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Abstract

The authors explain and correct a mistake in [The thickness of amalga-
mations and Cartesian product of graphs, Discuss. Math. Graph Theory 37
(2017) 561–572]. The same mistake in [The thickness of the Cartesian prod-
uct of two graphs, Canad. Math. Bull. 59 (2016) 705–720] is also corrected.
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In [3], the authors stated: “From a planar decomposition of Kn□P2, by
contracting the edges from K2

n to a single vertex in every planar subgraphs, one
can obtain a planar decomposition of Kn+1, so we have θ(Kn□P2) ≥ θ(Kn+1)”.
However, this is not true, because the graphs resulting from such contraction may
not be planar. For example, Figure 1 exhibits a decomposition of K8□P2 into
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two planar subgraphs, but contracting either copy of K8 makes at least one of
the subgraphs non-planar. Consequently, Theorems 16 and 17 of [3] are not true,
and they need to be replaced with weaker versions, which we will present here.

The following theorem is well-known.

Theorem 1 [1]. The thickness of the complete graph Kn is θ(Kn) =
⌊
n+7
6

⌋
,

except that θ(K9) = θ(K10) = 3.

For the thickness of Kn□Pm (m ≥ 2) we have a lower bound

θ(Kn) ≤ θ(Kn□Pm),(1)

because Kn is a subgraph of Kn□Pm. For upper bounds, from inequality (2) in
[3] we have

θ(Kn□P2) ≤ θ(Kn+1),(2)

and for m ≥ 3, from inequality (3) in [3] we have

θ(Kn□Pm) ≤ θ(Kn+2 − e) ≤ θ(Kn+2).(3)

Combining the lower and upper bounds we obtain the following results.
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Figure 1. A planar decomposition of K8□P2. The numbers refer to the vertices of K8.
The letters and the colors refer to the vertices of P2.

Theorem 2. The thickness of the Cartesian product Kn□P2 (n ≥ 2) is

θ(Kn□P2) =

⌊
n+ 8

6

⌋
,

except that θ(K9□P2) = 3 and possibly when n = 6p+ 4 (p ≥ 2).
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Proof. First we consider the general case that n /∈ {8, 9} and n is not of the
form 6p+ 4, where p is an integer. Then the lower bound (1) coincides with the
upper bound (2), that is θ(Kn) = θ(Kn+1) =

⌊
n+8
6

⌋
, thus θ(Kn□P2) =

⌊
n+8
6

⌋
as

claimed.
Next we consider the remaining cases. If n = 8, by (1) we have θ(K8□P2) ≥ 2.

Figure 1 shows a decomposition of K8□P2 into two planar subgraphs. Hence we
have θ(K8□P2) = 2 =

⌊
8+8
6

⌋
as claimed.

If n = 4, K4□P2 is non-planar, and it is a subgraph ofK8□P2, thus θ(K4□P2)
= 2 =

⌊
4+8
6

⌋
as claimed.

If n = 9 or n = 10, again the lower bound (1) coincides with the upper bound
(2); both are 3, thus θ(K9□P2) = θ(K10□P2) = 3 as claimed.

We note that Theorem 2 leaves unknown the thicknesses ofK16□P2, K22□P2,
and so on.

Theorem 3. The thickness of the Cartesian product Kn□Pm (n ≥ 2,m ≥ 3) is

θ(Kn□Pm) =

⌊
n+ 9

6

⌋
,

except that θ(K3□Pm) = 1 and possibly when n = 6p + 3, 6p + 4 and n = 8
(p ≥ 2). Moreover, θ(K8□P3) = 2.

Proof. When n ̸= 7, 8, from (1), (3) and Theorem 1, we obtain θ(Kn□Pm) =
θ(Kn+2), except possibly when n = 6p+ 3, 6p+ 4 (p is a nonnegative integer).

When n = 7, we have θ(K7) ≤ θ(K7□Pm) ≤ θ(K9−e), because both K7 and
K9 − e have thickness two, we have θ(K7□Pm) = 2.

When n = 3, because θ(K3) ≤ θ(K3□Pm) ≤ θ(K5 − e) and both K3 and
K5 − e are planar graphs, we have θ(K3□Pm) = 1.

When n = 4, K4□Pm is non-planar and θ(K4□Pm) ≤ θ(K6), so we have
θ(K4□Pm) = 2.

When n = 8 and m = 3, K8□P3 is non-planar and has a decomposition into
two planar subgraphs as shown in Figure 2, thus θ(K8□P3) = 2.

When n = 9, because θ(K9) ≤ θ(K9□Pm) ≤ θ(K11) and both K9 and K11

have thickness three, we have θ(K9□Pm) = 3.
When n = 10, because θ(K10) ≤ θ(K9□Pm) ≤ θ(K12) and both K10 and K12

have thickness three, we have θ(K10□Pm) = 3.

Let G be a connected graph, and let v /∈ G. We denote by G+ v the graph
obtained by connecting every vertex of G to the new vertex v. Furthermore,
Lemma 2.3 in [2] states that the thickness of G□K2 is equal to θ(G + v). How-
ever, the proof contains an error similar to one mentioned previously. In fact,
it demonstrates that θ(G□K2) ≤ θ(G + v). Theorem 2.4 in [2] is dependent on
Lemma 2.3 in [2]; therefore, it cannot be considered valid.
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Figure 2. A planar decomposition of K8□P3. The numbers refer to the vertices of K8.
The letters and the colors refer to the vertices of P3.

For convenience we list here the edges of the decompositions in our figures.

Figure 1 left, 25 edges:

(1a, 1b), (1a, 2a), (1a, 5a), (1a, 6a), (1a, 7a), (2a, 2b), (2a, 4a), (2a, 6a), (2b, 3b),

(2b, 7b), (2b, 8b), (3a, 3b), (3b, 5b), (3b, 6b), (4a, 7a), (4b, 7b), (5a, 7a), (5b, 6b),

(5b, 7b), ((6a, 6b), 6a, 7a), (6a, 8a), (6b, 7b), (6b, 8b), (7a, 7b).

Figure 1 right, 39 edges:

(1a, 3a), (1a, 4a), (1a, 8a), (1b, 2b), (1b, 3b), (1b, 4b), (1b, 5b), (1b, 6b), (1b, 7b),

(1b, 8b), (2a, 3a), (2a, 5a), (2a, 7a), (2a, 8a), (2b, 4b), (2b, 5b), (2b, 6b), (3a, 4a),

(3a, 5a), (3a, 6a), (3a, 7a), (3a, 8a), (3b, 4b), (3b, 7b), (3b, 8b), (4a, 4b), (4a, 5a),

(4a, 6a), (4a, 8a), (4b, 5b), (4b, 6b), (4b, 8b), (5a, 5b), (5a, 6a), (5a, 8a), (5b, 8b),

(7a, 8a), (7b, 8b), (8a, 8b).

Figure 2 left, 47 edges:

(1a, 3a), (1a, 6a), (1b, 2b), (1b, 3b), (1b, 4b), (1b, 6b), (1c, 2c), (1c, 3c), (1c, 4c),

(1c, 5c), (1c, 6c), (1c, 7c), (1c, 8c), (2a, 2b), (2a, 3a), (2a, 6a), (2b, 2c), (2b, 3b),

(2b, 4b), (2b, 8b), (2c, 6c), (3a, 4a), (3a, 5a), (3a, 7a), (3a, 8a), (3b, 3c), (3b, 8b),

(3c, 4c), (3c, 6c), (4a, 4b), (4a, 6a), (4a, 8a), (4b, 6b), (4c, 6c), (4c, 7c), (5a, 5b),

(5a, 6a), 5a, 7a), (5a, 8a), (5c, 6c), (6a, 7a), (6a, 8a), (6b, 8b), (6c, 7c), (6c, 8c),

(7b, 7c), (7c, 8c).
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Figure 2 right, 53 edges:

(1a, 1b), (1a, 2a), (1a, 4a), (1a, 5a), (1a, 7a), (1a, 8a), (1b, 1c), (1b, 5b), (1b, 7b),

(1b, 8b), (2a, 4a), (2a, 5a), (2a, 7a), (2a, 8a), (2b, 5b), (2b, 6b), (2b, 7b), (2c, 3c),

(2c, 4c), (2c, 5c), (2c, 7c), (2c, 8c), (3a, 3b), (3a, 6a), (3b, 4b), (3b, 5b), (3b, 6b),

(3b, 7b), (3c, 5c), (3c, 7c), (3c, 8c), (4a, 5a), (4a, 7a), (4b, 4c), (4b, 5b), (4b, 7b),

(4b, 8b), (4c, 5c), (4c, 8c), (5b, 5c), (5b, 6b), (5b, 7b), (5b, 8b), (5c, 7c), (5c, 8c),

(6a, 6b), (6b, 6c), (6b, 7b), (7a, 7b), (7a, 8a), (7b, 8b), (8a, 8b), (8b, 8c).
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