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Abstract

A graph is a linear forest if every component is a nontrivial path. Let G
be a balanced bipartite graph with n vertices. Let F' be a set of m edges of G
that induces a linear forest. Zamani and West provided a sufficient condition
for G to contain the linear forest in a Hamiltonian cycle, as presented in
[Spanning cycles through specified edges in bipartite graphs, J. Graph Theory
71 (2012) 1-17]. The proof presented in this paper establishes the existence
of Hamiltonian cycles C; such that |[E(C;) N F| =14 (0<i<m)in G if any
two nonadjacent vertices in opposite partite sets have degree-sum at least
n/2+m+ 1.
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1. INTRODUCTION

Terminology and notation that are not defined in this paper are referenced from
Bondy[2]. A Hamiltonian path (cycle) in a graph G is a path(cycle) con-
taining all the vertices of G, and a graph with a Hamiltonian cycle is called
Hamiltonian. The study of sufficient conditions for the existence of Hamilto-
nian cycles is a classical topic in graph theory. Ore’s theorem [7] states that
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every n-vertex (n > 3) graph G with 02(G) > n is Hamiltonian, where 03(G) =
min{d(z) + d(y) : zy ¢ E(G)}.

Bollobés and Brightwell investigated a similar sufficient condition to ensure
the existence of cycles through prescribed vertices. They presented the following
theorem.

Theorem 1 (Bollobds and Brightwell [1]). Let G be a graph on n vertices, and
let W CV(G). If [W| = 3 and dg(z) + dg(y) = n for every pair of non-adjacent
vertices x,y € W, then G has a cycle containing all the vertices of W.

Let G be a graph and let W C V(G), |W| > 3. The graph G is called W-
locally pancyclic if for each ¢ with 3 < < |W/|, G contains cycles C; such that C;
contains exactly ¢ vertices from |W/|. Let G[W] be the graph induced on the set
W. The following theorem shows the existence of cycles containing a specified
number of vertices of W.

Theorem 2 (Stacho [4]). Let G be a graph on n vertices, and let W C V(G). If
|[W| = 3 and dg(z) +da(y) = n for every pair of non-adjacent vertices x,y € W,
then either G is W -locally pancyclic or |W|=mn and G = K3 ,,/2 or else [W| =
4, GIW]| = Kap.

Let £’ be a nonempty subset of E(G). The subgraph of G whose vertex set
is the set of ends of edges in E’ and whose edge set is E’ is called the subgraph of
G induced by E' and is denoted by G[E']; G[E'] is an edge-induced subgraph of
G. A graph is a linear forest if every component is a nontrivial path. Let F' be a
set of m edges of G and G[F] is a linear forest. An edge wv is called an F-edge, if
uv € F. The F-edge-length of a cycle in G is defined as the number of F-edges
that it contains.

Researchers explored the degree condition for the existence of Hamiltonian
cycles through F', calling a graph F-Hamiltonian when such a cycle exists. For
general graphs G, Pésa gave a sharp sufficient condition on o5(G).

Theorem 3 (Pésa [3]). Let G be a graph on n vertices. Let F be a set of m
edges of G such that G[F] is a linear forest. If 02(G) > n + m, then G is F'-
Hamiltonian.

Takeshi Sugiyama proved the following theorem, which shows the existence
of a Hamiltonian cycle containing a specified number of edges of a linear forest.

Theorem 4 (Takeshi Sugiyama [5]). Let G be a graph on n wvertices, where
n =5, and let F' be a set of m edges of G such that G[F] is a linear forest. If
02(G) = n+ m, then G contains Hamiltonian cycles of all the F-edge-lengths
from 0 to m.
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We explore the analogues of these results in the context of bipartite graphs.
The X,Y-bigraph denotes to a bipartite graph with partite sets X and Y. When
|X| = |Y], the graph is a balanced bipartite graph. For an X,Y-bigraph, let
o(G) =min{d(z) +d(y) : z € X,y € Y,zy ¢ E(G)}. Las Vergnas [6] established
that if 0(G) > n/242, then every perfect matching in G is contained within some
Hamiltonian cycle. Regarding the general linear forest, Zamani and West gave a
sufficiency threshold for o(G) in terms of n and m. They also demonstrated that
this threshold on the degree-sum is sharp when n > 3m.

Theorem 5 (Zamani and West [8]). Let G be an n-vertex balanced XY -bigraph.
Let F' be a set of m edges of G such that G[F| is a linear forest and G[F] has t;
paths of odd length and to paths of positive even length. If o(G) = n/2+ [m/2] +
e(t1,t2), where
1 t;1 =0,
e(ti,t2) =<1 (t1,t2) € {(1,0),(2,0)},
0 otherwise,

then G is F-Hamiltonian.

This paper presents a theorem that demonstrates the existence of balanced
bipartite graphs with Hamiltonian cycles, where the F-edge-lengths range from
0 to m.

Theorem 6. Let G be an n-vertex balanced X,Y -bigraph. Let F' be a set of m
edges of G such that G[F| is a linear forest. If

(i) G is not a complete bipartite graph and o(G) = n/2+m + 1,
(ii) G is a complete bipartite graph with n > 20,

then G contains Hamiltonian cycles of all the F-edge-lengths from 0 to m.

2. PROOF OF THEOREM 6

Let G be an n-vertex balanced X,Y-bigraph, and let F' be a set of m edges of
G that induces a linear forest. A cycle C with a specified orientation is denoted
by 8 The successor and the predecessor of x on C are denoted by z* and z~,
respectively. For z,y € V(C), a path from x to y on 8 is denoted by ajgy. The
inverse path of xﬁy is denoted by yC'z. A path with endvertices z and y is
called an x, y-path. When X and Y represent sets of vertices, an (X,Y)-path is
denoted as a path P where one end is in X and the other is in Y. The distance
dg(z,y) is the length of the shortest x,y-path in G, if no such path exists, let
da(z,y) = oo.
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Let P denote an z,y-path of odd length. An edge of P is an odd edge or
even edge (with respect to P) when it has an odd position or an even position in
a listing of the edges in order from one end of P. The set of all odd edges on P is
denoted as E,qq(P), while the set of all even edges on P is denoted as Eeyen(P).
An edge that lies on an z, y-path is full (with respect to P) if one endpoint is
adjacent to x and the other is adjacent to y.

Remark 7. Let P be an «, y-path through all vertices in G. Since each endpoint
of an edge on P has at most one neighbor in z, y, the pigeonhole principle implies
that if zy ¢ E(G) and d(z) + d(y) > n/2 + p, then there are at least p full odd
edges and p + 1 full even edges along P.

By Theorem 5, G contains a Hamiltonian cycle C' of G such that F' C E(C).
The proof can be completed by proving that if G contains a Hamiltonian cycle
C of G such that |[E(C)NF| =1 (Il > 1), then there exists a Hamiltonian cycle
C’ of G such that |[E(C")NF| =1— 1. So assume that G contains a Hamiltonian
cycle C of G such that |[E(C)NF| =1. Let C = zyz2- -z, and consider the
subscripts as modulo n. Let A = {x; : 241 € F}, B = {x; : z;z;41 ¢ F} and
q=|F\ E(C)|. Note that g =m —[. Let G’ = (V(G), E(G) \{F \ E(C)}).

Lemma 8. If there exist x; € A and x; € B such that do(zi, xj) > 2, iz €
E(G)\ F and ziy1xj41 ¢ F, then there exists a Hamiltonian cycle C" such that
|[E(C"YNF|=1-1 and z;x;41 ¢ E(C").

Proof. Let z;x; € E(G) \ F such that z; € A, z; € B and do(zi,xj) > 2.
Without loss of generality, we assume that z; € X, z; € Y. If ;42541 €
E(G)\ F, then G contains a Hamiltonian cycle C" = z;41 ij:ri C'x 41 such that
|E(C") N F| =1—1. So we assume that zj;12j41 ¢ E(G), then dg(xit1) +
da(zjs1) = 0(G) = n/2+m+ 1. We have dgr(i41) + dr (zj41) = n/2+m +
1 — q. There exists a Hamiltonian path P = ;44 xim’j%xi+1 in G’ such that
|[E(P)NF|=1—1=m—q—1. According to Remark 7, P contains at least
m + 1 — ¢ full odd edges. Consequently, there exists an edge 2’y € E(P)\ F
such that z;11vy,zi;12" € E(G) \ F. Then there exists a Hamiltonian cycle
C' = l‘j+1?ﬂj,$i+1$y, such that |E(C")NF| =1—1. Given that G’ is a subgraph
of G, G contains C’. m

Lemma 9. If there exist by,be,b3 € B and a € A such that dc(a,b;) > 2 and
ab; € E(Q) for every i,1 < i < 3, then there exists a Hamiltonian cycle C" such
that |[E(C"YNF|=1-1.

Proof. Let by, by, b3 € B and a € A such that do(a,b;) > 2 for every 4,1 < i < 3.
Given that each edge of F' induces a linear forest, without loss of generality,

we can assume that abi,aby ¢ F and atb] ¢ F. By Lemma 8, G contains a
Hamiltonian cycle C’ such that |[E(C")NF|=1—1. |
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The remainder of the proof is now partitioned into two cases.

Case 1. m < n/2 — 3. Since |A|] =1 > 1, without loss of generality, we
may assume that a € X N A, then |[BNX| < n/2—-1. If ¢ = 0, since |B| =
|[E(C)\F| 2 n—12>n/2+3 > |X|+ 3, there are at least three vertices in
B NY. Consequently, there exists a b € BNY such that do(a,b) > 2. If
ab € E(G), then by Lemma 8, G contains a Hamiltonian cycle C’ such that
|[E(C")N F| =1—1. Hence we may only consider the case ab ¢ E(G). If ¢ > 1,
we have |B| = |[E(C)\ F| =2 n/2+4 > |BN X|+ 5. There are at least five
vertices in B NY, hence there exist by, by, b3 € B NY such that do(a,b;) > 2,
1 <4< 3. If aby, abg,abs € E(G), by Lemma 9, G contains a Hamiltonian cycle
C’ such that |[E(C") N F| =1— 1. Hence we may only consider the case where at
least aby, aby, abs is not in E(G). Therefore, in both cases ¢ = 0 and ¢ > 1, we
can assume that there exist a € AN X and b € BNY such that ab ¢ E(G) and
dc(a,b) > 2. We have dg(a) +dg(b) > n/2+m + 1.

If atbt € E(G), we have a Hamiltonian path P = aCbtat Cb such that
|[E(P)NF|=1—1=m—q—1. Since dg/(a)+dg (b) = n/2+m+1—q, according
to Remark 7, P contains at least m + 1 — ¢ full odd edges. Consequently, there
exists an edge 2y’ € E(P) \ F such that ay’, bz’ € E(G) \ F. Then there exists
a Hamiltonian cycle C! = a P2'b Py’ such that |[E(C')NF|=1—1in G'. Since
G’ is subgraph of G, G contains C’.

If a*bt ¢ E(G), then dg(a™) + dg(bt) = n/2 +m+1. Let P, = C b, a*],
P, = C[b*,a~]. We have both P, and P are (X, Y)-path. Let E' = Eupen(P,) U
Eeyen(P2). Since |V(Py)| + |V(P)| = n — 2, we have |E'| = n/2 — 3. Now we
consider the graph G', deripr(a)+dep(b) = n/2+m+1—qg—4 =n/2—3+m—q.
By pigeonhole principle and [E' N F| <1 —1=m — q — 1, there exists an edge
wv in E"\ F such that one endpoint is adjacent to a and the other is adjacent
to b. Without loss of generality, we may assume that uwv € FEeyen(P1). Then
P=btCaulCboCat isa (X,Y)-Hamiltonian path such that |[E(P)NF|=1-1.
Since dgr(at) + dg/(bT) = n/2 +m + 1 — ¢, by Remark 7, P contains at least
m+1—q full odd edges. Hence there exists an edge 'y’ € E(P)\ F. Then there
exists a Hamiltonian cycle C’ = bt Palat y' such that |[E(C')NF|=1-11in
G'. Since G’ is subgraph of G, G contains C’.

Case 2. m > n/2 — 2. By the degree condition, G is complete bipartite
graph. Since n > 20, we have m > 8. Let uv be an edge of FF N E(C). Let
G*=(V(G@),E(G")\ {uv}), and let F/ = FNE(C) —uv and m’ =m — ¢ — 1.

If ¢ = 0, we have

o(G*)=2n/24+m—-1>2n/2+m/2+ 3.

Since n/2 + [m//2] +1 < n/2 +m'/2 +2 < n/2 + m/2 + 3/2, we have
o(G*) =z n/2+[m'/2] + 1.
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If ¢ > 1, we have
o(G*)=n/2+m—-3>2n/2+m/2+ 1.

Since n/2+[m//2]+1< n/2+m'/24+2 < n/2+m/2+1, we have 0(G*) >
n/2+ [m'/2] + 1.

Therefore, in both cases ¢ = 0 and ¢ > 1, we have o(G*) > n/2+ [m//2] + 1.
By Theorem 5, then G* has a Hamiltonian cycle C’ containing F”. Therefore, C’
is a Hamiltonian cycle in G such that |[E(C")NF| =1—1. The proof is complete.

3. A NOTE oON THEOREM 6

Notably, in the case where F' is a matching and G is a complete balanced X, Y-
bigraph, a better conclusion can be derived as follows.

Theorem 10. Let G be an n-vertex complete balanced X ,Y -bigraph with n > 8,
and let F' be a matching with m edges. If o(G) = n/2 4+ m + 1, then G contains
Hamiltonian cycles of all the F-edge-lengths from 0 to m.

Proof. Let C' be a Hamiltonian cycle of G such that |[E(C) N F| = . The
terminology of Section 2 can now be applied to C'. Through a proof similar to
that of Lemma 8, the following lemma can be obtained.

Lemma 11. If there exist a € A and b € B such that dc(a,b) > 2 and ab € E(G),
then there exists a Hamiltonian cycle C" such that |[E(C")NF|=1-1.

By the degree condition, we have n/2 —2 < m < n/2. Leta € ANX. If
I <n/2—2,then |B|=|E(C)\ F| >n/2+2>|BNX|+ 3. There are at least
three vertices in BNY. Consequently, we have b € BNY such that d¢(a,b) > 2.
By Lemma 11, G contains a Hamiltonian cycle such that |[E(C")NF| =1— 1.
If I = m = n/2, immediately G contains a Hamiltonian cycle C’ such that
|E(C")NF| =1—1. Hence we can assume | = n/2—1. If there exists b € BNY such
that dc(a,b) > 2, we apply Lemma 11. If any b € BNY such that do(a,b) = 1,
we obtain A = {a} U (Y \ {aT,a"}) and B = {at,a"} U (X \ {a}). Since
n > 8, there exist a; € ANY and by € BN X such that do(aq,b1) = 2. Then
O = af Cbyay Ob7 such that [E(C") N F| =1 — 1. -

4. (CONCLUSION

According to our thorough analysis, the lower bound of n/2 +m + 1 for o(G), as
specified in Theorems 6 and 10, does not appear to be the most optimal value.
The purpose of the lower bound n/2+m+1 for o(G) is to guarantee the existence
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of a full odd edge e in P, such that e ¢ F, thereby facilitating the acquisition of a
Hamiltonian cycle C’ in G that includes fewer edges from F. In a future study, it
would be of considerable interest to determine the most appropriate lower bound.
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