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Abstract

LetG be a graph with no isolated vertex. A function f : V (G) → {0, 1, 2}
is a total {2}-dominating function on G if

∑
u∈NG(v) f(u) ≥ 2 for every

vertex v ∈ V (G). The total {2}-domination number of G is the minimum
weight ω(f) =

∑
v∈V (G) f(v) among all total {2}-dominating functions f on

G. In this paper, we study some relationships among some parameters of a
graph and the total {2}-domination number of its complement, emphasizing
in results of the Nordhaus-Gaddum type.
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1. Introduction

For notation and graph theory terminology, we in general follow [10]. Let G be
a graph with vertex set V (G), edge set E(G) and order n = |V (G)|. Given a
vertex v ∈ V (G), NG(v) and NG[v] represents the open neighborhood and the
closed neighborhood of v in G, respectively. The minimum and maximum degrees
among all vertices of G are denoted by δ(G) and ∆(G), respectively. We denote
the complement of G by G and let δ∗(G) = min{δ(G), δ(G)}. As usual, given
a set D ⊆ V (G), G[D] denotes the subgraph of G induced by D. If G is the
disjoint union of k copies of a graph H, then we write G = kH. Moreover, we
use the notation Kn and Cn for complete graphs and cycle graphs of order n,
respectively.

Total domination in graphs was introduced in [6] by Cockayne, Dawes and
Hedetniemi, and is the most studied variant of domination, with more than 600
published papers. Given a graph G with no isolated vertex, a set D ⊆ V (G) is a
total dominating set of G if every vertex in G is adjacent to at least one vertex
in D. The total domination number of G, denoted by γt(G), is the minimum
cardinality among all total dominating sets of G. For more information on total
domination and its many variations, we suggest the books [9, 10].

A well-studied variant of total domination in graphs is total {2}-domination.
A function g : V (G) → {0, 1, 2} on a graph G with no isolated vertex is a
total {2}-dominating function (T{2}DF) if

∑
x∈NG(v) g(x) ≥ 2 for every vertex

v ∈ V (G). The total {2}-domination number of G, denoted by γ{2},t(G), is the
minimum weight ω(g) =

∑
x∈V (G) g(x) among all T{2}DFs g on G. A γ{2},t(G)-

function is a T{2}DF of weight γ{2},t(G). For more information on this parameter,
see [2–5,12].

In [2], the authors showed the following relationships between the two afore-
mentioned parameters for any graph with no isolated vertex.

Theorem 1 [2]. For any graph G with no isolated vertex of order n,

3 ≤ γt(G) + 1 ≤ γ{2},t(G) ≤ 2γt(G) ≤ 2n.

To illustrate the previous definitions and relationships, consider the two
graphs shown in Figure 1. As can be seen, on the left is shown a graph G
that satisfies γ{2},t(G) = γt(G) + 2 = 5, and on the right is shown the graph G

that satisfies γ{2},t(G) = 2γt(G) = 6. In both cases, the black vertices and the
labels describe a total dominating set of minimum cardinality and the positive
weights of a T{2}DF of minimum weight, respectively.

In this paper, we study several relationships between some parameters of a
graph G and the total {2}-domination number of its complement G, emphasizing
in results of the Nordhaus-Gaddum type. In Section 2 we provide some bounds
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Figure 1. A graph G with γ{2},t(G) = γt(G) + 2 = 5 and its complement G with

γ{2},t(G) = 2γt(G) = 6.

on γ{2},t(G) involving the 2-packing number, the total domination number and
the girth of G. Finally, in Section 3 we present Nordhaus-Gaddum type results
for the total {2}-domination number.

2. Bounding the Total {2}-Domination Number of the Complement
of a Graph

We begin with some results bounding the total {2}-domination number of G
involving the 2-packing number ρ(G) = max{|P | : P is a 2-packing in G}, con-
sidering that a 2-packing in G is a subset of V (G) that satisfies that any two
vertices in that subset have distance at least three.

Theorem 2. The following statements hold for any nontrivial graph G.

(i) ρ(G) ≥ 3 if and only if γ{2},t(G) = 3.

(ii) If ρ(G) = 2, then γ{2},t(G) = 4.

(iii) If ρ(G) = 1 and G is connected, then 4 ≤ γ{2},t(G) ≤ 2(δ(G) + 1).

Proof. We first proceed to prove (i). Assume that γ{2},t(G) = 3. Let g be

a γ{2},t(G)-function. Observe that g(x) ≤ 1 for every vertex x ∈ V (G). Let
D = {x ∈ V (G) : g(x) = 1}. So, |D| = 3 and as a consequence, it follows that
G[D] = C3, which implies that D is an independent set of G. In addition, if there
exists a vertex x ∈ V (G) \D such that |NG(x) ∩D| ≥ 2, then |NG(x) ∩D| ≤ 1,
which contradicts the fact that g is a T{2}DF on G. Hence, |NG(x) ∩ D| ≤ 1
for every x ∈ V (G) \ D, which implies that D is a 2-packing in G. Therefore,
ρ(G) ≥ |D| = 3, as desired. Conversely, assume that ρ(G) ≥ 3. Let P = {u, v, w}
be any 2-packing in G. Since any two vertices in P have no neighbors in common,
it follows that the function f , defined by f(u) = f(v) = f(w) = 1 and f(x) = 0
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otherwise, is a T{2}DF on G. Hence, γ{2},t(G) ≤ ω(f) = 3, and by Theorem 1

we conclude that γ{2},t(G) = 3, which completes the proof of (i).

As an immediate consequence of the previous equivalence, we have that if
ρ(G) ≤ 2, then γ{2},t(G) ̸= 3, which implies by Theorem 1 that γ{2},t(G) ≥ 4.
Now, assume that ρ(G) = 2. Let P be a 2-packing in G such that |P | = ρ(G).
Observe that the function f , defined by f(x) = 2 if x ∈ P and f(x) = 0 otherwise,
is a T{2}DF on G. Hence, γ{2},t(G) ≤ ω(f) = 4. Therefore γ{2},t(G) = 4, which
completes the proof of (ii).

Finally, assume that ρ(G) = 1 and that G is connected. To complete the
proof of (iii), we only need to prove that γ{2},t(G) ≤ 2(δ(G) + 1). For this
purpose, we fix a vertex v ∈ V (G) of minimum degree. Let D = NG(v), D

′ =
{x ∈ D : D ⊆ NG[x]} and X = V (G) \ NG[v]. Observe that every vertex in X
has a neighbor in D. Now, we consider the following two complementary cases.

Case 1. D′ ̸= ∅. Observe that ∆(G) < |V (G)| − 1 because G is connected.
This implies that for every vertex x ∈ D′ there exists a vertex yx ∈ X\NG(x). Let
X ′ = ∪x∈D′{yx}. By the definition of X ′, it is straightforward that |X ′| ≤ |D′|. It
is easy to check that the function f , defined by f(x) = 2 if x ∈ (D\D′)∪X ′∪{v}
and f(x) = 0 otherwise, is a T{2}DF on G. Therefore, γ{2},t(G) ≤ ω(f) ≤
2|(D \D′) ∪X ′ ∪ {v}| ≤ 2(|D| − |D′|+ |X ′|+ 1) ≤ 2(|D|+ 1) = 2(δ(G) + 1), as
desired.

Case 2. D′ = ∅. In this case, it follows that G[D] is a subgraph of G with
no isolated vertex. Since G is a connected graph, there exist two vertices u ∈ D
and w ∈ X such that uw /∈ E(G). Observe that D \ NG(u) ̸= ∅ due to the
fact that D′ = ∅. Let z ∈ D \ NG(u) be a vertex such that |NG(z) ∩ D| is
maximum. If G[D \ {u}] has no isolated vertex, then the function f ′, defined
by f ′(x) = 2 if x ∈ (D \ {u}) ∪ {v, w} and f ′(x) = 0 otherwise, is a T{2}DF
on G. Therefore, γ{2},t(G) ≤ ω(f ′) ≤ 2|(D \ {u}) ∪ {v, w}| = 2(δ(G) + 1), as

desired. Finally, if G[D \ {u}] has an isolated vertex, then vertex z ∈ D \NG(u)
has degree one in the subgraph G[D] because |NG(z) ∩ D| is maximum. As a
consequence, it is easy to check that the function f ′′, defined by f ′′(x) = 2 if
x ∈ (D \ {z}) ∪ {v, w} and f ′′(x) = 0 otherwise, is a T{2}DF on G. Therefore,
γ{2},t(G) ≤ ω(f ′′) ≤ 2|(D \ {z}) ∪ {v, w}| = 2(δ(G) + 1), as desired.

The following result is a consequence of the previous theorem.

Theorem 3. The next statements hold for any graph G with no isolated vertex.

(i) If G is connected, then γ{2},t(G) ≤ 2(δ(G) + 1).

(ii) If γ{2},t(G) = 3, then γ{2},t(G) ≥ 6.

(iii) If γ{2},t(G) = 3, δ(G) = 2 and G is connected, then γ{2},t(G) = 6.
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Proof. If G is connected, then γ{2},t(G) ≤ 2(δ(G) + 1) is an immediate con-
sequence of Theorem 2. Hence, (i) follows. From now on, we assume that
γ{2},t(G) = 3. By Theorem 2(i) we have that ρ(G) ≥ 3. Let f ′ be a γ{2},t(G)-

function and let P be a 2-packing in G such that |P | = ρ(G). Observe that
γ{2},t(G) = ω(f ′) ≥

∑
v∈P f ′(NG[v]) ≥ 2|P | ≥ 6, which completes the proof of

(ii). In addition, if δ(G) = 2 and G is connected, then by statements (i) and (ii)
it follows that γ{2},t(G) = 6, which completes the proof of (iii).

The following two theorems provide new tight bounds on γ{2},t(G) for the case
where ρ(G) = 1. The first one improves the upper bound given in Theorem 2(iii)
whenever γt(G) ≥ 3. Before, we need to introduce the next known results.

Theorem 4. Let G and G be two nontrivial connected graphs.

(i) [7] If ρ(G) = 1, then γt(G) ≤ δ(G) + 1.

(ii) [11] (γt(G)− 2)(γt(G)− 2) ≤ δ∗(G)− 1.

Theorem 5. Let G be a graph with ρ(G) = 1 such that γt(G) ≥ 3. If G is
connected, then

γ{2},t(G) ≤ 4 +
2(δ∗(G)− 1)

γt(G)− 2
.

Proof. By Theorem 1 and Theorem 4(ii) we have that γ{2},t(G) ≤ 2γt(G) and

(γt(G)− 2)(γt(G)− 2) ≤ δ∗(G)− 1, respectively. From the previous inequalities,
we deduce that γ{2},t(G) ≤ 4+2(γt(G)−2) ≤ 4+2(δ∗(G)−1)/(γt(G)−2), which
completes the proof.

For n ≥ 3, let us consider the graph Gn defined as follows. Let V (Gn) =
S ∪ C ∪ {w}, where S = {s1, . . . , sn} is an independent set and C = {c1, . . . , cn}
is a clique. To complete the edges of Gn, we have that wsi ∈ E(Gn) for every
i ∈ {1, . . . , n}, and sicj ∈ E(Gn) for every i, j ∈ {1, . . . , n} such that i ̸= j. For
instance, the graph G3 is the graph G given in Figure 1. For any n ≥ 3, the
bound given in Theorem 5 is achieved for the graph Gn. It is easy to check that
ρ(Gn) = 1, δ∗(Gn) = 2 and γt(Gn) = 3. Hence, γ{2},t(Gn) = 6 = 4 + 2(δ∗(Gn)−
1)/(γt(Gn)− 2), as required.

Theorem 6. The following statements hold for any nontrivial graph G of order
n with ρ(G) = 1.

(i) γ{2},t(G) ≤ 2(δ(G) + 1).

(ii) If γ{2},t(G) = 2(δ(G) + 1) and ∆(G) < n− 1, then γ{2},t(G) ≤ 6.

Proof. By Theorem 1 and Theorem 4(i) we have that γ{2},t(G) ≤ 2γt(G) ≤
2(δ(G) + 1), which completes the proof of (i). Now, assume that γ{2},t(G) =
2(δ(G) + 1) and that ∆(G) < n − 1. Hence, we have equalities in the previous
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inequality chain. In particular, we obtain that γt(G) = δ(G) + 1, which implies
that for any vertex v ∈ V (G) of minimum degree, D = NG[v] is a total dominating
set of G of cardinality γt(G). By the minimality of D, there exists a vertex
u ∈ NG(v) such that NG(u)∩D = {v}. IfD = {u, v}, then |NG(u)| = n−1, which
contradicts the fact that ∆(G) < n− 1. So, there exists a vertex u′ ∈ D \ {u, v}.
Now, we observe that by the minimality of D, there exists a vertex w ∈ V (G)\D
such that NG(w) ∩ D = {u′}. This implies that uw /∈ E(G). So, it is easy to
check that the function f , defined by f(v) = f(u) = f(w) = 2 and f(x) = 0
otherwise, is a T{2}DF on G. Therefore, γ{2},t(G) ≤ ω(f) = 6, which completes
the proof of (ii).

Now, we bound the total {2}-domination number of G involving the girth
g(G) of a graph G, that is, the length of a shortest cycle in the graph G. Before,
we need to establish the following useful lemma.

Lemma 7. Let G be a graph. If g(G) ≥ 7 and G /∈ {C7, C8}, then ρ(G) ≥ 3.

Proof. If g(G) ≥ 9 or G is a disconnected graph with g(G) ≥ 7, then ρ(G) ≥ 3,
as desired. Assume that G is a connected graph such that g(G) ∈ {7, 8} and G /∈
{C7, C8}. Let C be a cycle in G such that |V (C)| = g(G). By the assumptions,
it follows that V (G) \ V (C) ̸= ∅. Let v ∈ V (C) such that NG(v) \ V (C) ̸= ∅.
Let v1 and v2 be the vertices of C at distance two from vertex v and let u ∈
NG(v) \ V (C). It is easy to check that {u, v1, v2} is a 2-packing in G. Therefore,
ρ(G) ≥ |{u, v1, v2}| = 3, which completes the proof.

Theorem 8. Let G be a graph of order n ≥ 6 such that G and its complement
G have no isolated vertex.

(i) If G is a triangle-free graph different from a complete bipartite graph, then
γ{2},t(G) ≤ 5.

(ii) If g(G) = 6, then γ{2},t(G) ≤ 4.

(iii) If g(G) ≥ 7 and G /∈ {C7, C8}, then γ{2},t(G) = 3.

Proof. If g(G) = 6, then ρ(G) ≥ 2. Hence, by Theorem 2(i)–(ii) we have that
γ{2},t(G) ≤ 4. Thus, (ii) follows. Now, if g(G) ≥ 7 and G /∈ {C7, C8}, then
by Lemma 7 we have that ρ(G) ≥ 3. So, Theorem 2(i) leads to γ{2},t(G) = 3.
Therefore, (iii) follows. Finally, we proceed to prove (i). Assume that G is a
traingle-free graph different from a complete bipartite graph. If ρ(G) ≥ 2, then
by Theorem 2(i)–(ii) we have that γ{2},t(G) ≤ 4. From now on, we assume that
ρ(G) = 1. Let v ∈ V (G) and let X = V (G) \ NG[v]. By the assumptions,
it follows that X ̸= ∅ and that NG(v) is an independent set of G. Observe
that NG(x) ∩ NG(v) ̸= ∅ for every x ∈ X. Next, we analyze the following two
complementary scenarios.
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Case 1. X is an independent set of G. As G is different from a complete
bipartite graph, there exist two vertices x ∈ X and y ∈ NG(v) \NG(x). Observe
that {x, y} is a γt(G)-set because ρ(G) = 1. So, Theorem 1 leads to γ{2},t(G) ≤
2γt(G) < 5.

Case 2. There exist u,w ∈ X such that uw ∈ E(G). As G is a triangle-free
graph, there exist u′ ∈ NG(u)∩NG(v) and w′ ∈ NG(w)∩(NG(v)\{u′}). We claim
that the function f , defined by f(x) = 1 if x ∈ D = {v, w′, w, u, u′} and f(x) = 0
otherwise, is a T{2}DF on G. It is easy to check that f(NG(x)) = |NG(x)∩D| ≥ 2
for every x ∈ D ∪ NG(v). Now, let x ∈ X \ {u,w}. It is straightforward that
x ∈ NG(v) and as G is a triangle-free graph; it follows that NG(x)∩(D\{v}) ̸= ∅.
So f(NG(x)) = |NG(x) ∩ D| ≥ 2. Hence, f is a T{2}DF on G, as desired.
Therefore, γ{2},t(G) ≤ ω(f) = |D| = 5.

From the previous cases, (i) follows. Therefore, the proof is completed.

3. Nordhaus-Gaddum Type Inequalities

A Nordhaus-Gaddum type result is a lower or an upper bound on the sum or
the product of a parameter of a graph and its complement. The excellent survey
by Aouchiche and Hansen [1] provides several Nordhaus-Gaddum relations on
several parameters in graphs, including various domination parameters. In this
section, we initiate the study of Nordhaus-Gaddum type inequalities for the total
{2}-domination number. Before, we need to introduce the following well-known
relations, which will be useful for our study.

Theorem 9. Let G be a graph of order n. If G and its complement G have no
isolated vertex, then the following holds.

(i) [6] γt(G) + γt(G) ≤ n+ 2, with equality if and only if G ∈
{
n
2K2,

n
2K2

}
.

(ii) [8] If min{γt(G), γt(G)} ≥ 4, then γt(G) + γt(G) ≤ δ∗(G) + 3.

We first establish lower and upper bounds on the sum of the total {2}-
domination numbers of a graph and its complement.

Theorem 10. Let G be a graph of order n. If G and its complement G have no
isolated vertex, then

8 ≤ γ{2},t(G) + γ{2},t(G) ≤ 2n+ 4.

Furthermore,

(i) γ{2},t(G) + γ{2},t(G) = 8 if and only if γ{2},t(G) = γ{2},t(G) = 4.

(ii) γ{2},t(G) + γ{2},t(G) = 2n+ 4 if and only if G ∈ {2K2, 2K2}.
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(iii) γ{2},t(G) + γ{2},t(G) = 2n+ 3 if and only if G ∈
{
n
2K2,

n
2K2

}
, with n ≥ 6.

Proof. If γ{2},t(G) = 3 or γ{2},t(G) = 3, then Theorem 3(ii) leads to γ{2},t(G) ≥
6 or γ{2},t(G) ≥ 6, respectively. This implies that γ{2},t(G) + γ{2},t(G) > 8.

Conversely, if γ{2},t(G) ≥ 4 and γ{2},t(G) ≥ 4, then γ{2},t(G) + γ{2},t(G) ≥ 8
and it is easy to check that the previous equality holds if and only if γ{2},t(G) =

γ{2},t(G) = 4. Hence, the lower bound and the equivalence given in (i) follow.
Moreover, from Theorem 1 and Theorem 9(i) we deduce that

(1) γ{2},t(G) + γ{2},t(G) ≤ 2(γt(G) + γt(G)) ≤ 2(n+ 2) = 2n+ 4.

Hence, the upper bound follows.
Now, we proceed to prove the equivalence given in (ii). If G ∈ {2K2, 2K2},

then we are done. Conversely, assume that γ{2},t(G)+γ{2},t(G) = 2n+4. Observe
that we have equalities in the inequality chain (1). In particular, we obtain that
γt(G)+ γt(G) = n+2. Hence, Theorem 9(i) leads to G ∈

{
n
2K2,

n
2K2

}
. If n ≥ 6,

then ρ
(
n
2K2

)
≥ 3, and by Theorem 2(i) we have that γ{2},t

(
n
2K2

)
= 3. As

γ{2},t
(
n
2K2

)
= 2n we obtain that γ{2},t(G) + γ{2},t(G) = 2n+ 3, a contradiction.

Therefore, n = 4, which implies that G ∈ {2K2, 2K2}, as desired.
Finally, we proceed to prove the equivalence given in (iii). As previously

shown, if n ≥ 6 and G ∈
{
n
2K2,

n
2K2

}
, then we are done. Conversely, assume

that γ{2},t(G) + γ{2},t(G) = 2n + 3. If δ∗(G) ≥ 2, then it is straightforward

that γ{2},t(G) + γ{2},t(G) ≤ 2n, a contradiction. Hence δ∗(G) = 1. First, we

assume that δ(G) = 1. This implies that G is connected and by Theorem 3(i)
we obtain that γ{2},t(G) ≤ 4. Now, we fix a vertex v ∈ V (G) of degree one and
let u ∈ V (G) its unique neighbor. If |NG(u)| ≥ 2, then V (G) \ {v} is a total
dominating set of G, which implies that γt(G) ≤ |V (G) \ {v}| = n− 1. By using
the previous bounds and the upper bound given in Theorem 1 it follows that
γ{2},t(G) + γ{2},t(G) ≤ 2γt(G) + 4 ≤ 2(n − 1) + 4 ≤ 2n + 2, a contradiction.
Therefore |NG(u)| = 1, which implies that G = n

2K2 or G = rK2 ∪H, for some
graph H with δ(H) ≥ 2 and some integer r ≥ 1. If G = rK2 ∪H, then it is easy
to check that γ{2},t(G) ≤ |V (H)|+ 4r. In addition, previously it was shown that

γ{2},t(G) ≤ 4. Therefore,

(2) 2n+ 3 = γ{2},t(G) + γ{2},t(G) ≤ (|V (H)|+ 4r) + 4 = (2n− |V (H)|) + 4.

From inequality chain (2) we obtain that |V (H)| ≤ 1, a contradiction. Thus
G = n

2K2, and by the equivalence given in (ii) it follows that n ≥ 6. By sym-
metry, if δ(G) = 1, then we obtain that G = n

2K2 with n ≥ 6. Therefore,

G ∈
{
n
2K2,

n
2K2

}
, with n ≥ 6, which completes the proof.

The following lemma will be a useful tool to prove the next two theorems.
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Lemma 11. There is no graph G of order six with ρ(G) = ρ(G) = 1 such that
γ{2},t(G) = γ{2},t(G) = 6.

Proof. Suppose that there exists a graph G with ρ(G) = ρ(G) = 1 such that
γ{2},t(G) = γ{2},t(G) = |V (G)| = 6. By Theorem 3(i), Theorem 6(i) and the

fact that δ(G) = 5 −∆(G) we obtain that 6 = γ{2},t(G) ≤ 2(δ(G) + 1) and 6 =

γ{2},t(G) ≤ 2(δ(G)+1) = 2(6−∆(G)), which implies that 2 ≤ δ(G) ≤ ∆(G) ≤ 3.
Hence, G contains a cycle. Since G is different from a complete bipartite graph,
it follows by Theorem 8 that g(G) = 3. Let C = vv1v2 be a triangle in G, where
|NG(v)| ≤ min{|NG(v1)|, |NG(v2)|}. If |NG(v)| = 2, then the function f , defined
by f(x) = 0 if x ∈ V (G) \ {v1, v2} and f(v1) = f(v2) = 2, is a T{2}DF on G due
to the fact that ρ(G) = 1. Hence, γ{2},t(G) ≤ ω(f) = 4, a contradiction. Thus
|NG(v)| = |NG(v1)| = |NG(v2)| = 3, which implies that there exists a vertex
w ∈ V (G) \ V (C) such that |NG(w)| = 3. By the fact that n = 6, there exists
a vertex u ∈ V (C) such that NG(u) ⊆ (V (C) \ {u}) ∪ {w}. Now, we observe
that the function f ′, defined by f ′(x) = 1 if x ∈ V (G) \ {u} and f ′(u) = 0, is
a T{2}DF on G. So, γ{2},t(G) ≤ ω(f ′) = 5, a contradiction too. Therefore, the
initial assumption is false, which completes the proof.

Next, we show that the upper bound given in Theorem 10 can be improved
if we restrict the minimum degree on both G and G to be at least two.

Theorem 12. Let G be a graph of order n such that δ∗(G) ≥ 2. Then

γ{2},t(G) + γ{2},t(G) ≤ n+ 5.

Proof. It is easy to check that if δ(G) = 2 or δ(G) ≥ 3, then γ{2},t(G) ≤ n or

γ{2},t(G) ≤ n− 1, respectively. If ρ(G) ≥ 2 or ρ(G) ≥ 2, then by Theorem 2(i)–

(ii) we have that γ{2},t(G) ≤ 4 or γ{2},t(G) ≤ 4, respectively. As a consequence,

it follows that γ{2},t(G) + γ{2},t(G) ≤ n + 4 < n + 5, as desired. From now

on, let us consider that ρ(G) = ρ(G) = 1. Since δ∗(G) ≥ 2, we note that
n ≥ 5. If n = 5 then G = C5, which satisfies the required inequality. If n = 6,
then Lemma 11 leads to min{γ{2},t(G), γ{2},t(G)} ≤ 5. As a consequence, it

follows that γ{2},t(G) + γ{2},t(G) ≤ 11 = n + 5, as desired. Suppose that n ≥ 7.

Without loss of generality, assume that γt(G) ≥ γt(G). If γt(G) = 2, then it is
straightforward that γ{2},t(G)+γ{2},t(G) ≤ n+2γt(G) = n+4 < n+5, as required.

Now, suppose that γt(G) = 3. If δ(G) = 2, then by Theorem 6(i) it follows that
γ{2},t(G) + γ{2},t(G) ≤ 2(δ(G) + 1) + 2γt(G) = 12 ≤ n + 5, as required. On the

other hand, if δ(G) ≥ 3, then γ{2},t(G) + γ{2},t(G) ≤ n − 1 + 2γt(G) = n + 5,

as required. Finally, if γt(G) ≥ 4, then from Theorem 9(ii) and the fact that
δ∗(G) ≤ (n− 1)/2 we deduce that
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γ{2},t(G)+γ{2},t(G) ≤ 2(γt(G)+γt(G)) ≤ 2(δ∗(G)+3) ≤ 2

(
n− 1

2

)
+6 ≤ n+5.

Therefore, the proof is completed.

Now, we establish lower and upper bounds on the product of the total {2}-
domination numbers of a graph and its complement.

Theorem 13. Let G be a graph of order n ≥ 6. If G and its complement G have
no isolated vertex, then

16 ≤ γ{2},t(G)γ{2},t(G) ≤ 6n.

Furthermore,

(i) γ{2},t(G)γ{2},t(G) = 16 if and only if γ{2},t(G) = γ{2},t(G) = 4.

(ii) γ{2},t(G)γ{2},t(G) = 6n if and only if G ∈
{
n
2K2,

n
2K2

}
.

Proof. If γ{2},t(G) = 3 or γ{2},t(G) = 3, then Theorem 3(ii) leads to γ{2},t(G) ≥ 6

or γ{2},t(G) ≥ 6, respectively. This implies that γ{2},t(G)γ{2},t(G) > 16. Con-

versely, if γ{2},t(G) ≥ 4 and γ{2},t(G) ≥ 4, then γ{2},t(G)γ{2},t(G) ≥ 16 and
it is easy to check that the previous equality holds if and only if γ{2},t(G) =

γ{2},t(G) = 4. Hence, the lower bound and the equivalence given in (i) follow.

Now, we proceed to prove the upper bound and the equivalence given in
(ii). First, we assume that ρ(G) ≥ ρ(G). Next, we analyze the following three
complementary cases.

Case 1. ρ(G) ≥ 3. By Theorem 2(i) and Theorem 1 we have that γ{2},t(G) =

3 and γ{2},t(G) ≤ 2γt(G) ≤ 2n, respectively. Therefore, γ{2},t(G)γ{2},t(G) ≤ 6n,
as desired. Observe that the previous equality holds if and only if γ{2},t(G) = 2n,
which only happens if γt(G) = n, that is, G = n

2K2.

Case 2. ρ(G) = 2. By Theorem 2(i) we have that γ{2},t(G) = 4. In addition,
G has at most two components. If K2 is not a component of G, then it is well-
known that γt(G) ≤ 2n

3 . So, by Theorem 1 we deduce that γ{2},t(G)γ{2},t(G) ≤
16n/3 < 6n, as desired. From now on, we assume that G = K2 ∪ H, with
|V (H)| ≥ 4 and ρ(H) = 1. If δ(H) = 1, then by Theorem 6(i) we deduce that
γ{2},t(H) ≤ 2(δ(H) + 1) = 4. As a consequence, γ{2},t(G)γ{2},t(G) = 4(4 +
γ{2},t(H)) ≤ 32 < 6n, as desired. Finally, if δ(H) ≥ 2 then it is easy to check
that γ{2},t(H) ≤ |V (H)| = n − 2. This implies that γ{2},t(G) ≤ n + 2, and as a

consequence, γ{2},t(G)γ{2},t(G) ≤ 4(n+ 2) < 6n, as desired.

Case 3. ρ(G) = 1. In this case, it follows that ρ(G) = 1. If max{γt(G), γt(G)}
≤ 3, then by Theorem 1 we have that γ{2},t(G)γ{2},t(G) ≤ 4γt(G)γt(G) ≤ 36 ≤
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6n. In addition, if γ{2},t(G)γ{2},t(G) = 6n, then we have equalities in the previous

inequality chain. In particular, we obtain that γ{2},t(G) = γ{2},t(G) = n = 6,

which contradicts Lemma 11. Therefore, γ{2},t(G)γ{2},t(G) < 6n. From now

on, we assume that min{γt(G), γt(G)} ≥ 4. By Theorem 4(ii) we have that
(γt(G)− 2)(γt(G)− 2) ≤ δ∗(G)− 1. Rewriting this previous inequality to isolate
γt(G)γt(G) we obtain that γt(G)γt(G) ≤ δ∗(G)− 5 + 2(γt(G) + γt(G)). Now, by
Theorem 9(ii) and the fact that δ∗(G) ≤ (n− 1)/2, it follows that

γt(G)γt(G) ≤ δ∗(G)− 5+ 2(δ∗(G) + 3) = 3δ∗(G) + 1 ≤ 3

(
n− 1

2

)
+1 =

3n− 1

2
.

In addition, Theorem 1 and the previous bound lead to γ{2},t(G)γ{2},t(G) ≤
4γt(G)γt(G) ≤ 4

(
3n−1

2

)
= 6n− 4 < 6n, as desired.

As a consequence of the three cases above it follows that if ρ(G) ≥ ρ(G), then
γ{2},t(G)γ{2},t(G) ≤ 6n and equality holds if and only if G = n

2K2. By symmetry,
and proceeding in an analogous manner to the three previous cases, we deduce
that if ρ(G) ≥ ρ(G) then γ{2},t(G)γ{2},t(G) ≤ 6n and equality holds if and only

if G = n
2K2. Therefore, the upper bound and the equivalence given in (ii) follow,

which completes the proof.

Finally, we show that the upper bound given in Theorem 13 can be improved
if we restrict the minimum degree on both G and G to be at least two.

Theorem 14. Let G be a graph of order n such that δ∗(G) ≥ 2. Then

γ{2},t(G)γ{2},t(G) ≤

{
4(n+ δ∗(G)) if ρ(G) = ρ(G) = 1,

4n otherwise.

Proof. It is easy to check that if δ∗(G) ≥ 2, then max{γ{2},t(G), γ{2},t(G)} ≤ n.

If ρ(G) ≥ 2 or ρ(G) ≥ 2, then by Theorem 2(i)–(ii) we have that γ{2},t(G) ≤ 4 or

γ{2},t(G) ≤ 4, respectively. As a consequence, it follows that γ{2},t(G)γ{2},t(G) ≤
4n, as desired. From now on, let us consider that ρ(G) = ρ(G) = 1. This implies
that min{γt(G), γt(G)} ≥ 3.

By Theorem 5 we have that γ{2},t(G) ≤ 4+(2(δ∗(G)−1))/(γt(G)−2), which

implies that (γ{2},t(G)−4)(γt(G)−2) ≤ 2(δ∗(G)−1). As a consequence, it follows

that
(
γ{2},t(G)− 4

)(
γ{2},t(G)− 4

)
≤

(
γ{2},t(G)− 4

)(
2γt(G)− 4

)
≤ 4(δ∗(G)− 1).

Moreover, expanding and collecting terms in the previous inequality we obtain
γ{2},t(G)γ{2},t(G) ≤ 4δ∗(G) − 20 + 4(γ{2},t(G) + γ{2},t(G)). By assumption,
δ∗(G) ≥ 2. Hence, Theorem 12 leads to

γ{2},t(G)γ{2},t(G) ≤ 4δ∗(G)− 20 + 4(n+ 5) = 4(n+ δ∗(G)).

Therefore, the proof is completed.
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