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Abstract

The detour order of a graph G, denoted by τ(G), is the order of a longest
path in G. If a and b are positive integers and the vertex set of G can be
partitioned into two subsets A and B such that τ(⟨A⟩) ≤ a and τ(⟨B⟩) ≤ b,
we say that (A,B) is an (a, b)-partition of G. If equality holds in both
instances, i.e., if τ(⟨A⟩) = a and τ(⟨B⟩) = b, we call (A,B) an exact (a, b)-
partition. The Path Partition Conjecture asserts that if G is any graph and
a, b any pair of positive integers such that τ(G) = a + b, then G has an
(a, b)-partition. The Strong Path Partition Conjecture asserts that, under
the same conditions, G has an exact (a, b)-partition. The Path Partition
Conjecture is now more than 40 years old. It first appeared in the literature
in a paper by Laborde, Payan and Xuong (1982). It is known that the Path
Partition Conjecture holds for all a ≤ 8. The case a ≤ 5 was first proved
by Vronka (1986), the case a = 6 by Dunbar and Frick (1999) and the cases
a = 7 and a = 8 by Melnikov and Petrenko (2002 and 2005). Using a new
partition strategy involving a recursive procedure, De Wet, Dunbar, Frick
and Oellermann (2024) improved these results by showing that the Strong
Path Partition Conjecture holds for a ≤ 8. By expanding and refining
the recursive procedure, we prove that the Strong Partition Conjecture also
holds for a = 9.
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1. Introduction and Background

Let G be a graph with vertex set V (G) and edge set E(G). If S is a subset of
either V (G) or E(G), then ⟨S⟩ denotes the subgraph of G induced by S. The
number of vertices in G is called the order of G and denoted by n(G). A longest
path in G is called a detour of G. The number of vertices in a detour of G is
called the detour order of G and denoted by τ(G). By a k-path in a graph G
we mean a subgraph of G (not necessarily induced) that is isomorphic to Pk, the
path on k vertices.

Throughout the paper, a and b will denote positive integers.
If the vertex set V (G) of a graph G can be partitioned into two sets A and

B such that
τ(⟨A⟩) ≤ a and τ(⟨B⟩) ≤ b,

we say that (A,B) is an (a, b)-partition of G.
If equality holds in both instances, i.e., if

τ(⟨A⟩) = a and τ(⟨B⟩) = b,

we call (A,B) an exact (a, b)-partition. If equality holds in the first instance (but
not necessarily in the second) we call (A,B) a semi-exact (a, b)-partition of G.

The following conjecture, which first appeared in the paper [14] by Laborde,
Payan and Xuong, has become known as the Path Partition Conjecture (PPC for
short).

Conjecture 1. The PPC. If G is any graph with τ(G) ≤ a+ b, then G has an
(a, b)-partition.

Hedetniemi [11] listed the PPC as one of his top 10 favourite conjectures.
Results supporting the PPC appear in [3, 5–12, 14–17]. For a survey of these
results, the reader is referred to [7].

A set A of vertices in a graph G is called a Pa+1-kernel of G if τ(⟨A⟩) ≤ a
and every vertex in V (G) − A is adjacent to an end-vertex of a Pa in ⟨A⟩. We
note that, if τ(G) < a, then V (G) is the only Pa+1-kernel of G, but if τ(G) ≥ a,
then every Pa+1-kernel of G has detour order equal to a.

We observe the following.

Observation 1.1. If A is a Pa+1-kernel of a graph G with τ(G) = a + b and
B = V (G)−A, then (A,B) is a semi-exact (a, b)-partition of V (G).

Proof. Since b ≥ 1 (by our earlier assumption), τ(G) > a and hence τ(⟨A⟩) = a
and B ̸= ∅. Now, suppose x is an end-vertex of a path X in ⟨B⟩. Then x is
adjacent to an end-vertex of an a-path in ⟨A⟩, and hence, since τ(G) = a+ b, it
follows that X has at most b vertices. Thus τ(⟨B⟩) ≤ b.
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Broere, Hajnal and Mihók [2] conjectured that every connected graph has
a Pa+1-kernel for every a. However, Aldred and Thomassen [1] constructed a
connected graph with detour order 364 that has no P364-kernel. Later, Katrenič
and Semanǐsin [13] constructed a connected graph with no P155-kernel and also
showed that for each integer r ≥ 0 there exists a connected graph G having no
Pτ(G)−r-kernel. However, they pointed out that in each of their examples τ(G)−r
is still greater than τ(G)/2 and hence the following conjecture, which is stronger
than the PPC, has not yet been disproved.

Conjecture 2. The Revised Path Kernel Conjecture. If G is a connected
graph with detour order τ , then G has a Pa+1-kernel for every positive integer
a ≤ τ/2.

It is known that every graph has a Pa+1-kernel for each a ≤ 8. The case
a ≤ 5 was proved by Vronka [17]. Later, Dunbar and Frick [5] proved the case
a = 6 by developing a recursive procedure, which was subsequently extended and
refined by Melnikov and Petrenko [15,16] to prove the cases a = 7 and a = 8.

A corollary of the results above is that the PPC holds for all a ≤ 8. In fact,
in view of Observation 1.1, it follows that if a ≤ 8 and τ(G) = a+b, then G has a
semi-exact (a, b)-partition. Recently, De Wet, Dunbar, Frick and Oellermann [4]
improved the latter result, by showing that the following conjecture holds for
each a ≤ 8.

Conjecture 3. The Strong path Partition Conjecture. If G is any graph
such that τ(G) = a+ b, then G has an exact (a, b)-partition.

The proof of the Strong Path Partition Conjecture for a ≤ 8 relies on a
recursive procedure developed in [4]. This procedure may be summed up roughly
as follows.

Let G be a graph with τ(G) = a + b. We begin by letting A consist of the
first a vertices of some (a + b)-path in G and putting B = V (G) − A. Then
τ(⟨A⟩) = a and τ(⟨B⟩) ≥ b. Now we apply the following recursive procedure.

Step 1. If τ(B) = b, we STOP. If τ(B) > b, we let X be a (b + 1)-path in ⟨B⟩
and proceed to Step 2.

Step 2. If we can move an end-vertex of X to A without creating an (a+1)-path
in ⟨A⟩, we do so and then return to Step 1. Otherwise, we proceed to Step 3.

Step 3. We move one end-vertex of X to A, thus creating at least one (a+ 1)-
path in ⟨A⟩. We then select an a-path to be retained in ⟨A⟩ and we destroy all
(a+1)-paths in ⟨A⟩ by moving vertices to B that are not on the selected a-path.
Then we return to Step 1.
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We note that, upon completion of any step, τ(⟨A⟩) = a and there is still a
b-path in ⟨B⟩. During the implementation of Steps 2 or 3, at least one (b + 1)-
path in ⟨B⟩ is destroyed. Thus, after each implementation of Step 2, there is at
least one less (b + 1)-path in ⟨B⟩ than in the previous step. However, if Step
3 is implemented, the vertices from A that are returned to B may create other
(b+ 1)-paths in ⟨B⟩, and hence performing Step 3 need not necessarily decrease
the number of (b+ 1)-paths in ⟨B⟩. Thus, the main problem is to show that our
procedure will terminate, so that we will end up with an exact (a, b)-partition
of G.

It is shown in [4] that, if a ≤ 6, only Steps 1 and 2 will be performed, and
hence the number of (b+1)-paths will decrease with each step until none remain.
Thus the recursive procedure will terminate.

However, if a ≥ 7, we may encounter “problematic configurations”, which
will make it necessary to perform Step 3. As shown in [4], there are “forbidden
edges” associated with each problematic configuration, and if a is 7 or 8, the
edges that are added to ⟨A⟩ when Step 3 is performed, will eventually contribute
to the complexity of the structure of ⟨A⟩ to such an extent as to prohibit any
further occurrence of problematic configurations. Thus, after a finite number of
steps, only Steps 1 and 2 will be performed, and hence the recursive procedure
will eventually terminate.

In this paper, we study the structure of problematic configurations for the
case a = 9 and refine the recursive procedure described above to prove that the
Strong PPC holds for a = 9.

2. Preliminaries

In this section we provide some auxiliary results that will be used in the next
section to prove the Strong PPC for a = 9. We state these results for arbitrary
a, in anticipation that they might prove useful for extending our result beyond
a = 9.

We first provide some notation. If v ∈ V (G) and U and W are subsets of
V (G), then NU (v) = {u ∈ U : uv ∈ E(G)} and NU (W ) =

⋃
w∈W NU (w). If the

context is clear, the subscript U will be omitted.

Let T be an a-path in a graph G. If we let T = t1t2 · · · ta, this labelling of
the vertices of T imposes an orientation on T . We denote the same path with

the opposite orientation by
←−
T . Thus, the i-th vertex of T is the (a + 1 − i)-th

vertex of
←−
T .

We use the notation i ∼ j to indicate that the i-th vertex of T is adjacent
(in G) to the j-th vertex of T . If titj ∈ E(G) for some i, j ∈ {1, . . . , a} such that
|i− j| ≥ 2, we call titj an external edge of T (since titj is an edge in the induced
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subgraph ⟨V (T )⟩, but titj ̸∈ E(T )) and we call i ∼ j an external adjacency of T .
The number of external edges of T in E(G) is denoted by ext(T ).

If Z is a path in G − V (T ) such that Zti is a path in G for some i ∈
{2, . . . , a− 1}, we say that Zti is a path attached to the i-th vertex of T .

Next, we state an obvious but useful proposition.

Proposition 2.1. Suppose L1, . . . , Lm are vertex disjoint segments of a path L,
of which k are end-segments of L (k ∈ {0, 1, 2}). Then L −

⋃m
i=1 V (Li) consists

of at most m+ 1− k segments of L.

Now let G be a graph with τ(G) = a+b and suppose we wish to prove that G
has an exact (a, b)-partition by implementing the recursive procedure discussed
in Section 1. Then we need to consider the possibility that at some step in our
procedure there is a (b+ 1)-path X = x1 · · ·xb+1 in B such that

τ(⟨{x1} ∪A⟩) > a and τ(⟨{xb+1} ∪A⟩) > a.

If this is the case, as observed in Lemma 2.2 of [4], ⟨A⟩ contains four paths

R = w1 · · ·wr, S = wr+1 · · ·wr+s, P = v1 · · · vp, Q = vp+1 · · · vp+q,

of order r, s, p, q, respectively, such that Rx1S and Pxb+1Q are (a + 1)-paths.
Thus, r + s = p + q = a. (Our assumption that Rx1S and Pxb+1Q are paths
implies that P and Q are vertex disjoint, and so are R and S.)

We assume, without loss of generality, that r ≥ s and p ≥ q. Then r ≥ a/2
and p ≥ a/2, which implies that the paths R and P intersect (since otherwise
RXP would be a path with at least (a+ b+ 1) vertices).

We denote by (X,P,Q,R, S) the subgraph of G induced by the edges of the
(b+ 1)-path X and the edges of the two (a+ 1)-paths Rx1S and Pxb+1Q, i.e.,

(X,P,Q,R, S) = ⟨E(X) ∪ E(Pxb+1Q) ∪ E(Rx1S)⟩.

We call (X,P,Q,R, S) a problematic configuration and we call the component H
of ⟨A⟩ containing the path P a problematic component.

Throughout the paper, we shall use the notation given above to describe a
problematic configuration (X,P,Q,R, S) and the associated problematic compo-
nent H of ⟨A⟩. The case a = 9 is illustrated in Figure 5.

As mentioned earlier, it is the occurrence of problematic configurations that
may prevent the general recursive procedure described in Section 1 from termi-
nating. Our next lemma provides useful results on the structure of problematic
configurations in general.

Lemma 2.2. Let G be a graph with τ(G) = a + b and let (A,B) be a partition
of V (G) such that τ(⟨A⟩) = a and τ(⟨B⟩) > b. Suppose there is a (b + 1)-
path X in ⟨B⟩ and four paths P,Q,R, S defined and labelled as above, such that
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(X,P,Q,R, S) is a problematic configuration. Let H be the problematic compo-
nent of ⟨A⟩ containing the path P (and hence also the path R). Then the following
hold.

1. (a) If m ∈ {1, p, p+1, a}, then every x1vm-path in ⟨{x1}∪A⟩ has an internal
vertex in V (P ) ∪ V (Q).

(b) No neighbour of x1 is in {v1, vp, vp+1, va}. In particular, wr, wr+1 ̸∈
{v1, vp, vp+1, va}.

(c) If Y is a wrwr+1-path of order at least 3 in ⟨A⟩, then at least one internal
vertex of Y has a neighbour in H − V (Y ).

(d) If {wr, wr+1} = {vp−2, vp−1}, then vp is an internal vertex of either the
path R or the path S and on that path both the predecessor and successor
of vp are in H − {vp−1, vp−2}.

2. (a) If m ∈ {1, r, r + 1, a}, then every xb+1vm-path in ⟨{xb+1} ∪ A⟩ has an
internal vertex in V (R) ∪ V (S).

(b) No neighbour of xb+1 is in {w1, wr, wr+1, wa}. In particular, vp, vp+1 ̸∈
{w1, wr, wr+1, wa}.

(c) If Y is a vpvp+1-path of order at least 3 in ⟨A⟩, then at least one internal
vertex of Y has a neighbour in H − V (Y ).

(d) If {vp, vp+1} = {wr−2, wr−1}, then wr is an internal vertex of either the
path P or the path Q and on that path both the predecessor and successor
of wr are in H − {wr−2, wr−1}.

Proof. 1. (a) If vm is an end-vertex of either P or Q and there is an x1vm path
in ⟨{x1} ∪ A⟩ with no internal vertex in V (P ) ∪ V (Q), then there is a path in
G that contains all the vertices in V (P ) ∪ V (X) ∪ V (Q) and hence has order at
least p+ (b+ 1) + q = a+ b+ 1.

(b) It follows from (a) that x1vm is not an edge in G for any m ∈ {1, p,
p + 1, a}. In particular, since {wr, wr+1} ⊆ N(x1), it follows that wr, wr+1 ̸∈
{v1, vp, vp+1, v1}.

(c) Let Y ′ be the interior of the path Y (i.e., Y minus its two end-vertices).
Suppose neither R nor S intersects Y ′. Then RY ′S is a path of order at least a+1
in H, contradicting that τ(H) ≤ a. Thus, at least one of R and S intersects Y ′.

Suppose R, but not S, intersects Y ′. Then V (R) ̸⊂ V (Y ), since otherwise
←−
XwrY

′S would be a path with at least a+ b+1 vertices. This implies that some
vertex of R in Y ′ has a neighbour that is not in Y .

By symmetry, if S but not R intersects Y ′, some vertex of S in Y ′ has a
neighbour that is not in Y .

Now suppose each of R and S intersects Y ′. If V (R) ∪ V (S) ⊆ V (Y ), then,
since V (R)∩ V (S) = ∅, it follows that n(Y ) ≥ n(R) + n(S) = a, but then Y X is
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a path in G of order at least a+ b+1. Thus at least one of R and S has a vertex
in H − V (Y ) and hence some vertex of Y ′ has a neighbour in H − V (Y ).

(d) Suppose wr = vp−2 and wr+1 = vp−1. Then vp ∈ V (R)∪V (S) (since oth-

erwise RXvpS is a path of order a+b+1). If vp = wr−1, then w1 · · ·wr−1
←−
Xwrwr+1

· · ·wa is a path of order a + b + 1. If vp = wr+2, then w1 · · ·wr+1Xwr+2 is an
(a+b+1)-path. Thus vp ̸∈ {wr−1, wr+2}. By 2(b), vp is not an end-vertex of either
R or S and hence vp is an internal vertex of either the path R or the path S and
both the predecessor and the successor of vp on that path is in H −{vp−2, vp−1}.
The proof of the case where wr+1 = vp−1 and wr = vp−2 is similar.

By symmetry, the proof of 2 is similar to that of 1.

As shown in [4], there are only two problematic configurations for the case
a = 7, and in each case the associated problematic component of A contains a
7-path. These are illustrated in Figure 1.

v1

w7

v2

w6

v3

w5

v4

w4

v5

w3

v6

w2

v7

w1

x1 x2 xb xb+1

A

B

p = 5, q = 2
r = 5, s = 2

v1

w7

v2

w6

v3

w5

v4

w4

v5

w3

v6

w2

v7

x1 x2 xb xb+1

A

B

p = 6, q = 1
r = 4, s = 3

w1

Figure 1. The two problematic configurations for a = 7.

However, for a ≥ 8 there are problematic components with detour order less
than a. For example, Figure 2 illustrates a problematic configuration for a = 8,
where the associated problematic component H has detour order 7.

A a grows, the number as well as the complexity of the problematic con-
figurations increase. Fortunately, our recursive procedure easily eliminates any
problematic component with detour order less than a that we may encounter,
since after applying Step 3, the resulting component of ⟨A⟩ will contain an a-
path. Thus we can restrict our attention to problematic configurations where
the associated problematic component H contains an a-path T . The study of
these cases is facilitated by using Lemma 2.2 in conjunction with the following
elementary lemma.
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v1

w8

v2

w7

v3

w4

v4

w3

v5

w2

v6

w6

v7

w5

v8

x1 x2 xb xb+1

A

B

H w1

Figure 2. A problematic configuration for a = 8 with τ(H) = 7.

Lemma 2.3. Let G be a graph with τ(G) = a+ b, let T = t1 · · · ta be an a-path
in G and suppose X = x1 · · ·xb+1 is a (b + 1)-path in G − V (T ). Now suppose
that for some pair of distinct vertices th, tk ∈ V (T ) there is an x1th-path F1 and
an xb+1tk-path F2 such that F1 and F2 are vertex disjoint and all their internal
vertices are in G− (V (T ) ∪ V (X)). Then each of the following holds.

(1) h, k ̸∈ {1, a}.
(2) k ̸∈ {h− 1, h+ 1}.
(3) th−1tk−1, th+1tk+1 ̸∈ E(G).

(4) If h < k, then

(a) th+1 is not adjacent to an end-vertex of any (a−k)-path in G− ({t1, . . . ,
tk}) ∪ V (F1) ∪ V (F2));

(b) tk−1 is not adjacent to an end-vertex of any (h−1)-path in G− ({th, . . . ,
ta} ∪ V (F1) ∪ V (F2)).

(5) If t1tc ∈ E(G) for some c ∈ {3, . . . , a − 1} and tdta ∈ E(G) for some d ∈
{2, . . . , a− 2}, then the following hold.

(a) d ̸= c− 1.

(b) If d = c+ 1, then either h ≤ c and k ≤ c, or h ≥ d and k ≥ d.

(c) h, k /∈ {c− 1, d+ 1}.
(d) If h < k, then k ̸= c+ 1 and h ̸= d− 1.

(e) If d ≤ c, then h, k ̸∈ {c+ 1, d− 1}.

The proofs of items (1), (2) and (3) of Lemma 2.3 are obvious. Indirect proofs
of the statements in (4) and (5) are illustrated in Figures 3 and 4.
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t1 th th+1 tk tk+1 ta

z1 za−k

x1 xb+1

th+1 adjacent to an end-
vertex of an (a− k)-path
in G− {t1, . . . , tk}; h ≤ k

4(a)

t1 th−1 th tk−1 tk ta

z1 zh−1

x1 xb+1

tk−1 adjacent to an end-
vertex of an (h− 1)-path
in G− {th, . . . , ta}; h ≤ k

4(b)

t1 th th+1 td tc ta

x1 xb+1

d = c− 15(a)

t1 th−1 th tc tc+1 tk ta

x1 xb+1

d = c+ 1, h ≤ c and k ≥ d5(b)

Figure 3. Illustrations of indirect proofs of Lemma 2.3(4(a)–(b)) and 2.3(5(a)–(b)). In
each case, the heavy lines indicate a path of order greater than a+ b that would be in G
if a condition in the corresponding item was violated.

3. Proof of the Strong PPC for a = 9

Throughout this section we let G be a graph with τ(G) = 9+ b and we let (A,B)
be a partition of V (G) such that τ(⟨A⟩) = 9.

For easy reference, we state the definitions of a problematic configuration
and a problematic component for the specific case a = 9.

Definition 3.1. Suppose there is a (b+1)-path X = x1 · · ·xb+1 in ⟨B⟩ and that
⟨A⟩ contains four paths

P = v1 · · · vp, Q = vp+1 · · · vp+q, R = w1 · · ·wr, S = wr+1 · · ·wr+s

with p ≥ q, r ≥ s and p+ q = r + s = 9,

such that Rx1S and Pxb+1Q are 10-paths. Let (X,P,Q,R, S) be the subgraph
of G induced by the edges of the (b+1)-path X and the two 10-paths Rx1S and
Pxb+1Q, i.e.,

(X,P,Q,R, S) = ⟨E(X) ∪ E(Pxb+1Q) ∪ E(Rx1S)⟩.
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t1 tc−1 tc ta

h = c− 1 or k = c− 15(c)

X

t1 td td+1 ta

h = d+ 1 or k = d+ 15(c)

X

t1

td−1

td tk

tk+1

ta

x1 xb+1

h < k and h = d− 15(d)

t1 th−1 th tc

tk

tc+1ta

x1 xb+1

h < k and k = c+ 15(d)

t1

td−1

td tc tc+1 ta

d ≤ c and h = d− 1
or k = d− 1

5(e)

X

t1 td−1 td tc

tc+1

ta

x1 xb+1

d ≤ c and h = c+ 1
or k = c+ 1

5(e)

Figure 4. Illustrations of indirect proofs of Lemma 2.3 (5(c)–(e)). In each case, the heavy
lines indicate a path of order greater than a+ b that would be in G if a condition in the
corresponding item was violated.

Then we say (X,P,Q,R, S) is a problematic configuration in G and the com-
ponent H of ⟨A⟩ that contains P is a problematic component.

Remark 3.2. We note the following concerning the paths P,Q,R, S defined in
Definition 3.1.

(1) The vertices wr, wr+1, vp, vp+1 are four distinct vertices. (The fact that wr ̸=
wr+1 and vp ̸= vp+1 follows from our assumption that Rx1S and Pxb+1Q
are paths, and the fact that that {wr, wr+1} ∩ {vp, vp+1} = ∅ follows from
Lemma 2.2(1b).)

(2) Our assumption that p ≥ q and r ≥ s implies that p ≥ 5 and r ≥ 5, and hence
the paths R and P have one or more vertices in common (since otherwise
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RX
←−
P would be a path with at least 11 + b vertices).

(3) If p ≥ r, then s ≥ q and hence, in this case, S also intersects P (since

otherwise P
←−
XS would be a path with more than 9 + b vertices).

(4) If r ≥ p, then q ≥ s and hence, in this case, Q also intersects R (since
otherwise RXQ would be a path with more than 9 + b vertices).

Figure 5 illustrates a problematic configuration for a = 9 in the case where
p ≥ r.

v1 vp vp+1 v9

x1 xb+1

w9

S

w1

R

wr+1 wr

P Q
A

B

H

X

Figure 5. Illustrating a problematic configuration (X,P,Q,R, S) and the associated prob-
lematic component H, as defined in Definition 3.1, for the case p ≥ r. Note that Q may
be in H and each of R and S may intersect P and Q in several vertices.

By Definition 3.1 and Remark 3.2(2), (3) and (4), a component H of ⟨A⟩ is
a problematic component if there is a problematic configuration (X,P,Q,R, S)
in G such that H contains the paths P and R as well as at least one of the paths
S and Q.

A component K of ⟨A⟩ is non-problematic if there is no problematic config-
uration (X,P,Q,R, S) in G such that the paths P and R are in K. This means
that if K is a non-problematic component of ⟨A⟩ and X is any (b + 1)-path in
⟨B⟩, we can move at least one of x1 and xb+1 to A without creating a 10-path in
⟨A⟩ that intersects K.

To prove the Strong PPC for a = 9, we shall design a recursive procedure
based on the general procedure described in Section 1. We shall show that the
procedure will transform problematic components into non-problematic compo-
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nents until, after a finite number of steps, no more problematic components
will be encountered, thus ensuring that the procedure will terminate. Since any
problematic component with detour order less than 9 will be transformed into a
component of ⟨A⟩ with detour order equal to 9, we restrict our attention to prob-
lematic components with detour order equal to 9. This leads to the following
definition.

Definition 3.3. Suppose (X,P,Q,R, S) is a problematic configuration, defined
and labelled as in Definition 3.1 and suppose the associated problematic compo-
nent H contains a 9-path T = t1 · · · t9. Then we let

(X,P,Q,R, S, T ) = ⟨E((X,P,Q,R, S)) ∪ E(T )⟩.

and we say (X,P,Q,R, S, T ) is a complex configuration in G.

To avoid having to consider isomorphic copies of complex configurations
which result from reversing the orientation of T or X, we restrict our investi-
gation to the three types of complex configurations defined below.

Definition 3.4. Suppose (X,P,Q,R, S, T ) is a complex configuration, defined
and labelled as in Definition 3.3. Then we say

(a) (X,P,Q,R, S, T ) is an A-configuration if p ≥ r and neither {wr, wr+1} nor
{vp, vp+1} is a subset of V (T ).

(b) (X,P,Q,R, S, T ) is a B-configuration if neither {wr, wr+1} nor {vp, vp+1}
is a pair of consecutive vertices of T and each of the following holds.

(1) {wr, wr+1} = {tg, th}, for some pair g, h such that 2 ≤ g ≤ h− 2 ≤ 6.

(2) If tk ∈ {vp, vp+1}, then k > g.

(c) (X,P,Q,R, S, T ) is a C-configuration if {wr, wr+1} = {th, th+1} for some
h ∈ {2, 3, 4}.

We now show that if T is any 9-path in a problematic component, then T
can be oriented so that it is in an A-configuration, a B-configuration or a C-
configuration in G.

Lemma 3.5. Suppose (X,P,Q,R, S) is a problematic configuration, defined and
labelled as in Definition 3.1 and let H be the associated problematic component
of ⟨A⟩. Suppose H contains a 9-path T = t1 · · · t9. Then at least one of T and
←−
T is in an A- B- or C-configuration with X or

←−
X .

Proof. We consider three possibilities regarding the intersections of the sets
{wr, wr+1} and {vp, vp+1} with V (T ).

(a) Suppose neither {wr, wr+1} nor {vp, vp+1} is a subset of V (T ). Then

(X,P,Q,R, S, T ) is an A-configuration if p ≥ r, and (
←−
X,P,Q,R, S, T ) is an A-

configuration if r ≥ p.
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(b) Suppose at least one of the sets {wr, wr+1} and {vp, vp+1} is contained in
V (T ), but neither set is a pair of consecutive vertices of T .

– Suppose {wr, wr+1} = {tg, th} ⊂ V (T ), with 2 ≤ g ≤ h− 2 ≤ 6.

⋆ If {vp, vp+1} = {tk, tm} ⊂ V (T ), with 2 ≤ k ≤ m−2 ≤ 6, then (X,P,Q,R,

S, T ) is a B-configuration if g < k, and if k < g then (
←−
X,P,Q,R, S, T ) is

a B-configuration.

⋆ If {vp, vp+1} ∩ V (T ) = ∅, then (X,P,Q,R, S, T ) is a B-configuration

⋆ If {vp, vp+1} ∩ V (T ) = {tk}, then (X,P,Q,R, S, T ) is a B-configuration if

g < k, and (X,P,Q,R, S,
←−
T ) is a B-configuration if k > g.

– Suppose {wr, wr+1} ̸⊂ V (T ). Then we may assume that {vp, vp+1} = {tk, tm},
with 2 ≤ k ≤ m− 2 ≤ 6.

⋆ If {wr, wr+1} ∩ V (T ) = ∅, then (
←−
X,P,Q,R, S, T ) is a B-configuration.

⋆ If {wr, wr+1} ∩ V (T ) = {th}, then (
←−
X,P,Q,R, S, T ) is a B-configuration

if k < h, and (
←−
X,P,Q,R, S,

←−
T ) is a B-configuration if k > h.

(c) Suppose at least one of the sets {wr, wr+1} and {vp, vp+1} is a pair of
consecutive vertices of T .

– If {wr, wr+1} = {th, th+1} for some h ∈ {2, . . . , 7}, then (X,P,Q,R, S, T ) is a

C-configuration if h ≤ 4, and (X,P,Q,R, S,
←−
T ) is a C-configuration if h ≥ 5

(because th+1 is the (9− h)-th vertex of
←−
T ).

– If {vp, vp+1} = {tk, tk+1} for some k ∈ {2, . . . , 7}, then (
←−
X,P,Q,R, S, T ) is a

C-configuration if k ≤ 4, and (
←−
X,P,Q,R, S

←−
T ) is a C-configuration if k > 4.

Corollary 3.6. Let T = t1 · · · t9 be a 9-path in ⟨A⟩. If neither T nor
←−
T is in an

A-configuration, a B-configuration or a C-configuration with any (b+ 1)-path in
⟨B⟩, then the component K of ⟨A⟩ containing T is non-problematic.

If (X,P,Q,R, S, T ) is a complex configuration in G, the 9-path T may have
external edges in G which are not necessarily in E(R) ∪ E(S) ∪ E(P ) ∪ E(Q)).
In the case of C-configurations, external edges incident with the end-points of
T require special consideration, as will become clear in the proof of our main
theorem.

We call a C-configuration (X,P,Q,R, S, T ) in G a nice C-configuration if
at least one of the end-vertices of T is not incident with an external edge of T .

In the case of C-configurations that are not nice, we will need to consider
expanded C-configurations, defined as follows.

Definition 3.7. Suppose (X,P,Q,R, S, T ) is a C-configuration in G, defined and
labelled as in Definition 3.4(c), and each of t1 and t9 is incident with an external
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edge of T . Let c be the smallest number in {3, . . . , 8} such that t1tc ∈ E(G) and
let d be the smallest number in {2, . . . , 7} such that t9td ∈ E(G). Let

(X,P,Q,R, S, T, c, d) = ⟨E((X,P,Q,R, S, T )) ∪ {t1tc, t9td}⟩.

Then we call (X,P,Q,R, S, T, c, d) an expanded C-configuration.

The following lemma regarding the structure of A-, B- and C-configurations
will play a key role in the proof of our main theorem.

Lemma 3.8. Suppose (X,P,Q,R, S, T ) is a complex configuration in G, defined
and labelled as in Definition 3.4.

(A) If (X,P,Q,R, S, T ) is an A-configuration, then it is one of the three con-
figurations A1, A2, A3, described and illustrated in Figure 8.

(B) If (X,P,Q,R, S, T ) is a B-configuration, then it is one of the nine config-
urations B1, . . . ,B9, described and illustrated in Figures 9, 10 and 11.

(C) If (X,P,Q,R, S, T ) is a C-configuration, then either (X,P,Q,R, S, T ) is a
nice C-configuration, or the expanded C-configuration (X,P,Q,R, S, T, c, d)
is one of the seven configurations C1, . . . ,C7 described and illustrated in
Figures 12, 13 and 14.

Proof. (A) Suppose (X,P,Q,R, S, T ) is an A-configuration. Then, according to
Definition 3.4(a), p ≥ r and there is a w ∈ {wr, wr+1} and a v ∈ {vp, vp+1} such
that w, v ̸∈ V (T ).

Since p ≥ r, it follows from Remark 3.2(2) and (3) that the paths R,S, P
and T all lie in H. Thus, for some h ∈ {2, . . . , 8} there is a wth path F in H
with no internal vertex in V (T ).

It follows from Remark 3.2(1) that w ̸= v and hence, if v ̸∈ V (F ), then v
←−
XF

is a path of order at least 4 + b. On the other hand, if v ∈ V (F ), then
←−
XF is a

path of order at least 4 + b. In either case, there is a path of order 4 + b ending
at th that contains no vertex in T − {th}. If h ̸∈ {4, 5, 6}, then either the path
t1 · · · th or the path th · · · t9 has at least 7 vertices, and hence there is a path in G
having at least 10+b vertices, contradicting that τ(G) = 9+b. Thus h ∈ {4, 5, 6}.

Case 1. h = 4. In this case,
←−
XFt5t6t7t8t9 is a path of order b + 6 + n(F ),

and hence n(F ) ≤ 3.

By Lemma 2.2(1b), w ̸= vp and hence wXvp is a (3 + b)-path, which implies
that vp ̸∈ {t1, t2, t8, t9}. It follows from Lemma 2.3(2) that vp ̸∈ {t3, t5}. Also,
vp ̸= t6, since otherwise t1t2t3FXt6t7t8t9 would be a path with at least 10 + b
vertices.
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Thus vp is either t4 or t7 or vp ̸∈ V (T ). We consider these three cases
separately.

1.1. vp = t4. By the definition of an A-configuration, {vp, vp+1} ̸⊂ V (T ), and
therefore vp+1 ̸∈ V (T ).

Now suppose vp+1 ∈ V (F ). Then, since w ̸= vp+1 (by Lemma 2.2(1b))
and n(F ) ≤ 3 (as shown earlier), F = wvp+1vp. Since wXvp+1vpt5t6t7t8t9 is a
(9 + b)-path, vp+1 is the only neighbour of w in H − V (T ), and hence NH(w) ⊆
{t4, vp+1} = {vp, vp+1}. Thus w is not an internal vertex of either P or Q, and
hence x1wvp+1vp is an x1vp-path containing no internal vertex of either P or Q,
contradicting Lemma 2.2(1a).

Thus vp+1 ̸∈ V (F ). Now vp+1
←−
XFt5t6t7t8t9 is a path of order n(F ) + 7 + b,

which implies that n(F ) = 2, i.e., F = wvp. It therefore follows from Lemma
2.2(1a) that w is an internal vertex of either P or Q.

Suppose w is an internal vertex of P , i.e., w ∈ {v2 · · · vp−1}. If vp is the
only vertex of P on T , then, since p ≥ 5, it follows that v1 · · · vpt5t6t7t8t9 is a
path of order at least p + 5 ≥ 10 in H, contradicting that τ(⟨A⟩) = 9. Thus
vk ∈ V (T ) for some k ∈ {1, . . . , p − 1}. But then vp is not on the wvk-subpath
of P , contradicting that t4 is on every subpath from w to T . This contradiction
shows that w is not an internal vertex of P .

Thus w is an internal vertex of Q, and hence q ≥ 3 and w = vp+d, for some
d ≥ 2. Now, vp+1 · · · vp+dXt4t5t6t7t8t9 is a path of order d + b + 7, and hence
d = 2 and q ≥ 3. Thus, vp+3vp+2vp+1X is a (4 + b)-path. Now, t5 ̸∈ N(x1) by
Lemma 2.3(2), but every vertex in T except for t5 is an end-vertex of a 6-path

in H, and hence x1 has no neighbour in V (T ). Also, t9t8t8t6t5t4vp+1vp+2
←−
X is a

(9 + b)-path, and hence vp+2 is the only neighbour of x1 in A, contradicting that
both wr and wr+1 are neighbours of x1.

1.2. vp = t7. As in the previous case, vp+1 ̸∈ V (T ) and vp+1
←−
Xw is a (3 + b)-

path, which implies that neither vp+1 nor w has a neighbour in {t1, t2, t3, t6, t7,
t8, t9}. Since t9t8t7

←−
Xw is a (5 + b)-path, neither t5 nor t6 is in N(w), and since

t1t2t3t3t4t5t6t7
←−
Xw is a (9 + b)-path, w has no neighbour in A − V (T ). Thus t4

is the only neighbour of w in A, and hence w is not an internal vertex of either
P or Q. By Lemma 2.2(1b), w is also not an end-vertex of either P or Q. Thus
w ̸∈ V (P ) ∪ V (Q).

If p = 8, then PXw is a (10 + b)-path. Thus p ≤ 7, and hence q ≥ 2.
Since t1t2t3t4wXvp+1 is a (7 + b)-path, t5, t6 ̸∈ N(vp+1) and hence t4 is the only
possible neighbour of vp+1 in T . We have already shown that w is not a neighbour
of vp+1 and hence, since t9t8t7t6t5t4wXvp+1 is a (9 + b)-path, it follows that t4
is the only neighbour of vp+1 in A. This implies that vp+2 = t4, and hence
v1 · · · vpwXvp+2 · · · v9 is a (10 + b)-path.
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1.3 vp ̸∈ V (T ). Suppose vp ̸∈ V (F ). Then vp
←−
XFt5t6t7t8t9 is a path of order

7 + n(F ) + b. Thus n(F ) = 2, i.e., F = wt4 and NA(vp) ⊆ {w, t4, t5, t6, t7, t8, t9}.
However, since t1t2t3t4wXvp is a (7 + b)-path, t5, t6, t7, t8, t9 ̸∈ N(vp). Thus
NA(vp) ⊆ {t4, w}, and hence vp−1 is either w or t4.

If vp−1 = t4, then t9t8t7t6t5t4vp
←−
X is a (9 + b)-path and hence NA(w) ⊆

{vp−1, vp}, which implies that w ̸∈ V (P ) ∪ V (Q). Thus v1 · · · vp−1wXQ is an
(a+ b+ 1)-path.

Thus vp−1 = w. Now t9t8t7t6t5t4vp−1vp
←−
X is a (9+b)-path, and t1t2t3t4wvp

←−
X

is a (7 + b)-path, and hence N(x1) ⊆ {vp−1, t4}. Thus t9t8t7t6t5t4Xvpvp−1 is a
(9 + b)-path, and hence NA(vp−1) ⊆ {t4, vp}, which implies that vp−2 = t4. This
implies that {wr, wr+1} = {vp−1, vp−2} and N(vp) ⊆ {vp−1, vp−2}, contradicting
Lemma 2.2(1d).

Thus vp ∈ V (F ), and hence F = wvpt4. Now, t9t8t7t6t5t4vp
←−
Xw is a (9 + b)-

path and t1t2t3t4vp
←−
Xw is a (7+b)-path, and hence N(w) ⊆ {vp, t4}. Since x1wvp

is an x1vp-path, it follows from Lemma 2.2(1a) that w is an internal vertex of
either P or Q, and hence w = vp−1 and t4 = vp−2. Thus v1 · · · vp−2vpvp−1Xvp+1

· · · v9 is a (10 + b)-path.

Thus, the case h = 4 does not occur.

Case 2. h = 5. Since we are assuming that p ≥ r, it follows from Remark
3.10 that both the paths R and S intersect the path P in one or more vertices.

v1 wl = viwf = vj vp vp+1 v9

x1 xb+1

w9
w1

wr+1

S∗

wr

R∗

A

B

H

X

Figure 6. Ilustrating the subpaths R∗ and S∗ in a problematic configuration
(X,P,Q,R, S) with p ≥ r.
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Let wl be the last vertex of R that lies on P . Let wl = vi and let R∗ be the
wlwr-subpath of R, i.e.,

R∗ = wl · · ·wr.

Let wf be the first vertex of S that lies on P . Let wf = vj and let S∗ be the
wr+1wf -subpath of S, i.e.,

S∗ = wr+1 · · ·wf .

Note that, if wr = wl, then R∗ = wr = vi, and if wr+1 = wf , then S∗ = wr+1 = vj .
Since Case 1 does not occur, any path in H from w to V (T ) contains the

vertex t5.
By Lemma 2.3(2) and the fact that

←−
XFt6t7t8t9 and

←−
XFt4t3t2t1 are (7 + b)-

paths, t5 lies on every path in ⟨{xb+1} ∪ V (H)⟩ from xb+1 to T . In particular,
NV (T )(w) ∪NV (T )(xb+1) ⊆ {t5}.

2.1. vp ∈ V (T ). In this case, vp = t5, and hence V (Q) ∩ V (T ) = ∅. If
w ∈ V (P ), then w = vm for some m ∈ {2, . . . , p − 1} and there is a path from
w to each vertex in {v1, v2, . . . , vp−1} that does not contain the vertex vp = t5.
This implies that v1, . . . , vp−1 ̸∈ V (T ). Thus v1 · · · vpt6t7t8t9 is a path of order
p + 4, and hence, since τ(H) = 9, it follows that p = 5 and q = 4. This implies

that Q
←−
Xvm · · · vpt6t7t8t9 is a path with at least 11+b vertices, contradicting that

τ(G) = 9 + b.
Thus w ̸∈ V (P ). Since F is a wvp-path in ⟨A⟩, it follows from Lemma 2.2(1b)

that F contains an internal vertex of Q, and hence q ≥ 3. Thus XQ is a path of
order at least 4+ b in G− V (T ). Since every vertex in V (T ) except t5 is an end-
vertex of a 6-path, it follows that NV (T )(x1) ⊆ {t5}. However, t5 = vp ̸∈ N(x1)
by Lemma 2.2(1b). Thus NV (T )(x1) = ∅. Thus wr, wr+1 ̸∈ V (T ), and hence
wr, wr+1 ̸∈ V (P ) (since we have shown that w ̸∈ V (P ))).

Since the paths R and S do not intersect, wl ̸= wf . Thus, if wl = vi and
wf = vj , then i ̸= j and hence at least one of i and j is less than p. If i < p, there
is a path from wr to every vertex on the path v1 · · · vp−1 that does not contain
vp, and hence v1 · · · vp−1 ̸∈ V (T ), which implies that p = 5. Now, if i ∈ {3, 4}
then v1 · · · vi−1R

∗Xt5 · · · t9 is a path of order greater than 9 + b. The case i = 3
is illustrated in Figure 7. If i ≤ 2, then XR∗vi+1 · · · v5t6 · · · t9 is a path of order
greater than 9. If j < p we get a similar contradiction. This proves that Case 2.1
does not occur.

2.2. vp ̸∈ V (T ). In this case, t5 is on every path from x1 to T in ⟨V (H)∪{x1}⟩
as well as on every path from xb+1 to T in ⟨V (H) ∪ {xb+1}⟩.

2.2.1. t5 ̸∈ V (P ). Then V (P )∩ V (T ) = ∅. Thus t5 ̸∈ N(x1) (since otherwise

t1 · · · t5X
←−
P would be a path with at least 11 + b vertices). Thus NV (T )(x1) = ∅,

and hence wr, wr+1 ̸∈ V (T ). Since both P and T are in the component H of
⟨A⟩, there is a t5vc-path D in H for some vertex vc ∈ V (P ), with all internal
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t1 t2 t3 t4 t5 t6 t7 t8 t8

x1 x2 xb xb+1

v4
v5

v3
wl

v2
v1

wr

R∗
A

B

Figure 7. A step in the proof of Lemma 3.8 (A2.1).

vertices in H − (V (T )∪V (P )). Since τ(⟨A⟩) = 9, it follows that c ≤ 4, and since
τ(G) = 9 + b, it follows that c ≥ p − 2. Thus p = 5 or 6, and in either case,
D = t5vc.

If c = p−2, then t1 · · · t5vp−2vp−1vp
←−
X is a (9+b)-path, and hence {wr, wr+1} =

{vp−1, vp−2}. However, t1 · · · t5vp−2vp−1 Xvp is a (9+b)-path, and henceNA(vp) =
{vp−1, vp−2}, contradicting Lemma 2.2(1d).

If c = p − 1, then c = 4 and p = 5. Thus t1 · · · t5v4v5
←−
X is an (8 + b)-path.

It follows that {wl, wf} = {v4, v5}. If wl = vp, then it follows from Lemma
2.2 (1a and b) that R∗ contains an internal vertex of Q. If n(R∗) ≥ 3, then
the path t1 · · · t5v4R∗X has at least 10 + b vertices. Thus n(R∗) = 2 and hence
wr is an internal vertex of Q, i.e., wr = vp+d for some d ≥ 2. It follows that
Xvp+1 · · · vp+dv5v4t5 · · · t9 is a path with at least 10 + b vertices. If wf = vp, we
obtain a similar contradiction. Case 2.2.1 does therefore not occur.

2.2.2 t5 = vp−1. As in the previous case, t5 ̸∈ V (Q), and hence V (Q)∩ V (T )
= ∅.

If w ∈ V (P ), then w = vm for some m ∈ {2, . . . , p − 2} (since w ̸∈
V (T ) and w ̸= vp). Since every path from w to T contains the vertex t5 =
vp−1, it follows that vp−1 is the only vertex of P in V (T ). This implies that
v1 · · · vp−1t6t7t8t9 is a path in H of order p+ 3, and hence p ≤ 6 and q ≥ 3. But

then
←−
Q
←−
Xvm · · · vp−1t6t7t8t9 is a path with at least 10 + b vertices.

Thus w ̸∈ V (P ).

If wr ∈ V (T ), then wr = t5 = vp−1, and hence in this case wl = vp−1. On
the other hand, if wr ̸∈ V (T ), then it follows from the above that wr ̸∈ V (P ),
which implies that wr ̸= wl and hence n(R∗) ≥ 2. We let wl = vi. Now, if
1 < i < p− 1, then v1 · · · vi−1R

∗Xvpt5 · · · t9 is a path of order greater than 9+ b,
and if i = 1, then t1 · · · t4vp−1vp−2 · · · v2R∗Xvp is a path of order greater than
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9+b. Thus vi ∈ {vp−1, vp}. A similar argument shows that vj ∈ {vp−1, vp}. Thus
{wl, wf} = {vi, vj} = {vp−1, vp}.

Suppose wl = vp−1 and wf = vp. Then t5 ∈ V (R) (since t5 = vp−1 = wl) and
V (S)∩V (T ) = ∅ (since any path from wr+1 to T contains the vertex t5 which is in
V (R), and V (S) ∩ V (R) = ∅). Recall that S∗ is the wr+1wf -subpath of S. Thus
x1S

∗ is an x1vp-path in ⟨V (H) ∪ {x1}. It therefore follows from Lemma 2.2(1a)
that S∗ contains an internal vertex of Q, and hence q ≥ 3. Since t1 · · · t5S∗X is
a path of order 6 + n(S∗) + b, it follows that n(S∗) ≤ 3.

Now suppose vp+1 ∈ V (S∗). Then S∗ = vpvp+1wr+1 and hence wr+1 is an
internal vertex of Q. Since t1t2t3t4t5vpvp+1wr is an 8-path in H, it follows that
wr+1 = vp+2. Clearly, vp+3 ̸∈ V (T ) (since t5 = vp−1 and ti ̸∈ N(wr+1) if i ̸= 5).
Thus t1t2t3t4t5vpvp+1Xvp+2vp+3 is a (10 + b)-path.

Thus vp+1 ̸∈ V (S∗), and hence v1v2v3v4t5S
∗vp+1

←−
X is a (9+b)-path, and hence

wr = t5. Also, v1v2v3v4v5S
∗Xvp+1 is a path of order 7+n(S∗)+ b, which implies

that n(S∗) = 2, and hence vp = wr+2. However, since q ≥ 3 (as shown earlier) it
follows that s ≥ 3 (since r+s = p+ q and p ≥ r). Since t1t2t3t4t5Xwr+1vp+1vp is
a (9 + b)-path, NA(vp) ⊆ {wr+1, vp+1, t5}. However, t5 ̸∈ V (S), since t5 ∈ V (R),

and also vp+1 ̸∈ N(vp) (since otherwise t1t2t3t4t5vpvp+1
←−
Xvp+2vp+3 would be a

path of order 10 + b). Thus, wr+2 has no successor on the path S, and hence
S = S∗ = wr+1wr+2, contradicting that s ≥ 3.

If wl = vp, then wf = vp−1 we get a similar contradiction. Thus Case 2.2.2
does not occur.

2.2.3. t5 = vp−2. Suppose wr = vi ∈ V (P ). If i < p − 2, then wr ̸∈ V (T )
and t5 is the only vertex of P in V (T ). But then v1 · · · viXvpvp−1vp−2 t6 · · · t9 is
a path with at least b+ 10 vertices. Thus vi ∈ {vp−2, vp−1}.

If wr ̸∈ V (P ), then t1 · · · t4vp−2vp−1vp
←−
Xwr is a (b + 9)-path and hence

NA(wr) ⊆ {vp−2, vp−1, vp}. This implies that wr is not an internal vertex of
Q and hence, by Lemma 2.2(1a), vi ̸= vp. Thus we again have vi ∈ {vp−1, vp−2}.
In this case R∗ = viwr.

Thus we have shown that vi ∈ {vp−1, vp−2} and either wr = vi or R
∗ = viwr.

Similarly, vj ∈ {vp−1, vp−2} and either wr+1 = vj or S∗ = wr+1vj .

If wr = vp−1, then vj = vp−2 = t5 and hence V (R) ∩ V (T ) = ∅. But then
t1 · · · t5R is a path of order at least 10 in H. Thus wr ̸= vp−1.

If R∗ = wrvp−1, then t1 · · · t5vp−1wrX is an (8 + b)-path and hence either

q = 1 or vp+2 = wr. If the former, then p = 8 and hence P
←−
Xwr is a (10 + b)-

path. If the latter, then t1 · · · t4S∗vp+1wrvp−1vp is a (10 + b)-path in G. Thus
R∗ ̸= wrvp−1 and, similarly, S∗ ̸= wr+1vp−1.

It follows that wr+1 = vp−1, and either wr = vp−2 or R∗ = wrvp−2.

If R∗ = wrvp−2, then (X,P,Q,R, S, T ) is the configuration A1 in Figure 4.

If wr = vp−2, then, by Lemma 2.2(1d), vp is an internal vertex of either R or
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S. In this case (X,P,Q,R, S, T ) is the configuration A2.

2.2.4. t5 = vp−3. In this case t1 · · · t5vp−2vp−1vp
←−
X is a (9+b)-path, and hence

wr, wr+1 ∈ {vp−1, vp−2, vp−3}.
If {wr, wr+1} = {vp−2, vp−1}, then t1 · · · t5vp−2vp−1Xvp is a (9 + b)-path and

hence NA(vp) ⊂ {vp−1, vp−2}, contradicting Lemma 2.2(1d).

If {wr, wr+1} = {vp−3, vp−1}, then, by Lemma 2.2(1c), vp−2 has a neighbour
z in A−{vp−3, vp−1}. If z = vp, then t1 · · · t5 vp−2vpvp−1Xvp+1 is a (10+ b)-path
in G, and if z ̸= vp, then t1 · · · t5Xvpvp−1 vp−2z is a (10 + b)-path in G.

Thus the only possibility is that {wr, wr+1} = {vp−3, vp−2}, and then (X,P,
Q,R, S, T ) is the configuration A3.

Case 3. h = 6. This case does not occur. Due to symmetry, the proof is
similar to the proof that the case h = 4 does not occur.

(B) Suppose (X,P,Q,R, S, T ) is a B-configuration. Then, by Definition
3.4, neither {wr, wr+1} nor {vp, vp+1} is a pair of consecutive vertices of T and
{wr, wr+1} = {tg, th} for some pair g, h such that 2 ≤ g ≤ h− 2 ≤ 6.

It follows from Remark 3.2 and Lemma 2.3(2) that no two vertices in the set
{tg, th, vp, vp+1} is a pair of consecutive vertices of T .

If g = 2, then t9t8 · · · t2X is a (9+b)-path, and hence, in this case, {vp, vp+1} ⊂
T . If g ≥ 3, then it follows from the condition (2) of Definition 3.4(b) that at
least one of vp and vp+1 is not in V (T ). We therefore only need to consider the
following cases.

Case 1. {g, h} = {2, 4} and {vp, vp+1} = {t6, t8}. By Lemma 2.3(3) and
(5c), the set {t1, t3, t5, t7, t9} is an independent set, and by Lemma 2.3(4a and
b), neither t3 nor t5 nor t7 has a neighbour in H − V (T ). Also, it is easily seen
that neither t2 nor t4 nor t8 is adjacent to a vertex of a 2-path in H − V (T ).
Thus H − {t2, t4, t6, t8} is an independent set, and hence each component of
L− {t2, x, t4, t6, t8} consists of a single vertex. However, since t2xt4 is a segment
of the path L, Proposition 2.1 implies that L − {t2, x, t4, t6, t8} has at most 4
components, and hence n(L) ≤ 9. This contradiction shows that this case does
not occur.

Case 2. {g, h} = {2, 6} and {vp, vp+1} = {t4, t8}. If t5 has no neighbour in
H −V (T ) and t3t7 ̸∈ E(H), then H −{t2, t4, t6, t8} is an independent set and we
obtain a similar contradiction as in Case 1.

If t5 has a neighbour in H−V (T ), then (X,P,Q,R, S, T ) is the configuration
B1. If t3t7 ∈ E(H), then (X,P,Q,R, S, T ) is the configuration B2.

Case 3. {g, h} = {2, 8} and {vp, vp+1}) = {t4, t6}. In this case, H −
{t2, t4, t6, t8} is an independent set. Now consider the 10-path L′ = Pxb+1Q.
Then t4xb+1t6 is a segment of L′ and hence, by Lemma 2.1, L′−{t2, t4, xb+1, t6, t8}
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has at most four components, each consisting of a single vertex. But then
n(L′) ≤ 9. This case does therefore not occur.

Case 4. {g, h} ={3, 5}, vp = t7 and vp+1 ̸∈ V (T ). Since t3x1t5 is a segment of
L, it follows from Proposition 2.1 that L−{t3, x1, t5, t7} has at most 3 components.

By Lemma 2.3(4a), neither t4 nor t6 is adjacent to an end-vertex of a 2-path in
H−{t1 · · · t7}. In particular, t8, t9 ̸∈ N(t4, t6). By Lemma 2.3(4b), t1, t2 ̸∈ N(t6).
Also, t1, t2 ̸∈ N(t4), since otherwise t9t8 · · · t4v2t3Xvp+1 or t9t8 · · · t4v1v2t3Xvp+1

would be a path of order greater than 9 + b in G. Thus, each component of
L − {t3, x1, t5, t7} has at most 2 vertices. But each such component of order 2
has at least one vertex of degree 1 in H. Since L has at most two end-vertices, it
follows that L − {t3, x1, t5, t7} has at most two components of order two. Thus
n(L) ≤ 4 + 2(2) + 1 = 9. This contradiction show that this case does not occur.

Case 5. {g, h} = {3, 5}, vp = t8 and vp+1 ̸∈ V (T ). By Lemma 2.2(1c), t4
has a neighbour in H − {t3, t5}. It is easily checked that t6 is the only possible
neighbour of t4 in H − {t3, t5}. Thus t6t4 ∈ E(H), and hence (X,P,Q,R, S, T )
is the configuration B3.

Case 6. {g, h} = {3, 6}, vp = t8 and vp+1 ̸∈ V (T ). Lemma 2.2(1c) implies
that t4 or t5 has a neighbour in H − {t3, t6}.

If t7 ∈ N(t4), then (X,P,Q,R, S, T ) is the configuration B4.

If t2 ∈ N(t5), then (X,P,Q,R, S, T ) is the configuration B5.

If t7 ̸∈ N(t4) and t2 ̸∈ N(t5), then inspection show that, since n(L) = 10,
it is necessary for L to contain the edge t8t4 as well as an edge v5z for some
z ∈ H − V (T ). So in this case (X,P,Q,R, S, T ) is the configuration B6.

Case 7. {g, h} = {3, 7}, vp = t5 and vp+1 ̸∈ V (T ). If t4t8 ∈ E(H), then
(X,P,Q,R, S, T ) is the configuration B7. If t2t6 ∈ E(H), then (X,P,Q,R, S, T )
is the configuration B8.

Now suppose that neither t2t6 nor t4t8 is in E(H). Then NV (T )(t2) ⊆ {t1, t3,
t5, t7}, NV (T )({t4, t6}) ⊆ {t3, t5, t7} and NV (T )(t8) ⊆ {t3, t5, t7, t9, }.

If Z is a path in H − V (T ) having an end-vertex adjacent to a vertex vi ∈
V (T ), then, since t9t8t7t6t5

←−
Xt3 and t1t2t3t4t5

←−
Xt7 are (7+b)-paths, and t1t2t3Xt5

is a (5 + b)-path, it follows that

n(Z) ≤


3 if i = 5,
2 if i ∈ {3, 7},
1 if i ∈ {2, 4, 6, 8}.

Clearly, q = 1 and hence p = 8. Since P
←−
X is a (9 + b)-path, it follows that

t3, t7 ∈ V (P ). Since t5 = vp, it follows from Proposition 2.1 that P − {t3, t5, t7}
has at most three segments. Now suppose P − {t3, t5, t7} has a segment with
more than 2 vertices. Then that segment is a 3-path Z in ⟨A⟩, and neither end-
vertex of Z has a neighbour in T other than t5, which implies that p ≤ 4. This
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contradiction implies that no segment of P −{t3, t3, t7} has more than 2 vertices.
Moreover, each segment of P − {t3, t5, t7} with two vertices is an end-segment of
P , since it contains a vertex of degree 1 in H. Thus, since t5 is an end-vertex
of P , it follows that P − {t3, t3, t7} has at most one segment of order 2. Thus
n(P ) ≤ 2 + 1 + 1 + 3 = 7, contradicting that n(P ) = 8. This case does therefore
not occur.

Case 8. {g, h} = {4, 6}, vp = t8 and vp+1 ̸∈ V (T ). Lemma 2.2 implies that t5
has a neighbour in A−{t4, t6}. Thus, since G has no (10+ b)-path, t3t5 ∈ E(H)
and (X,P,Q,R, S, T ) is the configuration B9.

(C) Suppose (X,P,Q,R, S, T ) is a C-configuration. Then {wr, wr+1} = {th,
th+1} for some h ∈ {2, 3, 4}.

Now suppose (X,P,Q,R, S, T ) is not a nice C-configuration and consider
the expanded C-configuration (X,P,Q,R, S, T, c, d), defined and labelled as in
Definition 3.7.

Since the paths P and T are both in the component H of ⟨A⟩, there is an
xb+1tk-path in G with all its internal vertices in A−V (T ), for some k ∈ {2, . . . , 8}.
The following claims follow from Lemma 2.3 and our assumption that h ≤ 4.

Claim 1. (a) h ̸∈ {1, c− 2, c− 1, d, d+ 1, 5, 6, 7, 8, 9}.
(b) k ̸∈ {1, c− 1, d+ 1, h− 1, h, h+ 1, h+ 2, 9}.

Claim 2. (a) If k > h, then h ̸∈ {d− 2, d− 1} and k ̸= c+ 1.

(b) If k < h, then h ̸∈ {c, c+ 1} and k ̸= d− 1.

Claim 3. If d ≤ c, then h ̸∈ {c, c+ 1, d− 2, d− 1} and k ̸∈ {c+ 1, d− 1}.

Claim 4. d ̸= c− 1.

Claim 5. If d = c+ 1, then either h < c and k ≤ c, or h ≥ d and k ≥ d.

We consider the following possibilities.

c = 3, d ≤ 5. This case does not occur, because of the following. Claims 1
and 2 imply that k ̸= 2 and h ̸= 2. Thus h ∈ {3, 4} and k > h. It therefore
follows from Claims 1 and 2(a) that d ̸= {h − 1, h, h + 1, h + 2, }. Thus d ≥ 6 if
h = 3 and d ≥ 7 if h = 4.

c = 3, d = 6. In this case h = 3, and k ∈ {6, 8}. If both vp and vp+1

are in V (T ), then {vp+1, vp} = {t6, t8}. If z ∈ N(t7) for some z ∈ A − V (T ),

then zt7t8t9t4
←−
Xt4t3t2t1 is a (10 + b)-path. Thus NA(t7) ⊂ V (T ). However,

t2, t3, t4, t5 ̸∈ N(t7) by Lemma 2.3(3), and t1, t9 ̸∈ N(t7) by Lemma 2.3(5c).
Thus NA(p7) = {t6, t8}, contradicting Lemma 2.2(2c).

Thus vp is either t6 or t8 and vp+1 ̸∈ V (T ). Thus q = 1 and p = 8.

If vp = t8, then (X,P,Q,R, S, T, 3, 6 is the configuration C1.
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If vp = t6, then neither t7 nor t9 has a neighbour in H −{t6, t7, t8, t9}. Thus,
if t5t8 ̸∈ E(G), then any path in H that ends at vp and contains one or more
vertices in {t7, t8, t9} has at most 4 vertices. Thus t7, t8, t9 ̸∈ V (P ), and hence
Pt7t8 is a 10-path in H. This contradiction shows that t5t8 ∈ E(G) and then
(X,P,Q,R, S, T, 3, 6) is the configuration C2.

c = 3, d = 7. In this case, either h = 3 and k ∈ {6, 7}, or h = 4 and k = 7.

• Suppose h = 3 and {vp, vp+1} = {t6, t7}. In this case (X,P,Q,R, S, T, 3, 7) is
the configuration C3.

• Suppose h = 3, vp = t6 and vp+1 ̸∈ V (T ). If V (Q) ∩ V (T ) = ∅, then q = 1
and p = 8. Since G has no (10 + b)-path, t3 is the only neighbour of t1 or t2 in
H − {t1, t2}. Also, t7 is the only possible neighbour of t8 or t9 in H − {t8, t9}.

Now t3, t4 ∈ V (P ), since otherwise P
←−
Xt3 or P

−→
Xt4 would be a (10 + b)-path

in G. This implies that there is a t3t7-path in H − vp and hence t3t7 ∈ E(P ).
Let P ′ be the t3t6-subpath of P . If t7 ∈ V (P ′), then P ′ = t3t7t6 = v6v7v8,

and hence v1 · · · v6 is a 6-path in H − {t6, t7}, with t3 = v6. But it follows from
Lemma 2.3 that neither t4 nor t5 is adjacent to an end-vertex of a 3-path in
H − {t1, . . . t6}. But then any path in H − {v7, v8} ending at v6 has at most
5 vertices. This contradiction shows that t7 ̸∈ V (P ′), Thus, since t7t3 ∈ V (P )
and any path in H − {t3, t6} ending at t7 has at most 3 vertices, it follows that
t3 = v4, and hence P ′ is a t3t6-path of order 5 in H − {t1, t2, t7, t8, t9}. But then
t1t2P

′t7t8t9 is a 10-path in H.
This contradiction implies that V (Q) ∩ V (T ) ̸= ∅, and hence vp+2 = t7.

Thus, in this case, (X,P,Q,R, S, T, 3, 7) is the configuration C3, with the edge
xb+1t7 subdivided. (It is unnecessary for us to consider this case separately, as
will become clear in the proof of our main theorem.)

• Suppose h = 3, vp = t7 and vp+1 ̸∈ V (T ). Then q = 1 and hence p = 8, and it
is easily seen that NA({t8, t9}) = {vp, t8, t9}. Thus, if t8 or t9 is in V (P ), then P
would have at most 3 vertices. Thus t8, t9 ̸∈ V (P ) and hence Pt8t9 is a 10-path
in H. This situation does therefore not occur.

• Suppose h = 3 and vp, vp+1 ̸∈ V (T ). Then vp−1 = t7 and (X,P,Q,R, S, T, 3, 7)
is the configuration C4.

• Suppose h = 4. Then vp = t7 and V (Q) ∩ V (T ) = ∅. It is easily seen
that NA({t8, t9}) = {vp, t8, t9}, which implies that t8, t9 ̸∈ V (P ). Thus, p ≤
7 (since otherwise Pt8t9 would be a 10-path in H), and hence q = 2 and
(X,P,Q,R, S, T, 3, 7) is the configuration C5.

c = 4, d ≤ 6. By Claim 1, h = 4 = c and hence d > 4 by Claim 3. Thus, it
follows from Claim 5 that d ̸= c + 1. If d = 6, then h = d − 2 and hence Claim
2(a) implies that k < h, contradicting Claim 2(b). This case does therefore not
occur.
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c = 4, d = 7. By Claim 1, h = 4, and hence it follows from Claim 2(b)
that k > h, and hence k = 7. Thus, in this case, (X,P,Q,R, S, T, 4, 7) is the
configuration C5. (The proof is similar to that of the case c = 3, d = 7, h = 4.)

c = 5, d ≤ 4. This case does not occur, since it follows from Claim 1(a) that
h = 2 and hence d ̸= 2, by Claim 1, but d ̸∈ {3, 4}, by Claim 3.

c = 5, d = 5. Since h = 2, both vp and vp+1 are in V (T ). By Claim
1(b), k ∈ {5, 7, 8}. If {vp, vp+1} = {t5, t8}, then NA{t6, t7} = {t5, t6, t7, t8},
contradicting Lemma 2.2(2c). If {vp, vp+1} = {t5, t7}, then NA(t6) = {t5, t7},
which also contradicts Lemma 2.2(2c). Thus {vp, vp+1} = {t7, t8} and hence
(X,P,Q,R, S, T, 5, 5) is the configuration C6.

c = 5, d = 6. It follows from Claim 1(b) that h = 2, and hence vp+1, vp ∈
V (T ). But, by Claim 5, the only possible neighbour of xb+1 in V (T ) is t5. This
case can therefore not occur.

c = 5, d = 7. Since h = 2, it follows from Claim 1(b) and 2(a) that
{vp, vp+1} = {t5, t7}. But NA(t6) = {t5, t7}, contradicting Lemma 2.2(2c). This
case does therefore not occur.

c = 6. In this case h = 2 or 3. In either case it follows from Claim 1(b) that
k ≥ 6 and from Claim 2(a) that k ̸= 7. Hence NV (T )(xb+1) ⊆ {t6, t8}.

Furthermore, it follows from Claims 1(a), 3 and 4 that d ≥ 6.
If {vp, vp+1} = {t6, t8}, then d = 6 and NA(t7) = {t6, t8}, contradicting

Lemma 2.2(2c).
If vp ̸∈ V (T ), then h = 3 and t9t8t7t6t1t2t3t4Xvp+1 is a (10 + b)-path. If

vp+1 ̸∈ V (T ), we obtain a similar contradiction. The case c = 6 does therefore
not occur.

c = 7. If d = 7, then Claim 1(b) implies that k ̸= 8, and if d < 7, then Claim
3 implies that k ̸= 8.

• Suppose h = 2. Then both vp and vp+1 are in V (T ), and hence {vp, vp+1} =
{t5, t7}. Thus NA(t6) = {t5, t7}, contradicting Lemma 2.2(2c).

• Suppose h = 3. Then it follows from Claims 1 and 3 that k = 7 and d = 7.
Thus t7 is either vp or vp−1 and vp+1 ̸∈ V (T ). In either case, q = 1 and p = 8.

If vp = t7, then t4 ∈ V (P ) (otherwise P
←−
Xt4 would be a (10 + b)-path).

Clearly, NA({t8, t9}) = {t7, t8, t9} and hence any path in H containing t4 as well
as t8 or t9 also contains t7 = vp. This implies that t8, t9 ̸∈ V (P ). But then Pt8t9
is a 10-path in H.

Thus v ̸∈ V (T ) and vp−1 = t7, and hence (X,P,Q,R, S, T, 7, 7) is the config-
uration C7.

• Suppose h = 4. Then it follows from Claims 1(b) and 2(b) that k ∈ {2, 7} and
d ∈ {2, 7}.
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Since t9t8t7t1t2t3t4t5X is a (9+ b)-path, both vp and vp+1 are in V (T ). Thus
{vp, vp+1} = {t2, t7}. Now, NA(t1) = {t2, t7} = {vp, vp+1}. Thus t1 ̸∈ V (P ),
otherwise p would be 2.

Now suppose t1 ∈ V (Q). Then Q = t2t1 if vp = t7, and Q = t7t1 if vp = t2.

In either case, the end-vertex t1 of Q is adjacent to vp, and hence P
←−
QX is an

(a+ b+ 1)-path. On the other hand, if t1 ̸∈ V (Q), then Pt1Q is a 10-path in H.
Thus case does therefore not occur.

c = 8. In this case, v1 · · · v8v1 is an (a − 1)-cycle. Now, if vp ̸∈ V (T ), then
Xvp is a (b + 2)-path, attached to this (a − 1)-cycle at th. But then G contains
an (a+ b+ 1)-path. Thus vp ∈ V (T ) and, similarly, vp+1 ∈ V (T ).

• Suppose h = 2. Then vp, vp+1 ∈ {t5, t6, t8}. If {vp, vp+1} = {v5, v6}, then it
follows from Claims 1, 2 and 3 that the end-vertex t9 of T is not incident with
an external edge, contradicting our assumption.

If {vp, vp+1} = {t5, t8}, it follows from Claims 1, 2 and 3 that d = 5.
Since t5xb+1t8 is a segment of the 10-path M = Pxb+1Q, it follows that M −
{t2, t5, xb+1, t8} has at most 3 components. It is easily checked that there are no
edges between the two sets {t3, t4} and {t6, t7} and no vertex in either of these
two sets has a neighbour in H −{t2, . . . , t8}. Furthermore, H −{t2, . . . , t8} is an
independent set. Thus M −{t2, t5, xb+1, t8} has at most two components of order
2, and hence n(M) ≤ 4 + 2(2) + 1 = 9, contradicting that n(M) = 10.

If {vp, vp+1} = {t6, t8}, then it follows from Claims 1, 2 and 3 that d = 6.
But then NA(t7) = {t6, t8}, contradicting Lemma 2.2(2c).

• Suppose h = 3. Then {vp, vp+1} = {t6, t8}, and we obtain a similar contradic-
tion as in the case where h = 2.

• Suppose h = 4. Then {vp, vp+1} = {t2, t8} and it follows from Claims 1, 2
and 3 that d = 2. If t1 ̸∈ V (P ) ∪ V (Q), then Pt1Q is a 10-path in H, and if
t9 ̸∈ V (P ) ∪ V (Q), then Pt9Q is a 10-path in H. Hence t1 as well as t9 are in
V (P ) ∪ V (Q). But NA(t1) = NA(t9) = {vp, vp+1}, which implies that p = q = 2.

These contradictions show that the case c = 8 does not occur.

Suppose (X,P,Q,R, S, T ) is a complex configuration, defined and labelled as
in Definition 3.3. If adding an external edge titj to T creates a 10-path in ⟨A⟩ or
a (10 + b)-path in G, we say that titj is a forbidden edge, and i ∼ j a forbidden
adjacency for the given complex configuration.

For example, 2 ∼ 6 is a forbidden adjacency for an A1-configuration, since
adding the edge t2t6 to the complex configuration in Figure 8(A1) creates the 10-
path t9t8t7t6t2t3t4t5v6v7 in ⟨A⟩. In fact, it is easily checked that if i ∈ {1, 2, 3, 4}
and j ∈ {6, 7, 8, 9}, then i ∼ j is forbidden for each of the three A-configurations
in Figure 8.
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t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

w6

v6 w7

v7 w8

w9

v8

v9A

B

A1

Rx1S = t1t2t3t4t5w6x1w7w8w9

Pxb+1Q = t1t2t3t4t5v6v7xb+1v8v9, with v6 = w7, v7 = w8

Forbidden adjacencies

1 ∼ i, i = 6, . . . , 9
2 ∼ i, i = 6, . . . , 9
3 ∼ i, i = 6, . . . , 9
4 ∼ i, i = 6, . . . , 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

v6 w6

w7 v7
w8

w9

v8

v9A

B

A2

Rx1S = t1t2t3t4t5x1w6w7w8w9

Pxb+1Q = t1t2t3t4t5v6v7xb+1v8v9, with v6 = w6, v7 = w8

Forbidden adjacencies

1 ∼ i, i = 6, . . . , 9
2 ∼ i, i = 6, . . . , 9
3 ∼ i, i = 6, . . . , 9
4 ∼ i, i = 6, . . . , 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

v6 w6

v7 w7
w8v8

w9
v9

A

B

A3

Rx1S = t1t2t3t4t5x1w6w7w8w9

Pxb+1Q = t1t2t3t4t5v6v7v8xb+1v9, with vi = wi, for i = 6, 7, 8

Forbidden adjacencies

1 ∼ i, i = 6, . . . , 9
2 ∼ i, i = 6, . . . , 9
3 ∼ i, i = 6, . . . , 9
4 ∼ i, i = 6, . . . , 9

Figure 8. Configurations of Type A consisting of (X,P,Q,R, S, T ) = ⟨E(X)∪E(Rx1S)∪
E(Pxb+1Q) ∪ E(T )⟩.
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t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

w1v1

A

B

B1

Rx1S = w1t5t4t3t2x1t6t7t8t9
Pxb+1Q = v1t5t6t7t8xb+1t4t3t2t1, v1 = w1 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 3, . . . , 9
2 ∼ i, i = 5, 7, 9
3 ∼ i, i = 5, 6, 8, 9
4 ∼ i, i = 7, 9
5 ∼ i, i = 7, 8, 9
6 ∼ 9
7 ∼ 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

B2

Rx1S = t9t8t7t3t4t5t6x1t2t1
Pxb+1Q = t1t2t3t7t6t5t4xb+1t8t9

Forbidden adjacencies

1 ∼ i, i = 3, . . . , 9
2 ∼ i, i = 5, 7, 9
3 ∼ i, i = 5, 6, 8, 9
4 ∼ i, i = 7, 9
5 ∼ i, i = 7, 8, 9
6 ∼ 9
7 ∼ 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

v9
A

B

B3

Rx1S = t9t8t7t6t4t5x1t3t2t1
Pxb+1Q = t1t2t3t4t5t6t7t8xb+1v9, v9 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, . . . , 9
3 ∼ i, i = 7, 8, 9
4 ∼ i, i = 7, 8, 9
5 ∼ i, i = 7, 8, 9
6 ∼ 9
7 ∼ 9

Figure 9. Configurations of Type B, consisting of (X,P,Q,R, S, T ) = ⟨E(X)∪E(Rx1S)∪
E(Pxb+1Q) ∪ E(T )⟩.



28 J.P. de Wet and M. Frick

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

B4

v9

Rx1S = t9t8t7t4t5t6x1t3t2t1
Pxb+1Q = t1t2t3t4t5t6t7t8xb+1v9, v9 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, . . . , 9
3 ∼ i, i = 5, 7, 8, 9
4 ∼ 9
5 ∼ i, i = 7, 8, 9
6 ∼ 9
7 ∼ 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

B5

v9

Rx1S = t1t2t5t4t3x1t6t7t8t9
Pxb+1Q = t1t2t3t4t5t6t7t8xb+1v9, v9 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 3, . . . , 9
2 ∼ i, i = 4, 6, 7, 8, 9
3 ∼ i, i = 7, 8, 9
4 ∼ i, i = 6, 7, 8, 9
5 ∼ i, i = 7, 8, 9
6 ∼ 9
7 ∼ 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

w1

A

B

B6

v9

Rx1S = w1t5t4t8t7t6x1t3t2t1
Pxb+1Q = t1t2t3t4t5t6t7t8xb+1v9, v9 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, . . . , 9
3 ∼ i, i = 5, 7, 9
4 ∼ i, i = 6, 7, 9
5 ∼ i, i = 7, 8, 9
7 ∼ 9

Figure 10. Configurations of Type B, consisting of (X,P,Q,R, S, T ) = ⟨E(X)∪E(Rx1S)∪
E(Pxb+1Q) ∪ E(T )⟩ — continued.
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t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

B7

v9

Rx1S = t9t8t4t5t6t7x1t3t2t1
Pxb+1Q = t1t2t3t4t8t7t6t5xb+1v9, v9 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, 5, 7, 8, 9
3 ∼ i, i = 6, 8, 9
4 ∼ i, i = 6, 7, 9
5 ∼ i, i = 8, 9
6 ∼ i, i = 8, 9
7 ∼ 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

v9
A

B

B8

Rx1S = t1t2t6t5t4t3x1t7t8t9
Pxb+1Q = t9t8t7t6t2t3t4t5xb+1v9, v9 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 3, . . . , 9
2 ∼ i, i = 4, 5, 7, 8, 9
3 ∼ i, i = 6, 8, 9
4 ∼ i, i = 6, 7, 9
5 ∼ i, i = 8, 9
6 ∼ i, i = 8, 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

B9

v9

Rx1S = t1t2t3t5t4x1t6t7t8t9
Pxb+1Q = t1t2t3t4t5t6t7t8xb+1v9, v9 ∈ A− V (T )

Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, . . . , 9
3 ∼ i, i = 7, 8, 9
4 ∼ i, i = 7, 8, 9
5 ∼ i, i = 7, 8, 9
6 ∼ 9
7 ∼ 9

Figure 11. Configurations of Type B, consisting of (X,P,Q,R, S, T ) = ⟨E(X)∪E(Rx1S)∪
E(Pxb+1Q) ∪ E(T )⟩ — continued.
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t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

v9

Rx1S = t9t8t7t6t5t4x1t3t2t1, Pxb+1Q = t1t2t3t4t5t6t7t8xb+1v9
v9 ∈ A− V (T ), external edges t1t3 and t9t6

A

B

C1
Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, . . . , 9
3 ∼ i, i = 5, 7, 8, 9
4 ∼ i, i = 7, 9
5 ∼ i, i = 7, 9
7 ∼ 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

C2

v9

Rx1S = t9t8t7t6t5t4x1t3t2t1, Pxb+1Q = t1t2t3t4t5t8t7t6xb+1v9
v9 ∈ A− V (T ), external edges t1t3 and t9t6

Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, . . . , 9
3 ∼ i, i = 5, . . . , 9
4 ∼ i, i = 7, 9
5 ∼ i, i = 7, 9
7 ∼ 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

C3

Rx1S = t9t8t7t6t5t4x1t3t2t1, Pxb+1Q = t1t2t3t4t5t6xb+1t7t8t9
external edges t1t3 and t9t7

Forbidden adjacencies

1 ∼ i, i = 4, . . . , 9
2 ∼ i, i = 4, . . . , 9
3 ∼ i, i = 5, 6, 8, 9
4 ∼ i, i = 7, 8, 9
5 ∼ i, i = 7, 8, 9
6 ∼ i, i = 8, 9

Figure 12. Expanded C-configurations consisting of (X,P,Q,R, S, T, c, d) = ⟨E(X) ∪
E(Rx1S) ∪ E(Pxb+1Q) ∪ E(T ) ∪ {t1tc, t9td}⟩.
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t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

C4

v9v8

Rx1S = t9t8t7t6t5t4x1t3t2t1, Pxb+1Q = t1t2t3t4t5t6t7v8xb+1v9
v8, v9 ∈ A− V (T ), external edges t1t3 and t9t7

Forbidden adjacencies

1 ∼ i, i = 4, 5, 6, 8, 9
2 ∼ i, i = 4, 5, 6, 8, 9
3 ∼ i, i = 5, 6, 8, 9
4 ∼ i, i = 8, 9
5 ∼ i, i = 8, 9
6 ∼ i, i = 8, 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

C5

v8
v9

Rx1S = t9t8t7t6t5x1t4t3t2t1, Pxb+1Q = t1t2t3t4t5t6t7xb+1v8v9
v8, v9 ∈ A− V (T ), external edges (t1t3 or t1t4) and t9t7

Forbidden adjacencies

1 ∼ i, i = 5, . . . , 9
2 ∼ i, i = 5, . . . , 9
3 ∼ i, i = 5, . . . , 9
4 ∼ i, i = 6, . . . , 9
5 ∼ i, i = 8, 9
6 ∼ i, i = 8, 9

t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

C6

Rx1S = t9t8t7t6t5t4t3x1t2t1, Pxb+1Q = t1t2t3t4t5t6t7xb+1t8t9
external edges t1t5 and t9t5

Forbidden adjacencies

1 ∼ i, i = 3, 4, 6, 7, 8, 9
2 ∼ i, i = 4, 6, 7, 8, 9
3 ∼ i, i = 6, . . . , 9
4 ∼ i, i = 6, . . . , 9
6 ∼ i, i = 8, 9
7 ∼ i, i = 9

Figure 13. Expanded C-configurations consisting of (X,P,Q,R, S, T, c, d) = ⟨E(X) ∪
E(Rx1S) ∪ E(Pxb+1Q) ∪ E(T ) ∪ {t1tc, t9td}⟩ — continued.
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t1 t2 t3 t4 t5 t6 t7 t8 t9

x1 x2 xb xb+1

A

B

C7

v9v8

Rx1S = t9t8t7t6t5t4x1t3t2t1, Pxb+1Q = t1t2t3t4t5t6t7v8xb+1v9
v8, v9 ∈ A− V (T ), external edges t1t7 and t9t7

Forbidden adjacencies

1 ∼ i, i = 4, 5, 6, 8, 9
2 ∼ i, i = 4, 5, 6, 8, 9
3 ∼ i, i = 5, 6, 8, 9
4 ∼ i, i = 8, 9
5 ∼ i, i = 8, 9
6 ∼ i, i = 8, 9

Figure 14. Expanded C-configurations consisting of (X,P,Q,R, S, T, c, d) = ⟨E(X) ∪
E(Rx1S) ∪ E(Pxb+1Q) ∪ E(T ) ∪ {t1tc, t9td}⟩ — continued.

For easy reference, forbidden adjacencies for each A- and B-configuration and
each expanded C-configuration are listed in Figures 8, 9, 10, 11, 12 and 13.

If attaching a d-path to T at a vertex ti ∈ V (T ) creates a 10-path in ⟨A⟩ or a
(10+ b)-path in G, we say that a d-path attached to ti is a forbidden attachment
for the given complex configuration. For example, a 4-path attached to T at
t4 is a forbidden attachment for a B9-configuration, because, if z1z2z3t4 is a
path in the complex configuration in Figure 11(B9), with z1z2, z3 ∈ H − V (T ),

then z1z2z3t4t3t5t6t7t8
←−
X is a (10 + b)-path. In fact, it can easily be checked (by

consulting Figures 9, 10 and 11) that a 4-path attached at either t4 or t6 is a
forbidden attachment for every B-configuration.

We note that in the complex configurations in Figures 7–10, the labeling
of the vertices of the 9-path T under consideration is important. Suppose, for
example, that T = t1 · · · t9 is a 9-path in ⟨A⟩ and t7t9 is an edge in ⟨A⟩. Then

T has the external adjacency 7 ∼ 9, and
←−
T has the external adjacency 1 ∼ 3.

Since 7 ∼ 9 is a forbidden adjacency in a B3-configuration, but 1 ∼ 3 is allowed,

T cannot be in a B3-configuration, but
←−
T may well be.

If a 9-path T in ⟨A⟩ has external edges and/or attached paths in ⟨A⟩ that
prohibit both T and

←−
T from being in any A-, B- or C-configuration in G, we say

that T is an ineligible 9-path in ⟨A⟩.

Lemma 3.9. Suppose T = t1 · · · t9 is a 9-path in ⟨A⟩ such that t4t7 ∈ E(G)
and there is a 4-path z1z2z3t4 in ⟨A⟩ with z1, z2, z3 ∈ A − V (T ). Then T is an
ineligible 9-path.

Proof. As mentioned earlier, 4 ∼ 7 as well as 3 ∼ 6 are forbidden adjacencies

for each A-configuration. Since T has 4 ∼ 7 and
←−
T has 3 ∼ 6, it follows that
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neither T nor
←−
T can be in any A-configuration in G. Also, since T has a 4-path

attached to its 4-th vertex (which is the 6-th vertex of
←−
T ), neither T nor

←−
T can

be in any B-configuration in G, as can be deduced from Figures 9, 10 and 11.
Now suppose there is a (b+1)-path X in ⟨B⟩ and four paths P,Q,R, S in ⟨A⟩,

such that (X,P,Q,R, S, T ) is a C-configuration. Then {wr, wr+1} = {th, th+1}
for some h ∈ {2, 3, 4}. Since P and T lie in the same component H of ⟨A⟩,
there is a vptk-path M in G with all its internal vertices in A − V (T ), for some
k ∈ {1, . . . , 9}. Also note that any vertex in z1z2z3 lies on a 2-path in A− V (T ).

• Suppose h = 2 or 3. Then t9t8t7t6t5t4t3X is an (8+ b)-path, and hence M does
not intersect the path z1z2z3. Thus z1z2z3t4t3X is a (6 + b)-path, which implies
that k ̸∈ {5, 6, 8, 9}. Lemma 2.3(1) and (2) imply that k ̸∈ {1, 2, 3, 4}. Also,
k ̸= 7, since otherwise t1t2t3XMt6t5t4z3z2 would be a path of order greater than
9 + b. This case can therefore not occur.

• Suppose h = 4. Then t1t2t3t4t7t6t5X is an (8 + b)-path, and hence M does
not intersect the path z1z2z3. Thus k ̸= 2, since z1z2z3t4t7t6t5XMt3 would be
a path of order greater than 9 + b. Also, Lemma 2.3(1) and (2) imply that
k ̸∈ {1, 3, 4, 5, 6, 9}, and Lermma 2.3(3) implies that k ̸= 8. Hence k = 7 and
t1t2t3t4t5XMt8t9 is a path of order 8 + b + n(M). Thus M = vp = t7. Similar
arguments show that any path from vp+1 to T contains the vertex v7. Since
v7 = vp ̸∈ V (Q), it follows that V (Q) ∩ V (T ) = ∅. Since t1t2t3t4t7t6t5XQ is a
path of order 8+ b+ q, it follows that q = 1, and hence p = 8. Thus, v8 = vp = t7
and v9 = vp+1 ̸∈ V (T ). Now, if V (P ) ∩ {t8, t9} = ∅, then Pt8t9 would be a

10-path in ⟨A⟩, and if t4 ̸∈ V (P ), then P
←−
Xt4 would be a (10 + b)-path in G.

Thus, P contains t4 and at least one vertex in {t8, t9}, and hence there is a path
in ⟨A⟩ − {t7} from t4 to a vertex in {t8, t9}. However, it is easily checked that
this is not the case, since otherwise there would be a path of order greater than
9 + b in G.

These contradictions prove that T is not in any C-configuration.

Now suppose
←−
T is in some C-configuration in G. Then there are a (b+1)-path

X and four paths P,Q,R, S in ⟨A⟩, defined and labelled as in Definition 3.1, such

that (X,P,Q,R, S,
←−
T ) is a C-configuration. Let us relabel

←−
T as

←−
T = u1 · · ·u9.

Then u3u6 ∈ E(G) and z1z2z3u6 is a 4-path in ⟨A⟩ and {wr, wr+1} = {uh, uh+1}
for some h ∈ {2, 3, 4}, and there is an xb+1tk- path M in G with all its internal
vertices in A− V (T ), for some k ∈ {1, . . . , 9}.

• Suppose h = 2. Then u9u8 · · ·u2X is a (9 + b)-path, and hence NA(xb+1) ⊂
V (
←−
T ). By Lemma 2.3(1), (2) and (3), u1, u2, u3, u4, u5, u9 ̸∈ N(xb+1). Also,

u7, u8 ̸∈ N(xb+1), since z1z2z3u6u5u4u3u2X is a (9 + b)-path. Thus NA(xb+1) ⊂
{t6}, contradicting that {vp, vp+1} ⊆ NT (xb+1).

• Suppose h = 3. In this case Lemma 2.3(1), (2) and (3) imply that k ̸∈
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{1, 2, 3, 4, 5, 7}. Since z1z2z3u6u5u4u3X is an (8 + b)-path, k ̸= 8 and any neigh-
bour of xb+1 in A−V (T ) is an isolated vertex in ⟨A⟩. Thus vp = u6, vp+1 ̸∈ V (T ),
and q = 1 and p = 8. Since τ(⟨A⟩) = 9, any path in⟨A⟩ that contains vertices
from both the sets {u7, u8, u9} and {z1, z2, z3} contains the vertex u6. Thus,
since u6 = vp, it follows that P contains vertices from at most one of the sets
{u7, u8, u9} and {z1, z2, z3}, and hence either Pu7u8 or Pz3z2 is a 10-path in ⟨A⟩.

• Suppose h = 4. In this case, it follows from Lemma 2.3(1), (2) and (3) that
u1, u3, u4, u5, u6, ̸∈ N(xb+1). Also, it is easily seen that u7, u8, u9 ̸∈ N(xb+1).
Since u9u8u7u6u3u4u5X is an (8+b)-path, it follows that u2 ̸∈ N(xb+1) and hence
any neighbour of xb+1 in A−V (T ) is an isolated vertex in ⟨A⟩, contradicting that
vp ∈ N(xb+1) and vpvp+1 ∈ E(⟨A⟩.

The above contradictions prove that
←−
T is also not in any C-configuration

in G.

We conclude that T is an ineligible 9-path.

Remark 3.10. Lemma 3.8 implies that if a component K of ⟨A⟩ contains an
ineligible 9-path, then K is not a problematic component.

We now prove our main result.

Theorem 3.11. Let G be a graph with detour order 9+ b. Then G has an exact
(9, b)-partition.

Proof. We begin by choosing a path of order 9+ b in G. We let A consist of the
first nine vertices of this path and we let B = V (G) − A. Then τ⟨A⟩ = 9 and
τ⟨B⟩ ≥ b.

We now describe a recursive procedure for moving vertices back and forth
between A and B until we have an exact (9, b)-partition of G.

Step 1. If τ(⟨B⟩) = b, then (A,B) is an exact (9, b)-partition of G, so then we
stop. If τ(⟨B⟩) > b, let X = x1 · · ·xb+1 be a (b+ 1)-path in ⟨B⟩ and proceed to
Step 2.

Step 2. If τ(⟨A ∪ {xi}⟩) = 9 for i = 1 or b + 1, we move x1 to A if i = 1;
otherwise, we move xb+1 to A. Then we return to Step 1.

Step 3. If τ(⟨A ∪ {x1}⟩) > 9 and τ(⟨A ∪ {xb+1}⟩) > 9, then there are paths
P,Q,R, S, defined and labelled as in Definition 3.1 such that (X,P,Q,R, S) is
a problematic configuration. Let H be the component of ⟨A⟩ that contains the
paths P and R.

(a) If τ(H) < 9, we move x1 to A. This creates at least one 10-path in H.
In particular, Rx1S becomes a 10-path in H. We now destroy all 10-paths in H



The Strong Path Partition Conjecture holds for a = 9 35

by moving end-vertices of 10-paths in H to B until τ(H) = 9. Then we return
to Step 1.

(b) If τ(H) = 9, let T be a 9-path in H. By Lemma 3.5, we may assume
that the paths X,P,Q,R, S and T are labelled such that (X,P,Q,R, S, T ) is an
A-configuration, a B-configuration or a C-configuration, as defined in Definition
3.4. We now move x1 to H, thus creating at least one 10-path in H. We choose a
9-path T ′ that we wish to retain in ⟨H⟩ and then we destroy all 10-paths in ⟨H⟩
by moving certain vertices from H−V (T ′) to B. (The way we choose the 9-path
T ′ and select the vertices to be moved to B will be explained when we consider
the different types of complex configurations that may occur.) Then we return
to Step 1.

We note the following.

Upon completion of any step, the detour order of ⟨A⟩ equals 9, and there is
still a b-path in ⟨B⟩. After each execution of Step 2, there are fewer (b+1)-paths
in ⟨B⟩ than before. However, executing Step 3(a) or (b) may result in ⟨B⟩ having
at least as many (b+1)-paths as previously, since the vertices that were returned
to B may now be in (b+ 1)-paths in ⟨B⟩. We shall show, however, that this will
not prevent our recursive procedure from terminating, and hence we shall end up
with an exact (a, b)-partition of G.

We note that, if at some stage in our procedure, ⟨A⟩ contains a non-proble-
matic component K, then it may well happen that, at some later stage, K be-
comes a problematic component, due to vertices moved from B to K and/or
vertices moved from other components of ⟨A⟩ to B. However, if K contains an
ineligible 9-path, then it follows from Remark 3.10 that K is a non-problematic
component of ⟨A⟩ and K will remain non-problematic throughout the procedure,
because that ineligible 9-path will remain in K, since our procedure does not
move any vertices out of a non-problematic component of ⟨A⟩.

We shall now show that, after a finite number of steps of our procedure,
every component of ⟨A⟩ will contain an ineligible 9-path, unless the procedure
terminates before that point is reached. Thus, eventually, problematic compo-
nents will no longer be encountered, and hence, since the number of (b+1)-paths
in ⟨B⟩ decreases with each application of Step 2, we will end up with an exact
(a, b)-partition of G.

If H is a problematic component of ⟨A⟩ with detour order less than 9, then
after an application of Step 3(a), H will contain a 9-path. Thus, for the remainder
of the proof, we assume that every problematic component has detour order equal
to 9.

Now we suppose that H is a problematic component containing a 9-path T .
Then, as explained in Step 3(b,) we may assume that the complex configuration
(X,P,Q,R, S, T ) is an A, B, or C-configuration, as defined in Definition 3.4. We
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now consider the effect of applying Step 3(b) to the different types of complex
configurations.

• Suppose (X,P,Q,R, S, T ) is an A-configuration. We shall show that, in this
case, after at most two applications of Step 3(b),H will become a non-problematic
component and will then remain non-problematic throughout our procedure.

– Suppose (X,P,Q,R, S, T ) is an A1-configuration, as depicted in Figure 8(A1).
We observe that, if U1 = {t2, t3, t4}, U2 = {t6, t7, t8} and U3 = {w6, x1, w7, w8,

w9}, there is no edge in ⟨A⟩ between any two of the three sets U1, U2, U3 (oth-
erwise there would be (10 + b)-path in G). Thus, if D is a path in G with
V (D) ⊆ {t5} ∪ {U1 ∪ U2 ∪ U3}, then D does not have vertices from more than
two of the sets U1, U2, U3 , and hence D has at most 9 vertices.

Now we move x1 to A. Then ⟨A⟩ contains the 10-paths t1t2t3t4t5w6 x1w7w8w9

and t9t8t7t6t5w6x1w7w8w9. We destroy these two 10-paths in ⟨A⟩ by moving t1
and t9 to B and we choose

T ′ = t2t3t4t5w6x1w7w8w9.

Now suppose there is still a 10-pathM in ⟨A⟩. Then, by our observation in the
first paragraph, V (M) has at least one vertex z that is not in V (T ′)∪{t6, t7, t8}.
We now move z to B and we repeat the process with other 10-paths in ⟨A⟩, until
there are no more 10-paths in ⟨A⟩, but the 9-path T ′ and the 4-path t5t6t7t8
remain in ⟨A⟩.

We relabel T ′ as t′1t
′
2t

′
3t

′
4t

′
5t

′
6t

′
7t

′
8t

′
9 and note that t′4 = t5 and t′7 = w7 (see

Figure 15(A1)). Thus, the 4-path t5t6t7t8 is attached to the 4-th vertex of T ′,
and T ′ has the external adjacency 4 ∼ 7 (since t5w7 ∈ E(H), as indicated in
Figure 8(A1)). Thus, by Lemma 3.9, T ′ is an ineligible 9-path in H.

– Suppose (X,P,Q,R, S, T ) is an A2- or A3-configuration, as depicted in Figure
8(A2 and A3).

In either case, we let

T ′ = t2t3t4t5x1w6w7w8w9.

As in the previous case, we destroy all 10-paths in ⟨A⟩, without deleting any
vertex in V (T ′)∪ {t6, t7, t8}. We relabel T ′ as T ′ = t′1 · · · t′9 and note that t′4 = t5

and t′6 = w6. Since t5w6 ∈ E(G), it follows that T ′ as well as
←−
T ′ has the external

adjacency 4 ∼ 6, which is a forbidden adjacency in each A-configuration. Also,

the 4-path t8t7t6t
′
4 prohibits T as well as

←−
T ′ from being in any B-configuration in

G. Using similar arguments to those used in the proof of Lemma 3.9, it is easily

seen that
←−
T ′ is not in any C-configuration in G.

Now suppose H is still a problematic component. Then there are a (b +
1)-path X ′ = x′1 · · ·x′b+1 in ⟨B⟩ and four paths R′, S′, P ′, Q′ in ⟨A⟩ such that
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(X ′, R′, S′, P ′, Q′, T ′) is a C-configuration in G. It is easily seen that t′3 ̸∈ N(x′1),
and hence {w′

r, w
′
r+1} = {t′4, t′5}. Now we perform Step 3(b) again, by moving x′1

to H, choosing the 9-path

T ′′ = t′1t
′
2t

′
3t

′
4x

′
1t

′
5t

′
6t

′
7t

′
8

and destroying all 10-paths in ⟨A⟩ without moving any vertex in V (T ′′)∪{t6, t7, t8}
to B. Then T ′′ has the external adjacency 4 ∼ 7 and a 4-path attached to its
4-th vertex, and hence it follows from Lemma 3.9 that T ′′ is an ineligible path
in H.

Thus, by Remark 3.10, after at most two applications of Step 3(b), H will be-
come a non-problematic component and will remain non-problematic throughout
our procedure. This implies that, at some stage in our procedure, A-configurations
will cease to occur.

For the remainder of the proof, we therefore assume that every complex
configuration that we encounter will be a B- or C-configuration.

• Suppose (X,P,Q,R, S, T ) is a B-configuration. Then wr = tg and wr+1 = th
for some pair g, h ∈ {2, . . . , 8} such that |g − h| ≥ 2.

If (X,P,Q,R, S, T ) is a B1-configuration or a B6-configuration, we choose

T ′ = Rx1S − {w1}

and if (X,P,Q,R, S, T ) is any other B-configuration, we let

T ′ = Rx1S − {t9}.

We now investigate the difference between the number of external edges of
T and those of T ′.

We first state some general observations regarding B-configurations.

(1) If both tg−1 and tg+1 are in V (T ′), then at least one of the two edges
tgtg−1 and tgtg+1 of T is an external edge of T ′ (because xtg ∈ E(T ′) and hence
at least one of tgtg−1 and tgtg+1 is not in E(T ′)).

(2) If both th−1 and th+1 are in V (T ′), then at least one of the two edges
thth−1 and thth+1 of T is an external edge of T ′ (because xth ∈ E(T ′) and hence
at least one of thth−1 and thth+1 is not in E(T ′)).

(3) If titj is an external edge of T that is not an external edge of T ′, then
either titj ∈ E(T ′), or at least one of ti and tj is not in V (T ′).

We remind the reader that, in each case, T may have external edges in H
that are not edges of the configuration (X,P,Q,R, S, T ) and are therefore not
shown in the sketch representing that configuration. Fortunately, we do not need
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Figure 15. The path T ′ when step 3(b) is applied to type A-configurations.

to determine all possible external edges of T and T ′, since it follows from (3) that
only external edges of T that are in E(R) ∪ E(S), or are incident with a vertex
of T that is not in T ′, can affect the difference between ext(T ) and ext(T ′).

– Suppose (X,P,Q,R, S, T ) is any B-configuration other than B1 and B6.
Then V (T ′) = {x1, t1, t2, . . . , t8) and g, h ∈ {2, . . . , 7}. It therefore follows

from (1) and (2) that at least two edges of T are external edges of T ′.
From the representation of the configuration in Figures 9, 10 and 11, we note

that T has exactly one external edge that is an edge of T ′, and all external edges
of T incident with t9 are forbidden. It therefore follows from (3) that at most
one external edge of T is not an external edge of T ′. Thus ext(T ′) ≥ ext(T ) + 1.
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– Suppose (X,P,Q,R, S, T ) is a B1-configuration.
Then T ′ = t5t4t3t2x1t6t7t8t9, and hence the edge t5t6 of T is an external edge

of T ′ . Thus, since the configuration does not contain an external edge of T , and
all external edges of T incident with t9 are forbidden, it follows from (3) that
ext(T ′) ≥ ext(T ) + 1.

– Suppose (X,P,Q,R, S, T ) is a B6-configuration. Then T ′ = Rx1S − {w1} =
t5t4t8t7t6x1t3t2t1, and hence V (T ′) = {x1} ∪ (V (T )− {t9}).

Thus, (1) and (2) imply that at least two edges of T are external edges of
T ′, and (3) implies that t4t8 is the only external edge of T that is an edge of T ′.
Moreover, every external edge of T incident with t9 is forbidden, except for t9t6.

Thus, if t9t6 ̸∈ E(H), then ext(T ′) = ext(T ) + 1.
On the other hand, if t9t6 ∈ E(H), then ext(T ′) = ext(T ). In this case, T ′

has the external adjacencies 2 ∼ 7 and 1 ∼ 5, and
←−
T has the external adjacencies

3 ∼ 8 and 5 ∼ 9. However, 5 ∼ 9 as well as 1 ∼ 5 are forbidden in each B-
configuration as well as in C1, C2,C3, C4, C5 and C7, and 2 ∼ 7 is forbidden in
C6. Thus, if the component of ⟨A⟩ containing T ′ is a problematic component,

then the only possibility is that T ′ or
←−
T is in a nice C-configuration in G.

Thus we have shown that if T is in any B-configuration in G, then ext(T ) ≥
ext(T ′), and if equality holds, then T is in a B6-configuration and t9t5 ∈ E(T ).
In this case, if the component of ⟨A⟩ containing T ′ is a problematic component,

then
←−
T ′ is in a nice C-configuration in G.

• Suppose (X,P,Q,R, S, T ) is a C-configuration. Then wr+1 = th and wr = th+1

for some h ∈ {2, 3, 4}. Moving x1 to A creates the 10-path

L = t1 · · · thx1th+1 · · · t9.

We choose T ′ = L − {t1} or T ′ = L − {t9}, depending on the type of C-
configuration (as will be explained below). For either choice, the following holds.

(a) The edge thth+1 of T is an external edge of T ′.

(b) All external edges of T are external edges of T ′, except for those that are
incident with the vertex of T that is not in T ′.

Suppose (X,P,Q,R, S, T ) is a nice C -configuration.
Then, by Definition 3.3(c), at most one of t1 and t9 is incident with an

external edge of T .
If t1 is not incident with an external edge of T , we choose T ′ = L−{t1}; and

if t1 is incident with an external edge of T , we choose T ′ = L − {t9}. In either
case it follows from (a) and (b) above that ext(T ′) ≥ ext(T ) + 1.

Suppose (X,P,Q,R, S, T ) is a C1- or C2-configuration, as depicted in Figure
12(C1, C2). In either case, t1t3 ∈ E(T ), but no other external edge incident with
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t1 is allowed. We choose

T ′ = L− {t1} = t2t3x1t4t5t6t7t8t9.

Then we relabel T ′ so that T ′ = t′1t
′
2t

′
3t

′
4t

′
5t

′
6t

′
7t

′
8t

′
9.

The edge t3t4 of T is now the external edge t′2t
′
4 of T ′, and every external

edge of T except for t1t3 is also an external edge of T ′. Thus ext(T ′) = ext(T )
and T ′ has the external adjacency 2 ∼ 4. It can easily be checked that in C1 as
well as in C2, all external edges incident with t2 are forbidden. Thus T ′ has no
external edge incident with t′1, and hence T ′ is not in any C-configuration other
than a nice C-configuration.

We note that T ′ has the external adjacencies 2 ∼ 4 and 6 ∼ 9, and hence←−
T ′ has the external adjacencies 6 ∼ 8 and 1 ∼ 4. Since 2 ∼ 4 as well as 1 ∼ 4

are forbidden adjacencies for a B6-configuration, neither T ′ nor
←−
T ′ can be in a

B6-configuration in G.
Thus, if the component containing T ′ is still a problematic component, then

T ′ is either in a nice C-configuration or in a B-configuration other than B6.

Let (X,P,Q,R, S, T ) be a Ci-configuration for some i ∈ {3, 4, 5, 6, 7}. Then
we choose

T ′ = t1 · · · thx1th+1 · · · t8
and we note that T has only one external edge incident with t9. It therefore
follows from (a) and (b) above that ext(T ′) = ext(T ).

Also, in each case, all external edges of T incident with t8 are forbidden, and
t8 is an end-vertex of T ′. Thus T ′ cannot be in any C-configuration in G that is
not a nice C-configuration.

Since thth+1 is an external edge of T ′ and h ∈ {2, 3, 4}, it follows that T ′ has
the external adjacency 2 ∼ 4, 3 ∼ 5 or 4 ∼ 6, each if which is forbidden in a

B6-configuration. Thus T ′ is not in a B6-configuration. Also,
←−
T ′ has one of the

external adjacencies 8 ∼ 6, 7 ∼ 5 and 6 ∼ 4, and of these, only 6 ∼ 8 is allowed

in a B6-configuration. However,
←−
T ′ has 6 ∼ 8 only if T was in a C6-configuration,

and in that case,
←−
T ′ also has 9 ∼ 4, which is forbidden in a B6-configuration.

Thus, either the component containing T ′ is non-problematic, or at least

one of T ′ and
←−
T ′ is in a nice C-configuration or a B-configuration other than

B6. Thus, by applying Step 3(b) again, we obtain a derived path T ′′ such that
ext(T ′′) > ext(T ′) = ext(T ).

From the above we conclude that after a finite number of steps of our recur-
sive procedure, we will no longer encounter any problematic component associated
with an A-component. Thereafter, if Step 3(b) is repeatedly applied to a prob-
lematic component of ⟨A⟩ due to recurring B- or C-configurations, the number of
external edges of the derived 9-path will not decrease at any step, and will remain
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constant for at most two steps at a time. Thus, eventually, each component of
⟨A⟩ will contain a 9-path that has enough external edges so that it is an ineligible
9-path, unless our procedure terminates before. This proves that, after a finite
number of steps, we will no longer encounter any problematic components, and
hence our procedure is guaranteed to terminate.

4. Concluding Remarks

As a increases beyond 9, there is a steep increase in the number of problematic
configurations that need to be addressed by the recursive procedure used in this
paper. Thus, if we wish to use the same basic recursive procedure to further our
results on the Strong PPC, we need to step away from considering individual
problematic configurations.

We have already observed that it is unnecessary to consider individual prob-
lematic configurations where the associated problematic component has detour
order less than a, since our recursive procedure deals efficiently with such configu-
rations. In our proof of the Strong PPC for a = 9, we considered three categories
of configurations having an associated problematic component with detour or-
der equal to 9, namely A-, B- and C-configurations. Unfortunately, our proof
depended to some extent on considering individual members of these categories.
However, it became apparent that the effect of repeatedly applying the recursive
procedure is essentially the same for all members of the same category.

It seems that the way forward would be to categorize the configurations
that may occur for larger values of a as generalized A-, B- and C-configurations
and then try to refine our recursive procedure so as to ensure that repeated
applications of the procedure will eventually complicate the structure of ⟨A⟩ to
such an extent that, eventually, all the components of ⟨A⟩ will become non-
problematic.
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