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Abstract

In order to characterize graphs which do not contain the Petersen graph
as a minor, several authors explore characterizations of graphs which do not
contain some minors of the Petersen graph. By symmetry, there are three
minors that can be obtained from the Petersen graph by contracting exactly
two edges of a perfect matching and one other edge. Let P1, P2 and P3 be the
three graphs. In this article, we characterize all 4-connected Pi-minor-free
graphs for i = 1, 2, 3.
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1. Introduction

All graphs in this paper are simple. Let G and H be two graphs. The graph
H is called a minor of G if it can be generated by deleting or contracting edges
from G. And G is called H-minor-free if no minor of G is isomorphic to H.
In graph theory, many important problems are about the property of H-minor-
free graphs. For instance, Tutte’s 4-flow conjecture asserts that every bridgeless
Petersen-minor-free graph admits a 4-flow.

Define the contraction of an edge e to be identifying two ends of e and then
deleting all but one edge from each parallel family. We denote by G/e the graph
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obtained from G by contracting e and G\e the graph obtained from G by deleting
e. Two edges e ̸= f are adjacent if they have an end in common. Pairwise non-
adjacent vertices or edges are called independent. More formally, a set of vertices
or edges is independent if no two of its elements are adjacent. Independent sets
of vertices are also called stable. Suppose that V ′ is a nonempty subset of V .
The subgraph of G whose vertex set is V ′ and whose edge set is the set of those
edges of G that have both ends in V ′ is called the subgraph of G induced by V ′

and is denoted by G[V ′], we say that G[V ′] is an induced subgraph of G.

To characterize graphs which do not contain the Petersen graph as a minor,
several papers explore to characterize graphs which do not contain some minors
of the Petersen graph. One of the most interesting work is due to Ferguson [2]
that characterized the P -minor-free graphs, where P is isomorphic to the graph
obtained by contracting three edges of a perfect matching of the Petersen graph.

Let v be a vertex of a 3-connected graph G such that d(v) ≥ 4. Given
two sets A,B ⊆ NG(v), where NG(v) is the set of vertices adjacent to v in G
and A ∩ B = ∅, min{|A|, |B|} ≥ 2. We mean a 3-split of v is the operation of
first deleting v from G and adding two new adjacent vertices a, b, then joining
a to vertices in A and b to vertices in B. It is clearly that a graph obtained by
3-splitting a vertex of a 3-connected graph will also be 3-connected.

Up to symmetry, there are three minors can be obtained from the Petersen
graph by contracting exactly two edges of a perfect matching and one other edge.
Let P1, P2 and P3 be the three graphs (see Figures 1–3). In this article, we
characterize 4-connected graphs that do not contain Pi as a minor, i = 1, 2, 3. In
addition, we obtain two graphs by 3-splitting a vertex of the Octahedron. We
denote the planar one by Oct+1 and the non-planar one by Oct+2 (as shown in
Figure 4).
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Figure 1. Graph P1.

For each integer n ≥ 3, let DWn denote a double-wheel, which is a graph
on n + 2 vertices obtained from a cycle Cn by adding two adjacent vertices and
connecting them to all vertices on the cycle. Let DW = {DWn : n ≥ 3}. For
each integer n ≥ 5, let C2

n be a graph obtained from a cycle Cn by joining
all pairs of vertices of distance two on the cycle. Let C0 = {C2

2n : n ≥ 3},
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Figure 2. Graph P2.
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Figure 3. Graph P3.

3-split

Figure 4. Graphs Oct+1 and Oct+2 .

C1 = {C2
2n+1 : n ≥ 2}, and C = C0 ∪ C1. The graph L(G) is called the line graph

of G if V (L(G)) = E(G), and for any two vertices e, f in V (L(G)), e and f are
adjacent if and only if they are adjacent edges in G. Let K be the set of graphs
that are 4-connected nonplanar minors of some K4,n. In other words, these are
4-connected nonplanar graphs obtained from some K4,n (n ≥ 1) by adding edges
to the partite set of size four. It is routine to check that K contains exactly one
graph (K5) of five vertices, two graphs (K6\e, DW4) of six vertices, six graphs
(K1

4,3,K
2
4,3,K

3
4,3,K

4
4,3,K

5
4,3,K

6
4,3) of seven vertices, and eleven graphs of n (n ≥ 8)

vertices.

The following are the main results of this paper.

Theorem 1. A 4-connected graph G is Oct+1 -minor-free if and only if G belongs
to K ∪ C1 ∪ {K6, C

2
6}.
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Theorem 2. A 4-connected graph G is P1-minor-free if and only if G is planar
or G belongs to

{
K5,K6,K6\e,DW4, C

2
5 , C

2
7 ,K

4
4,3,K

11
4,4

}
.

Theorem 3. A 4-connected graph G is P2-minor-free if and only if G belongs to
C1 ∪

{
K5,K6, C

2
6 , DW4,K6\e,K4

4,3,K
5
4,3,K

6
4,3,K

11
4,4

}
.

Theorem 4. A 4-connected graph G is P3-minor-free if and only if G is planar
or G belongs to

{
K5,K6,K6\e,DW4, C

2
5

}
.

2. Preliminaries

A sequence of 4-connected graphs G0, G1, . . . , Gn is called a (G0, Gn)-chain if
each Gi (i < n) has an edge ei such that Gi/ei = Gi+1. A graph G with at least
six vertices is called cyclically k-edge-connected if the deletion of fewer than k
edges from G does not create two components which both contain at least one
cycle. Let L = {L(G) : G be a cyclically 4-edge-connected cubic graph}.

Let v be a vertex of a 4-connected graph G. A 4-split of v produces a
new G′ as follows. Given two sets, A,B ⊆ NG(v), where A ∪ B = NG(v) and
min{|A|, |B|} ≥ 3, the graph G′ is obtained by adding to G − v two adjacent
vertices a and b such that NG′(a) = A ∪ {b} and NG′(b) = B ∪ {a}. Clearly, G′

is also 4-connected.
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Martinov characterizes all 4-connected graphs in the following theorem.

Theorem 5 [5]. Let G be a 4-connected graph. There exists a sequence of 4-
connected graphs H0, . . . ,Ht t ≥ 0 such that G is isomorphic to H0 and Hi is
obtained from Hi−1 by contracting some edges e ∈ E(Hi−1) and deleting any
resulting parallel edges. Moreover, Ht is either isomorphic to C2

n for some n ≥ 5
or isomorphic to the line graph of a cubic cyclically 4-connected graph.

The following strengthened result due to Qin and Ding is an important tool
to characterize all 4-connected Oct+1 -minor-free and Pi-minor-free graphs.

Theorem 6 [6]. Let G be a 4-connected graph not in C ∪L. If G is planar, then
there exists a (G,C2

6 )-chain; if G is non-planar, then there exists a (G,K5)-chain.

Lemma 7 [3]. Let G be a 4-connected graph in C∪L. Then G is Oct+1 -minor-free
if and only if G ∈ {C2

6} ∪ {C2
2k+1 : k ≥ 2}.

Theorem 8 [3]. If a 4-connected graph G is Oct+1 -minor-free, then G is C2
6 ,

C2
2k+1 (k ≥ 2) or it is obtained from C2

5 by repeatedly 4-splitting vertices. And

C2
6 is the unique 4-connected planar Oct+1 -minor-free graph.

The following result due to Ding for 4-connected P̄7-minor-free graph is im-
portant to prove the main results, where P̄7 is the complement of a path on seven
vertices.

Theorem 9 [1]. A 4-connected graph G is P̄7-minor-free if and only if either G
is planar or G belongs to DW ∪ C1 ∪ K ∪ {K6, L(K3,3),Γ1,Γ2,Γ3,Γ4,Γ5}, where
Γ1, . . . ,Γ5 are the five graphs shown in Figure 6.

Figure 6. Graphs Γ1,Γ2,Γ3,Γ4,Γ5.

3. 4-Connected Oct+1 -Minor-Free Graphs

In this section, we prove Theorem 1.

Lemma 10. Every graph in K is Oct+1 -minor-free.
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Proof. Note that max{|V (K5)|, |V (DW4)|, |V (K6\e)|} < 7, which implies that
K5, DW4, and K6\e are Oct+1 -minor-free.

For each integer 1 ≤ i ≤ 6, if Ki
4,3 contains a Oct+1 -minor, then Oct+1 can be

obtained from Ki
4,3 by deleting some edges. Observe that every graph Ki

4,3 con-

tains three independent vertices, while Oct+1 does not contain three independent
vertices, a contradiction.

For each integer 1 ≤ j ≤ 11, if Kj
4,4 contains a Oct+1 -minor, then Oct+1 can be

obtained from Kj
4,4 by contracting an edge and deleting some edges. Similarly,

every resulting graph contains three independent vertices, a contradiction.

Lemma 11. All graphs in {DWn : n ≥ 5} ∪ {Γn : 1 ≤ n ≤ 5} contain Oct+1 as a
minor.

Proof. It can be seen in Figure 7 that DW5 and Γ1 contain Oct+1 as a minor.
Note that DWn (n ≥ 6) contains DW5 as a minor and Γ1 is a minor of Γn

(n = 2, . . . , 5). Thus they all contain Oct+1 as a minor.
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Figure 7. Graph Oct+1 , and Oct+1 -minor of DW5 and Γ1.

Proof of Theorem 1. Since Oct+1 is a minor of P̄7, the result follows from
Theorem 8, Theorem 9, Lemma 10 and Lemma 11.

4. 4-Connected P1-Minor-Free Graphs

In this section, we characterize all 4-connected P1-minor-free graphs.

Lemma 12. If a 4-connected graph G ∈ C1 is P1-minor-free, then G is C2
5 or

C2
7 .

Proof. Since |V (C2
5 )| < |V (P1)|, C2

5 is P1-minor-free. If C2
7 contains a P1-minor,

we can assume that P1 is obtained from C2
7 by deleting some edges. Note that

P1 contains a vertex of degree 5. However, the maximum degree of C2
7 is 4, a

contradiction.
Let V (C2

9 ) = {1, 2, . . . , 9} be labeled as shown in Figure 8. The graph ob-
tained by contracting the edges 29 and 35, contains a P1-minor. It is easy to
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verify that each graph in C1 with order more than 11 contains C2
9 as a minor,

thus contains a P1-minor.
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Figure 8. P1-minor of C2
9 .

Lemma 13. If a 4-connected graph G ∈ K and G is P1-minor-free, then G
belongs to {K5, DW4,K6\e,K4

4,3,K
11
4,4}.

Proof. Clearly, K5, DW4, and K6\e are P1-minor-free. If K4
4,3 contains a P1-

minor, we can assume that some edges of K4
4,3 are deleted. Let V (P1) = {1, 2, . . . ,

7}. LetX = {x1, x2, x3; y1, y2, y3, y4} be the vertex set ofK4
4,3. TheK

4
4,3 has three

independent vertices, x1, x2, x3 or y2, y3, y4 (see Figure 9). Up to symmetry, we
consider x1, x2, x3. Note that P1 contains exactly two sets of three independent
vertices, {1, 5, 7} and {1, 4, 5}.

Case 1. {x1, x2, x3} = {1, 5, 7}, {y1, y2, y3, y4} = {2, 3, 4, 6}. Without loss
of generality, we assume that x1 = 1, x2 = 5 and x3 = 7. Since P1[{2, 4, 6}] is
isomorphic to K3, K

4
4,3[{y1, y2, y3, y4}] contains no subgraph isomorphic to K3,

K4
4,3 does not contain P1 as a minor.

1x 2x 3x

1
y 2

y 3
y

4
y

2

1 2

3 4

5 6

7

Figure 9. Graphs P1 and K4
4,3 in Case 1.

Case 2. {x1, x2, x3} = {1, 4, 5}, {y1, y2, y3, y4} = {2, 3, 6, 7}. Without loss
of generality, we assume that x1 = 1, x2 = 4, x3 = 5. Since P1[{2, 3, 6, 7}] is a
4-path, K4

4,3[{y1, y2, y3, y4}] contains no subgraph isomorphic to a 4-path, K4
4,3

contains no P1-minor.

Therefore, K4
4,3 is P1-minor-free.
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Figure 10. Graphs P1 and K4
4,3 in Case 2.

It is obvious that both K6
4,3 and K3

4,3 contain P1 as a minor (see Figure 11).

What is more, K1
4,3 and K2

4,3 contain K3
4,3 as a minor. Since K1

4,4, K
2
4,4, K

5
4,4,

K5
4,3 and K6

4,4 contain K6
4,3 as a minor, they all contain P1 as a minor.

1 2 3

4 5 6 7

1 2 3

4 5 6 7

Figure 11. P1-minor of K6
4,3 and K3

4,3.

Note that every graph obtained by contracting an edge in Kj
4,4 for j =

3, 4, 7, 8, 9, 10, contains K6
4,3 as a minor (see Figure 12). Thus Kj

4,4 contains
P1 as a minor.
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If K11
4,4 contains a P1-minor, we can assume that one of its edges is contracted.

Note that K11
4,4/e

∼= K4
4,3 (see Figure 13). Up to the discussion above, no edges

can be deleted in K11
4,4/e to obtain a P1-minor. Therefore, K11

4,4 contains no P1-
minor.

Figure 13. Graphs K11
4,4 and K11

4,4/e.

Lemma 14. Every graph in {DW5, L(K3,3)} ∪ {Γn : 1 ≤ n ≤ 5} contains P1 as
a minor.

Proof. As shown in Figure 14, both DW5 and Γ1 contain P1 as a minor. Thus,
for i ≥ 2, every Γi also contains a P1-minor. In addition, the graph obtained by
contracting the edges 28 and 56 in L(K3,3) contains P1 as a minor.
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7
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28

Figure 14. P1-minor of DW5,Γ1 and L(K3,3).

Proof of Theorem 2. Note that P1 is a minor of P̄7 and is nonplanar, then
Theorem 2 follows from Theorem 9, Lemmas 12, 13 and 14.

5. 4-Connected P2-Minor-Free Graphs

In this section, we characterize all 4-connected P2-minor-free graphs.
Recall the definition that C2

n (n ≥ 5) is a graph obtained from a cycle Cn by
joining all pairs of vertices of distance two on the cycle. The edges of the cycle
Cn are called rung edges, while the remaining edges are called rim edges.

Let v be a vertex of a graph G adjacent to exactly three vertices, a, b and c.
A Y△-exchange on v of G is obtained by removing the vertex v, then adding a
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triangle on the vertices a, b and c, and removing any parallel edges created in the
process. The resulting graph will be denoted by GY△

v .

Lemma 15 [4]. Let H be a 4-connected graph and G a graph with a cubic vertex

v. If H is a minor of G, then H is a minor of GY△
v .

Lemma 16. For every integer n ≥ 2, C2
2n+1 is P2-minor-free.

Proof. The result is valid for n = 2. If C2
7 contains a P2-minor, then two edges

of C2
7 must be deleted, which results in seven graphs Hi (1 ≤ i ≤ 7) as shown in

Figure 15. Note that {1, 3, 4} is a unique set of three independent vertices in P2.
What is more, V ′ = {5, 6, 7} ⊆ V (P2) and G[V ′] ∼= K3. However, the subgraph of
H1 induced by the set {3, 4, 6, 7} cannot be isomorphic to K3. Similarly, for every
j ≥ 2, Hj is P2-minor-free, where neither H5 nor H6 contains three independent
vertices.
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Figure 15. Graphs P2, Hi (1 ≤ i ≤ 7).

Let k ≥ 4 be the smallest integer such that C2
2k+1 contains a P2-minor. Note

that since P2 has 7 vertices and C2
2k+1 has an odd number of vertices, it can be

assumed that at least two edges are contracted.
Assume that at least two rim edges of C2

2k+1 are contracted. Without loss
of generality, first contract the edge 13 to obtain a graph N with a new vertex v
(see Figure 16). By Lemma 15, NY△

2 must also contain a P2-minor. Note that

NY△
2 is isomorphic to C2

2k−1, a smaller graph that also contains P2. Therefore,
no rim edge of C2

2k+1 can be contracted.
Assume that at least two rung edges of C2

2k+1 are contracted. Let G be the
graph obtained by contracting a rung edge of C2

2k+1. Without loss of generality,
contract the edge 12 to create a new vertex v (see Figure 17). By Lemma 15,

the graph H = GY△
3 must also contain a P2-minor. Notice that H is a minor of

C2
2k−1. This contradicts the minimality of k.
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v 5 7

2 4 62 1k +9

2k6

. . .

Figure 16. The graph is obtained by contracting a rim edge of C2
2k+1.

3 5 7

4 6

. . .

2 2k −

2 1k − 2 1k +

2k

v

v 5 7

4 6

. . .

2 2k −

2 1k − 2 1k +

2k

H

Figure 17. The graph is obtained by contracting a rung edge of C2
2k+1.

Lemma 17. If a 4-connected graph G ∈ K and G is P2-minor-free, then G
belongs to {K5, DW4,K6\e,K4

4,3,K
5
4,3,K

6
4,3,K

11
4,4}.

Proof. Clearly, K5, DW4, and K6\e are P2-minor-free. If K4
4,3 contains P2 as a

minor, then P2 can be obtained from K4
4,3 by deleting some edges. Let V (P2) =

{1, 2, . . . , 7}. Let X = {x1, x2, x3; y1, y2, y3, y4} be the vertex set of K4
4,3. Note

that the subgraph of K4
4,3 induced by the set {y1, y2, y3, y4} cannot be isomor-

phic to K3. By a similar argument as that of Lemma 16, K4
4,3 is P2-minor-free.

Similarly, K5
4,3 and K6

4,3 are P2-minor-free (see Figure 18).
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1
y

2
y

3
y

4
y

1
y

2
y
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y

4
y

Figure 18. K4
4,3,K

5
4,3 and K6

4,3 are P2-minor-free graphs.

Figure 19 shows that K3
4,3 contains a P2-minor. Note that both K1

4,3 and

K2
4,3 contain K3

4,3 as a minor. Thus K1
4,3 and K2

4,3 contain P2 as a minor.

Similarly, K4
4,4, K

5
4,4, K

7
4,4, K

8
4,4, K

9
4,4 and K10

4,4 contain P2 as a minor (see

Figure 20). Note that K7
4,4 is a minor of K1

4,4, K
2
4,4 and K3

4,4. Moreover, K8
4,4 is

a minor of K6
4,4. Thus K

1
4,4, K

2
4,4, K

3
4,4 and K6

4,4 contain P2 as a minor.

If K11
4,4 contains a P2-minor, then P2 can be obtained from K11

4,4 by deleting

some edges and contracting an edge, which is isomorphic toK4
4,3. By an argument

similar to that of K4
4,3, K

11
4,4 is P2-minor-free.
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Figure 19. P2-minor of K3
4,3.
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4,4, K
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4,4.

Proof of Theorem 3. It is easy to see that P2 is a minor of the graph Oct+1 .
Hence Theorem 3 follows from Theorem 1, Lemmas 16 and 17.

6. 4-Connected P3-Minor-Free Graphs

In this section, we characterize all 4-connected P3-minor-free graphs.

Lemma 18. If a 4-connected graph G ∈ K and G is P3-minor-free, then G
belongs to {K5, DW4,K6\e}.

Proof. Clearly, K5, DW4, and K6\e are P3-minor-free. Note that both K4
4,3

and K6
4,3 contain P3 as a minor (see Figure 21). In addition, K1

4,3, K
2
4,3, K

3
4,3

contain K4
4,3 as a minor, and K5

4,3 contains a K6
4,3-minor. For i = 1, 2, . . . , 11,

Ki
4,4 contains K4

4,3 as a minor, thus they all contain P3 as a minor.
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Figure 21. P3-minor of K4
4,3, K

6
4,3 and K11

4,4.

Lemma 19. If a 4-connected graph G ∈ DW ∪ C1 and G is P3-minor-free, then
G is DW3, DW4 and C2

5 .

Proof. It can be seen in Figure 22 that DW5 contains P3 as a minor. Notice
that DWn (n ≥ 6) contains DW5 as a minor, thus contains P3 as a minor.

Observe that a P3-minor can be obtained from C2
7 by deleting edges 17, 34

and 56 (as shown in Figure 22). What is more, C2
n (n ≥ 9) contains C2

7 as a
minor, thus contains P3 as a minor.

Proof of Theorem 4. Note that P3 is a minor of P̄7 and is a nonplanar graph.
Both L(K3,3) and Γ1 contain P3 as a minor as shown in Figure 23 and Figure 22,
respectively. Then Theorem 4 follows from Theorem 9, Lemmas 18 and 19.

7 3

4

5 1

2

3

4

5

6

7

5
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1 12

2

3

3

7

7
6

6
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41 2

6

Figure 22. Graph P3 and P3-minor of DW5,Γ1 and C2
7 .

Figure 23. P3-minor of L(K3,3).
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