
Discussiones Mathematicae
Graph Theory xx (xxxx) 1–7
https://doi.org/10.7151/dmgt.2588

HAMILTONIAN CYCLES THROUGH A LINEAR FOREST
IN BIPARTITE GRAPHS

Xia Li, Yashu Li and Weihua Yang1,2,3

Department of Mathematics
Taiyuan University of Technology

Taiyuan 030024, China

e-mail: 15525142916@163.com
liyashu1008@163.com
ywh222@163.com

Abstract

A graph is a linear forest if every component is a nontrivial path. Let G
be a balanced bipartite graph with n vertices. Let F be a set of m edges of G
that induces a linear forest. Zamani and West provided a sufficient condition
for G to contain the linear forest in a Hamiltonian cycle, as presented in
[Spanning cycles through specified edges in bipartite graphs, J. Graph Theory
71 (2012) 1–17]. The proof presented in this paper establishes the existence
of Hamiltonian cycles Ci such that |E(Ci) ∩ F | = i (0 ⩽ i ⩽ m) in G if any
two nonadjacent vertices in opposite partite sets have degree-sum at least
n/2 +m+ 1.
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1. Introduction

Terminology and notation that are not defined in this paper are referenced from
Bondy[2]. A Hamiltonian path (cycle) in a graph G is a path(cycle) con-
taining all the vertices of G, and a graph with a Hamiltonian cycle is called
Hamiltonian. The study of sufficient conditions for the existence of Hamilto-
nian cycles is a classical topic in graph theory. Ore’s theorem [7] states that
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every n-vertex (n ⩾ 3) graph G with σ2(G) ⩾ n is Hamiltonian, where σ2(G) =
min{d(x) + d(y) : xy /∈ E(G)}.

Bollobás and Brightwell investigated a similar sufficient condition to ensure
the existence of cycles through prescribed vertices. They presented the following
theorem.

Theorem 1 (Bollobás and Brightwell [1]). Let G be a graph on n vertices, and
let W ⊆ V (G). If |W | ⩾ 3 and dG(x) + dG(y) ⩾ n for every pair of non-adjacent
vertices x, y ∈W , then G has a cycle containing all the vertices of W .

Let G be a graph and let W ⊆ V (G), |W | ⩾ 3. The graph G is called W -
locally pancyclic if for each i with 3 ⩽ i ⩽ |W |, G contains cycles Ci such that Ci

contains exactly i vertices from |W |. Let G[W ] be the graph induced on the set
W . The following theorem shows the existence of cycles containing a specified
number of vertices of W .

Theorem 2 (Stacho [4]). Let G be a graph on n vertices, and let W ⊆ V (G). If
|W | ⩾ 3 and dG(x)+ dG(y) ⩾ n for every pair of non-adjacent vertices x, y ∈W ,
then either G is W -locally pancyclic or |W | = n and G = Kn/2,n/2 or else |W | =
4, G[W ] = K2,2.

Let E′ be a nonempty subset of E(G). The subgraph of G whose vertex set
is the set of ends of edges in E′ and whose edge set is E′ is called the subgraph of
G induced by E′ and is denoted by G[E′]; G[E′] is an edge-induced subgraph of
G. A graph is a linear forest if every component is a nontrivial path. Let F be a
set of m edges of G and G[F ] is a linear forest. An edge uv is called an F -edge, if
uv ∈ F . The F -edge-length of a cycle in G is defined as the number of F -edges
that it contains.

Researchers explored the degree condition for the existence of Hamiltonian
cycles through F , calling a graph F -Hamiltonian when such a cycle exists. For
general graphs G, Pósa gave a sharp sufficient condition on σ2(G).

Theorem 3 (Pósa [3]). Let G be a graph on n vertices. Let F be a set of m
edges of G such that G[F ] is a linear forest. If σ2(G) ⩾ n + m, then G is F -
Hamiltonian.

Takeshi Sugiyama proved the following theorem, which shows the existence
of a Hamiltonian cycle containing a specified number of edges of a linear forest.

Theorem 4 (Takeshi Sugiyama [5]). Let G be a graph on n vertices, where
n ⩾ 5, and let F be a set of m edges of G such that G[F ] is a linear forest. If
σ2(G) ⩾ n + m, then G contains Hamiltonian cycles of all the F -edge-lengths
from 0 to m.
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We explore the analogues of these results in the context of bipartite graphs.
The X,Y -bigraph denotes to a bipartite graph with partite sets X and Y . When
|X| = |Y |, the graph is a balanced bipartite graph. For an X,Y -bigraph, let
σ(G) = min{d(x) + d(y) : x ∈ X, y ∈ Y, xy /∈ E(G)}. Las Vergnas [6] established
that if σ(G) > n/2+2, then every perfect matching in G is contained within some
Hamiltonian cycle. Regarding the general linear forest, Zamani and West gave a
sufficiency threshold for σ(G) in terms of n and m. They also demonstrated that
this threshold on the degree-sum is sharp when n > 3m.

Theorem 5 (Zamani and West [8]). Let G be an n-vertex balanced X,Y -bigraph.
Let F be a set of m edges of G such that G[F ] is a linear forest and G[F ] has t1
paths of odd length and t2 paths of positive even length. If σ(G) ⩾ n/2+ ⌈m/2⌉+
ε(t1, t2), where

ε(t1, t2) =


1 t1 = 0,

1 (t1, t2) ∈ {(1, 0), (2, 0)},
0 otherwise,

then G is F -Hamiltonian.

This paper presents a theorem that demonstrates the existence of balanced
bipartite graphs with Hamiltonian cycles, where the F -edge-lengths range from
0 to m.

Theorem 6. Let G be an n-vertex balanced X,Y -bigraph. Let F be a set of m
edges of G such that G[F ] is a linear forest. If

(i) G is not a complete bipartite graph and σ(G) ⩾ n/2 +m+ 1,

(ii) G is a complete bipartite graph with n ⩾ 20,

then G contains Hamiltonian cycles of all the F -edge-lengths from 0 to m.

2. Proof of Theorem 6

Let G be an n-vertex balanced X,Y -bigraph, and let F be a set of m edges of
G that induces a linear forest. A cycle C with a specified orientation is denoted

by
−→
C . The successor and the predecessor of x on C are denoted by x+ and x−,

respectively. For x, y ∈ V (C), a path from x to y on
−→
C is denoted by x

−→
Cy. The

inverse path of x
−→
Cy is denoted by y

←−
Cx. A path with endvertices x and y is

called an x, y-path. When X and Y represent sets of vertices, an (X,Y )-path is
denoted as a path P where one end is in X and the other is in Y . The distance
dG(x, y) is the length of the shortest x, y-path in G, if no such path exists, let
dG(x, y) =∞.
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Let P denote an x, y-path of odd length. An edge of P is an odd edge or
even edge (with respect to P ) when it has an odd position or an even position in
a listing of the edges in order from one end of P . The set of all odd edges on P is
denoted as Eodd(P ), while the set of all even edges on P is denoted as Eeven(P ).
An edge that lies on an x, y-path is full (with respect to P ) if one endpoint is
adjacent to x and the other is adjacent to y.

Remark 7. Let P be an x, y-path through all vertices in G. Since each endpoint
of an edge on P has at most one neighbor in x, y, the pigeonhole principle implies
that if xy /∈ E(G) and d(x) + d(y) ⩾ n/2 + p, then there are at least p full odd
edges and p+ 1 full even edges along P .

By Theorem 5, G contains a Hamiltonian cycle C of G such that F ⊆ E(C).
The proof can be completed by proving that if G contains a Hamiltonian cycle
C of G such that |E(C) ∩ F | = l (l ⩾ 1), then there exists a Hamiltonian cycle
C ′ of G such that |E(C ′)∩F | = l− 1. So assume that G contains a Hamiltonian
cycle C of G such that |E(C) ∩ F | = l. Let C = x1x2 · · ·xn and consider the
subscripts as modulo n. Let A = {xi : xixi+1 ∈ F}, B = {xi : xixi+1 /∈ F} and
q = |F \ E(C)|. Note that q = m− l. Let G′ = (V (G), E(G) \ {F \ E(C)}).

Lemma 8. If there exist xi ∈ A and xj ∈ B such that dC(xi, xj) ⩾ 2, xixj ∈
E(G) \ F and xi+1xj+1 /∈ F , then there exists a Hamiltonian cycle C ′ such that
|E(C ′) ∩ F | = l − 1 and xixi+1 /∈ E(C ′).

Proof. Let xixj ∈ E(G) \ F such that xi ∈ A, xj ∈ B and dC(xi, xj) ⩾ 2.
Without loss of generality, we assume that xi ∈ X, xj ∈ Y . If xi+1xj+1 ∈
E(G)\F , then G contains a Hamiltonian cycle C ′ = xi+1

−→
Cxjxi

←−
Cxj+1 such that

|E(C ′) ∩ F | = l − 1. So we assume that xi+1xj+1 /∈ E(G), then dG(xi+1) +
dG(xj+1) ⩾ σ(G) ⩾ n/2 +m + 1. We have dG′(xi+1) + dG′(xj+1) ⩾ n/2 +m +

1 − q. There exists a Hamiltonian path P = xj+1
−→
Cxixj

←−
Cxi+1 in G′ such that

|E(P ) ∩ F | = l − 1 = m − q − 1. According to Remark 7, P contains at least
m + 1 − q full odd edges. Consequently, there exists an edge x′y′ ∈ E(P ) \ F
such that xj+1y

′, xi+1x
′ ∈ E(G) \ F . Then there exists a Hamiltonian cycle

C ′ = xj+1
−→
P x′xi+1

←−
P y′ such that |E(C ′)∩F | = l−1. Given that G′ is a subgraph

of G, G contains C ′.

Lemma 9. If there exist b1, b2, b3 ∈ B and a ∈ A such that dC(a, bi) ⩾ 2 and
abi ∈ E(G) for every i, 1 ⩽ i ⩽ 3, then there exists a Hamiltonian cycle C ′ such
that |E(C ′) ∩ F | = l − 1.

Proof. Let b1, b2, b3 ∈ B and a ∈ A such that dC(a, bi) ⩾ 2 for every i, 1 ⩽ i ⩽ 3.
Given that each edge of F induces a linear forest, without loss of generality,
we can assume that ab1, ab2 /∈ F and a+b+1 /∈ F . By Lemma 8, G contains a
Hamiltonian cycle C ′ such that |E(C ′) ∩ F | = l − 1.
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The remainder of the proof is now partitioned into two cases.

Case 1. m ⩽ n/2 − 3. Since |A| = l ⩾ 1, without loss of generality, we
may assume that a ∈ X ∩ A, then |B ∩ X| ⩽ n/2 − 1. If q = 0, since |B| =
|E(C) \ F | ⩾ n − l ⩾ n/2 + 3 ⩾ |X| + 3, there are at least three vertices in
B ∩ Y . Consequently, there exists a b ∈ B ∩ Y such that dC(a, b) ⩾ 2. If
ab ∈ E(G), then by Lemma 8, G contains a Hamiltonian cycle C ′ such that
|E(C ′) ∩ F | = l − 1. Hence we may only consider the case ab /∈ E(G). If q ⩾ 1,
we have |B| = |E(C) \ F | ⩾ n/2 + 4 ⩾ |B ∩ X| + 5. There are at least five
vertices in B ∩ Y , hence there exist b1, b2, b3 ∈ B ∩ Y such that dC(a, bi) ⩾ 2,
1 ⩽ i ⩽ 3. If ab1, ab2, ab3 ∈ E(G), by Lemma 9, G contains a Hamiltonian cycle
C ′ such that |E(C ′) ∩ F | = l− 1. Hence we may only consider the case where at
least ab1, ab2, ab3 is not in E(G). Therefore, in both cases q = 0 and q ⩾ 1, we
can assume that there exist a ∈ A ∩X and b ∈ B ∩ Y such that ab /∈ E(G) and
dC(a, b) ⩾ 2. We have dG(a) + dG(b) ⩾ n/2 +m+ 1.

If a+b+ ∈ E(G), we have a Hamiltonian path P = a
←−
C b+a+

−→
C b such that

|E(P )∩F | = l−1 = m−q−1. Since dG′(a)+dG′(b) ⩾ n/2+m+1−q, according
to Remark 7, P contains at least m + 1 − q full odd edges. Consequently, there
exists an edge x′y′ ∈ E(P ) \ F such that ay′, bx′ ∈ E(G) \ F . Then there exists

a Hamiltonian cycle C ′ = a
−→
P x′b

←−
P y′ such that |E(C ′) ∩ F | = l − 1 in G′. Since

G′ is subgraph of G, G contains C ′.

If a+b+ /∈ E(G), then dG(a
+) + dG(b

+) ⩾ n/2 +m+ 1. Let P1 =
←−
C [b−, a+],

P2 =
−→
C [b+, a−]. We have both P1 and P2 are (X,Y )-path. Let E′ = Eeven(P1)∪

Eeven(P2). Since |V (P1)| + |V (P2)| = n − 2, we have |E′| = n/2 − 3. Now we
consider the graph G′, dG′[E′](a)+dG′[E′](b) ⩾ n/2+m+1−q−4 = n/2−3+m−q.
By pigeonhole principle and |E′ ∩ F | ⩽ l − 1 = m − q − 1, there exists an edge
uv in E′ \ F such that one endpoint is adjacent to a and the other is adjacent
to b. Without loss of generality, we may assume that uv ∈ Eeven(P1). Then

P = b+
−→
Cau
−→
C bv
←−
Ca+ is a (X,Y )-Hamiltonian path such that |E(P )∩F | = l−1.

Since dG′(a+) + dG′(b+) ⩾ n/2 + m + 1 − q, by Remark 7, P contains at least
m+1− q full odd edges. Hence there exists an edge x′y′ ∈ E(P ) \F . Then there

exists a Hamiltonian cycle C ′ = b+
−→
P x′a+

←−
P y′ such that |E(C ′) ∩ F | = l − 1 in

G′. Since G′ is subgraph of G, G contains C ′.

Case 2. m ⩾ n/2 − 2. By the degree condition, G is complete bipartite
graph. Since n ⩾ 20, we have m ⩾ 8. Let uv be an edge of F ∩ E(C). Let
G∗ = (V (G′), E(G′) \ {uv}), and let F ′ = F ∩ E(C)− uv and m′ = m− q − 1.

If q = 0, we have

σ(G∗) ⩾ n/2 +m− 1 ⩾ n/2 +m/2 + 3.

Since n/2 + ⌈m′/2⌉ + 1 ⩽ n/2 + m′/2 + 2 ⩽ n/2 + m/2 + 3/2, we have
σ(G∗) ⩾ n/2 + ⌈m′/2⌉+ 1.
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If q ⩾ 1, we have

σ(G∗) ⩾ n/2 +m− 3 ⩾ n/2 +m/2 + 1.

Since n/2+ ⌈m′/2⌉+1 ⩽ n/2+m′/2+2 ⩽ n/2+m/2+1, we have σ(G∗) ⩾
n/2 + ⌈m′/2⌉+ 1.

Therefore, in both cases q = 0 and q ⩾ 1, we have σ(G∗) ⩾ n/2+ ⌈m′/2⌉+1.
By Theorem 5, then G∗ has a Hamiltonian cycle C ′ containing F ′. Therefore, C ′

is a Hamiltonian cycle in G such that |E(C ′)∩F | = l− 1. The proof is complete.

3. A Note on Theorem 6

Notably, in the case where F is a matching and G is a complete balanced X,Y -
bigraph, a better conclusion can be derived as follows.

Theorem 10. Let G be an n-vertex complete balanced X,Y -bigraph with n ⩾ 8,
and let F be a matching with m edges. If σ(G) ⩾ n/2 +m+ 1, then G contains
Hamiltonian cycles of all the F -edge-lengths from 0 to m.

Proof. Let C be a Hamiltonian cycle of G such that |E(C) ∩ F | = l. The
terminology of Section 2 can now be applied to C. Through a proof similar to
that of Lemma 8, the following lemma can be obtained.

Lemma 11. If there exist a ∈ A and b ∈ B such that dC(a, b) ⩾ 2 and ab ∈ E(G),
then there exists a Hamiltonian cycle C ′ such that |E(C ′) ∩ F | = l − 1.

By the degree condition, we have n/2 − 2 ⩽ m ⩽ n/2. Let a ∈ A ∩ X. If
l ⩽ n/2− 2, then |B| = |E(C) \ F | ⩾ n/2 + 2 ⩾ |B ∩X|+ 3. There are at least
three vertices in B ∩Y . Consequently, we have b ∈ B ∩Y such that dC(a, b) ⩾ 2.
By Lemma 11, G contains a Hamiltonian cycle such that |E(C ′) ∩ F | = l − 1.
If l = m = n/2, immediately G contains a Hamiltonian cycle C ′ such that
|E(C ′)∩F | = l−1. Hence we can assume l = n/2−1. If there exists b ∈ B∩Y such
that dC(a, b) ⩾ 2, we apply Lemma 11. If any b ∈ B ∩ Y such that dC(a, b) = 1,
we obtain A = {a} ∪ (Y \ {a+, a−}) and B = {a+, a−} ∪ (X \ {a}). Since
n ⩾ 8, there exist a1 ∈ A ∩ Y and b1 ∈ B ∩ X such that dC(a1, b1) ⩾ 2. Then

C ′ = a+1
−→
C b1a1

←−
C b+1 such that |E(C ′) ∩ F | = l − 1.

4. Conclusion

According to our thorough analysis, the lower bound of n/2+m+1 for σ(G), as
specified in Theorems 6 and 10, does not appear to be the most optimal value.
The purpose of the lower bound n/2+m+1 for σ(G) is to guarantee the existence
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of a full odd edge e in P , such that e /∈ F , thereby facilitating the acquisition of a
Hamiltonian cycle C ′ in G that includes fewer edges from F . In a future study, it
would be of considerable interest to determine the most appropriate lower bound.
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