Cn as
a subgraph, which gives a contradiction.

Claim 15. Each vertex in X has at most ℓ red edges to V (H).

Proof. Suppose not. Assume there exists a vertex x ∈ X that has at least ℓ+ 1
neighbors in V (H) via red edges. Let W be a set of ℓ+1 neighbors of x in V (H)
joined by red edges. For a orientation of the cycle Cn−1, let W

+ denote the set
of successors of the vertices in W . By Lemma 9, the subgraph G[W+ ∪ {x}] is a
blue complete graph, and each vertex in X \{x} has at most one red edge to W+.
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Consider the graph G[W+ ∪ X], which has 2ℓ vertices and each vertex is
incident to at least ℓ blue edges. By Lemma 5, the subgraph G[W+∪X] contains
a blue cycle C2ℓ. This contradiction completes the proof of the claim.

Claim 16. ∆(HB) ≤ ℓ+ 1.

Proof. Suppose to the contrary that ∆(HB) ≥ ℓ + 2. That is, there exists a
vertex v in H that is incident to at least ℓ+ 2 blue edges in H. We choose a set
of 2ℓ+ 2 vertices from H − v, among which at least ℓ+ 2 are neighbors of v via
blue edges. Denote this set of 2ℓ+ 2 vertices by Y .

Since |Y | = 2ℓ+ 2 and by Claim 15, each vertex in X has at least ℓ+ 2 blue
edges to Y . Viewing X ∪ {v} as the set X in Lemma 7 and taking k = ℓ + 2 in
the lemma, it follows from Lemma 7 that there exists a blue cycle of length 2ℓ.
This contradiction proves that ∆(HB) ≤ ℓ+ 1.

Claim 17. Each vertex in X ∪ {u} has at most one red edge to V (H).

Proof. Suppose not. Then there exists a vertex x ∈ X ∪ {u} with at least two
red edges to V (H).

By Claim 16, we have δ(HR) ≥ |H|−1− (ℓ+1) = n−ℓ−3. Since n ≥ 2ℓ+6,
it follows that δ(HR) ≥ n/2. By Lemma 6, the subgraph induced by V (H)∪{x}
contains a red Hamiltonian cycle, contradicting the assumption that the graph
contains no red Cn.

By Claims 11 and 17, the vertex u has at most two blue edges to V (H).
Together with Claim 17, it follows that u has at most three edges to V (H) in
total. Since u has at most |X| = ℓ − 1 edges to X, the total degree of u is at
most ℓ+ 2, yielding a final contradiction.
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