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Abstract

A facial path in a plane graph G is a subpath of the boundary walk of a
face of G. The Four Color Theorem states that every plane graph contains
a proper vertex 4-coloring in which each monochromatic path consists of
exactly one vertex. Czap, Fabrici, and Jendrol’ in 2021 conjectured that
every plane graph G admits an improper vertex 3-coloring in which every
monochromatic facial path in G has at most two vertices. In this paper we
prove this conjecture. Our result is optimal.

Keywords: plane graph, facial path, vertex-coloring.

2020 Mathematics Subject Classification: 05C10, 05C15.

1. Introduction and Notations

All graphs considered in this paper are connected plane graphs. They can contain
loops and multiple edges. We use the standard graph theory terminology accord-
ing to [3]. However, the most frequent notions of the paper are defined through
it. Let G be a connected plane graph with a set of vertices V (G), a set of edges
E(G), and a set of faces F (G). The boundary of a face f is the collection of all
the edges and the vertices contained in the closure of f that can be organized
into a closed walk in G traversing a simple closed curve lying just inside the face
f . This closed walk is called boundary walk of the face f . The degree of a face f
is the length of its boundary walk. A k-face (k+-face, respectively, k−-face) is a
face of degree k (at least k, respectively, at most k).

A facial path on a face f is any path that is a consecutive part of the boundary
walk of a face the face f .

https://doi.org/10.7151/dmgt.2584


2 S. Jendrol’

Two edges of a plane graph G are facially adjacent if they are adjacent and
consecutive on the boundary walk of a face.

Two faces of a plane graph G are adjacent if they share an edge and are
touched if they have a common vertex but are not adjacent.

2. 3-Colorings

A vertex k-coloring (or simply a k-coloring) of a graphG is a mapping φ : V (G) →
{1, . . . , k}. A graph is k-colorable if it has a k-coloring. Unless otherwise stated,
the colorings in this paper are not necessarily proper.

We concentrate on the question of what can be achieved with three colors
for plane graphs. We begin our short survey with a proper 3-coloring of plane
graphs.

Since 1973, by Stockmeyer [18], we know that the planar 3-colorability is
NP-complete.

Grötzsch’s theorem [13] from 1959 states that all planar graphs without 3-
cycles are properly 3-colorable. Motivated by this result, Steinberg in 1976 con-
jectured that any planar graph with no cycles of length 4 or 5 is 3-colorable;
see [17]. For many years, this conjecture had been considered to be one of the
major open problems in the coloring of planar graphs. The conjecture has been
attracting substantial attention among graph theoretists; see [4]. Erdős in 1991
[17] suggested to determine the smallest k such that every planar graph with no
cycle of lengths 4, . . . , k is 3-colorable. Borodin et al. [6] in 2005, improving on
[1] and [16], have shown that Erdős’ k ≤ 7.

In 2017 Cohen-Addad et al. [9] showed that Steinberg’s conjecture is false.
Many other relaxations of the conjecture have been established. We refer the

reader for further results on conjecture and other open problems related to the
coloring of planar graphs to [4, 5], and [11].

Interesting results have been proved for improper 3-colorings of plane graphs.
Poh [15] in 1990 and, independently, Goddard [12] in 1991 proved that ev-

ery planar graph can be colored with at most three colors so that each of its
monochromatic components is a path.

Can these monochromatic paths be short? The answer is no. Chartrand,
Geller, and Hedetniemi [8] proved in 1968 that for every positive integer t there
exists a 4-chromatic plane triangulation Gt such that any its 3-coloring involves
a monochromatic path of length t.

Broersma et al. [7] proved in 2006 that it is NP-hard to decide whether a
planar graph has a 3-coloring without any monochromatic path Pn, n ≥ 3, a path
on n vertices.

Every planar graph has a proper 4-coloring [2] which equivalently means
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that every such graph has a 4-coloring in which any monochromatic facial path
consists of exactly one vertex.

A connected plane graph G with δ(G) ≥ 3 and δ∗(G) ≥ 3 is called the
normal plane map. Here δ(G), respectively δ∗(G), denotes the minimum vertex
respectively face, degree of G.

Czap, Fabrici, and Jendrol’ in 2021 published the following.

Theorem 1 [10]. Every normal plane map admits a 3-coloring without monochro-
matic facial 4-paths.

Conjecture 2 [10]. Every normal plane map admits a 3-coloring without mono-
chromatic facial 3-paths.

In this paper, we prove Conjecture 2. We have the following.

Theorem 3. Every plane graph admits a 3-coloring in which any monochromatic
facial path has at most two vertices. Moreover, the bound 2 is optimal for 4-
chromatic plane graphs.

Observe that our result is in contrast with the result referred to above of
Chartrand, Geller, and Hedetniemi (1968), see [8].

3. Basic Properties of a Counterexample to Theorem 3

Let G be a counterexample to Theorem 3 with the minimum number of vertices
and then with the minimum number of edges.

To obtain a contradiction, we are looking for a 3-coloring of G, called a
required 3-coloring, which does not admit a monochromatic facial 3-path a facial
path on three vertices. First, we describe the basic properties of G.

For a cycle C in a plane graph G we denote the subgraph of G induced by the
vertices and edges of G lying inside C and outside C by intG(C) and extG(C),
respectively. We say that C is a separating cycle if both intG(C) and extG(C)
are not empty.

It is easy to prove the following.

Claim 4. G does not contain 1-vertices, 2-vertices, 1-faces, 2-faces, and sepa-
rating 1-cycles.

Claim 5. G does not contain any pair of adjacent 3-faces.

Claim 6. G contains no separating 2-cycle C with |V (C ∪ intG(C))| ≤ |V (G)|+7
6 .

Proof. Assume that G contains such a 2-cycle C = [u, v]. Let B = C ∪ intG(C)
and let B have the smallest cardinality among all the separating 2-cycles C of G.
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Consider a complete plane graph on four vertices K4. Replace each edge
xy of K4 with the subgraph B identifying x and y with u and v, respectively.
The resulting plane graph H is a normal plane map with |V (H)| = 6|V (B)| − 8

vertices. If |V (H)| = 6|V (B)| − 8 ≤ |V (G)| − 1, that is, if |V (B)| ≤ |V (G)|+7
6 , the

graph H has a required 3-coloring λ(H) in which there is a colored copy of B
with λ(u) = λ(v) and another colored copy of B with λ(u) ̸= λ(v).

Next, we remove intG(C) from G. The resulting graph G∗ = G \ intG(C) is
not a counterexample, so it has a required 3-coloring φ(G∗). If φ(u) and φ(v)
are colors of u and v in φ(G∗), we color the vertices in B by λ(B), so that we get
λ(u) = φ(u) and λ(v) = φ(v). If we insert such a colored B into λ(G∗), we get
the required 3-coloring of G. A contradiction.

Claim 7. G does not contain any pair of adjacent 3-vertices.

Proof. Suppose, to contrary, that G contains a pair of adjacent 3-vertices u and
v. Let x and y be the other two neighbors of u. Let w and z be the other two
neighbors of v chosen so that the vertices x, u, v, and w are incident to the same
face. We distinguish two cases.

Case 1. Let uv be incident to a 3-face f = [x, u, v] (i.e., the vertices x and
w coincide). By Claim 5, each face adjacent to f is a 4+-face. Contract the
edge uy to the vertex y and the edge vz to the vertex z. We obtain a new
edge yz if there is no other edge yz that forms a new 2-face. In the latter case,
we remove one. The received graph G∗ is smaller than G and therefore has a
required 3-coloring λ(G∗). This coloring provides a full required 3-coloring φ(G)
as follows φ(t) = λ(t) for any t ∈ V (G) \ {u, v}, φ(u) ∈ {1, 2, 3} \ {λ(y), λ(x)}
and φ(v) ∈ {1, 2, 3} \ {λ(z), λ(w)}.

Case 2. Let both faces incident to uv be 4+-faces. Now we contract the
edge uv into a new vertex u∗. The received graph G∗ is smaller than G and
therefore has a required 3-coloring λ(G∗). This coloring provides a full required
3-coloring φ(G) as follows φ(t) = λ(t) for any t ∈ V (G)\{u, v}, φ(u) ∈ {1, 2, 3}\
{λ(y), λ(x)}, and φ(v) ∈ {1, 2, 3} \ {λ(w), λ(z)}.

A k-vertex is any vertex of degree k. A k-vertex v, k ≥ 3, is said to be
a (a1, a2, . . . , ak)-vertex if the faces f1, f2, . . . , fk, incident to v have degrees
a1, a2, . . . , ak, respectively.

Claim 8. G does not contain any (3, 4, 4)-vertex,

Proof. Let u be a (3, 4, 4)-vertex. Let G∗ = G− u. As G∗ is smaller than G, it
has a required 3-coloring λ(G∗). Using this coloring, we can obtain the complete
required 3-coloring φ(G) of G as follows. We put φ(t) = λ(t) for any vertex
t ∈ V (G) \ u. For φ(v) we choose a color that appears (in the coloring λ(G∗)) at
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most once on the vertices of the 5-face that arose when the vertex u was removed.
A contradiction.

Claim 9. G does not contain any (4, 4, 4)-vertex.

Proof. Let u be a (4, 4, 4)-vertex. Now the 3-vertex u is incident to three 4-faces
f1 = [v, u, x, s], f2 = [v, u, z, w], and f3 = [z, u, x, y]. Observe that at least one
pair of the vertices w and x or s and z does not belong to the same face of G. Let,
without loss of generality, w and x not belong to the same face. Let G∗ be the
graph obtained from G by removing the vertex u followed by the identification
of the vertices x and w in the vertex x. The received graph G∗ is smaller than
G and has a required 3-coloring λ(G∗). It induces a partial required 3-coloring
φ(G) of G. Using it, we can get a required 3-coloring φ(G) as follows φ(t) = λ(t)
for any t ∈ V (G) \ {u,w}. φ(w) = φ(x), and for φ(u) we choose a color that
appears at most once in the color set {φ(s), φ(v), φ(y), φ(z)}. A contradiction

Claim 10. G does not contain any 3-vertex.

Proof. By Claims 8 and 9, assume that G contains a (3+, 4+, 5+)-vertex u. Let
the faces incident to u be a 3-face [u,w, . . . , z], a 4+-face [u,w, r, . . . , x, v], and a
5+-face [u, z, p, q, . . . , v]. Without loss of generality, the vertices x and z are not
connected by any facial 3-path.

Case 1. If z is not joined to v by a facial 3-path (i.e., the path of length 2),
we contract the edge vu to the vertex u followed by contracting the edge uz to
the vertex z. The new smaller graph G∗ so obtained has a required 3-coloring
λ(G∗). Using this coloring, we obtain the complete required 3-coloring φ(G) of G
as follows. We put φ(t) = λ(t) for any vertex t ∈ V (G) \ {u, v} and φ(v) = λ(z).
For u we choose a color that does not appear (in the coloring λ(G∗)) at the
vertices w and z. A contradiction.

Case 2. If z is connected to v by a facial 3-path, then neither the vertices w
and p nor the vertices r and q share a common face. In this case, the vertex u
is removed from G followed by identifying the edges wr and pq through the new
face obtained to the new edge w∗r∗. The resulting graph G∗ is smaller, so it has
a required 3-coloring λ(G∗). This coloring induces a partial required 3-coloring
φ(G) in which φ(t) = λ(t) for all t ∈ V (G) \ {w, r, p, q}, φ(w) = φ(p) = λ(w∗),
and φ(r) = φ(q) = λ(r∗). Now we can see that there is a color for the vertex u
to complete the coloring φ(G). A contradiction.

Claim 11. G does not contain any (3, 4, 3, 4+)-vertex.

Proof. We distinguish two basic cases.

Case 1. Let u be such a vertex in G. Let it be incident to two 3-faces [v, u, w]
and [x, u, y] and to two 4-faces [v, u, y, z] and [w, u, x, s].
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Observe that the pair of vertices v and y or the pair of vertices w and x is not
contained in a separating 4-cycle via u. Without loss of generality, let the pair v
and x not be contained in such a cycle. Remove the vertex u from G and through
the new face obtained identify the vertices v and x in a new vertex u∗. The graph
G∗ obtained is smaller than G and has a required 3-coloring λ(G∗). It induces
a required 3-coloring φ(G) as follows φ(t) = λ(t) for any t ∈ V (G) \ {u, v, x},
φ(v) = φ(x) = λ(u∗). It is easy to see that there is a suitable color for φ(u). A
contradiction.

Case 2. Assume that a vertex u in G is incident to two 3-faces [u, v, w] and
[u, x, y], to a 4-face [u, v, z, y], and to a 5+-face [u,w, r, . . . , s, x]. Similarly to the
proof of Case 1 we can assume, without loss of generality, that there is no facial
3-path between vertices v and x. We distinguish two cases.

Case 2.1. Let there be no facial 3-path between the vertices w and s omitting
the vertex r. Remove the vertex u from G and, through the face newly obtained,
identify the vertices v and x to a new vertex v∗ and the vertices w and s to a new
vertex w∗ to obtain a new edge v∗w∗. As the graph G∗ newly obtained is smaller
than G, it has a required 3-coloring λ(G∗). It induces a partial required 3-coloring
φ(G) in which all the vertices of G are colored up to u; namely λ(t) = φ(t) for
any t ∈ V (G) \ {u, v, w, x, s}, φ(v) = φ(x) = λ(v∗) and φ(w) = φ(s) = λ(w∗).
It is easy to see that there is a color for φ(u) to get the full required 3-coloring
φ(G). A contradiction.

Case 2.2. Let there be a facial 3-path between the vertices w and s omitting
the vertex r. Observe that now there is no facial 3-path between v and r and
between r and x which does not pass s. Remove u from G and then identify the
vertices v, x, and r in a new vertex u∗. As the graph G∗ newly obtained is smaller
than G, it has a required 3-coloring λ(G∗). It induces a required partial 3-coloring
φ(G) in which all the vertices of G are colored up to u; namely φ(t) = λ(t) for any
t ∈ V (G) \ {u, v, r, x}, φ(v) = φ(x) = φ(r) = λ(u∗). It is easy to see that there
is a color for φ(u) to get the full required 3-coloring φ(G). A contradiction.

Claim 12. G does not contain a (3, 4, 4, 4)-vertex.

Proof. Assume that G contains such a 4-vertex u. Let u be incident to a 3-face
[u, v, y] and to three 4-faces [u, v, r, w], [u,w, s, x], and [u, x, z, y]. Then, without
loss of generality, we can suppose that the vertices w and z are not joined by a
facial 3-path. We distinguish two cases.

Case 1. Let the vertices v and z not be joined by a facial 3-path.

Case 1.1. If the vertices r and x are also not joined by a facial 3-path, then the
vertex u is removed from G followed by identification the edges vr and zx through
newly obtained face to the new edge v∗r∗. The resulting graph G∗ is smaller, so it
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has a required 3-coloring λG∗. This coloring induces a partial required 3-coloring
φ(G) in which φ(t) = λ(t) for all t ∈ V (G) \ {r, v, x, z}, φ(v) = φ(z) = λ(v∗),
and φ(r) = φ(x) = λ(r∗). Now we can see that we have a color for the vertex u
to complete the coloring φ(G). A contradiction.

Case 1.2. If the vertices r and x are joined by a facial 3-path, the vertex u is
removed from G followed by identification the edges yz and ws through the face
newly obtained to the new edge y∗z∗. The resulting graph G∗ is smaller, so it
has a required 3-coloring λG∗. This coloring induces a partial required 3-coloring
φ(G) in which φ(t) = λ(t) for all t ∈ V (G) \ {y, z, w, s}, φ(y) = φ(w) = λ(y∗),
and φ(z) = φ(s) = λ(z∗). Now we can see that we have a color for the vertex u
to complete the coloring φ(G). A contradiction.

Case 2. Let the vertices v and z be joined by a facial 3-path. As the vertices
w and z are not joined by a facial 3-path and the vertices y and r are not in a
common face we remove the vertex u from G followed by identifying the edges
yz and rw through the face newly obtained to the new edge y∗z∗. The resulting
graph G∗ is smaller, so it has a required 3-coloring λ(G∗). This coloring induces a
partial required 3-coloring φ(G) in which φ(t) = λ(t) for all t ∈ V (G)\{y, z, w, r},
φ(y) = φ(r) = λ(y∗), and φ(z) = φ(w) = λ(z∗). Now we can see that we have a
color for the vertex u to complete the coloring φ(G). A contradiction.

Claim 13. G does not contain any (3, 5+, 3, 5+)-vertex.

Proof. In contrast, let there be a (3, 5+, 3, 5+)-vertex u in G. Let it be incident
to two 3-faces [u, v, w], [u, x, y], to a 5+-face [u, v, p, . . . , q, y], and to a 5+-face
[u, x, s, . . . , r, w]. We distinguish two cases.

Case 1. Let there be neither a facial 3-path between the vertices v and y
nor between the vertices w and x omitting the vertex u. Remove the vertex
u from G and, through the face newly obtained, identify the edges vw and yx
to a new edge v∗w∗. As the graph G∗ newly obtained is smaller than G, it
has a required 3-coloring λ(G∗). It induces a partial required 3-coloring φ(G)
in which all the vertices of G are colored up to u; namely λ(t) = φ(t) for any
t ∈ V (G) \ {u, v, w, x, y}, φ(v) = φ(y) = λ(v∗) and φ(w) = φ(x) = λ(w∗). It is
easy to see that there is a color for φ(u) to get the full required 3-coloring φ(G).
A contradiction.

Case 2. Without loss of generality, let there be no facial 3-path between the
vertices v and y and there be a facial 3-path between w and x. Observe that
now there is no facial 3-path between r and v and between r and y. Remove
u from G first and then identify the vertices v, y, and r to a new vertex v∗.
As the graph G∗ newly obtained is smaller than G, it has a required 3-coloring
λ(G∗). It induces a required partial 3-coloring φ(G) in which all the vertices of
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G are colored up to u; namely φ(t) = λ(t) for any t ∈ V (G) \ {u, v, r, y} and
φ(v) = φ(y) = φ(r) = λ(v∗). It is easy to see that there is a color for φ(u) to get
the full required 3-coloring φ(G). A contradiction.

Case 3. Let there be a facial 3-path between the vertices v and y and also a
facial 3-path between the vertices w and x, both avoiding the vertex u. Observe
that now neither the vertices w and p nor the vertices s and y are joined by a
facial 3-path. Remove the vertex u from G and identify above the pair w and
p, respectively s and y, to new vertices w∗, respectively y∗, through the newly
obtained face. The resulting smaller graph G∗ has a required 3-coloring λ(G∗)
which yields to a partial required 3-coloring φ(G) in which all the vertices of
G are colored up to u; namely φ(t) = λ(t) for any t ∈ V (G) \ {u,w, p, s, y},
φ(w) = φ(p) = λ(w∗) and φ(s) = φ(y) = λ(y∗). It is easy to see that there is a
color for φ(u) to get the full required 3-coloring φ(G). A contradiction.

4. Proof of the Main Result

By Claim 4, we see that G is normal plane map. The basic information on
normal plane maps is provided by the classical Lebesgue theorem [14]. From it
and Claims 5, 10, 11, 12, and 13 we have for G the following.

Claim 14. G is a normal plane map of δ∗(G) = 4 without adjacent 3-faces and
contains some (3, 4, a, b)-vertices for (a, b) ∈ {(4, 5), (5, 4)}.

This claim says that in G there are lot of necessary 4-vertices of that type
as no other types of necessary k-vertices, 3 ≤ k ≤ 5, according to Lebesgue’s
theorem, are present in G. Next we investigate structures of them in G.

Claim 15. Every (3, 4, 5, 4)-vertex and every (3, 4, 4, 5)-vertex in G is contained
in a separating 4-cycle.

Proof. We distinguish two cases.

Case 1. Let G contain a (3, 4, 5, 4)-vertex u which is not contained in any
separating 4-cycle. Let it be incident to a 3-face [u, v, y], two 4-faces [u, v, r, w] and
[u, y, z, x], and a 5-face [u,w, p, q, x]. Remove the vertex u from G and through
the face newly obtained contract the edge vy in v∗ and identify the vertices w and
x in a new vertex w∗. The obtained smaller graph G∗ has a required 3-coloring
λ(G∗) which yields a partial required 3-coloring φ(G) in which all the vertices
of G are colored up to u; namely φ(t) = λ(t) for any t ∈ V (G) \ {u, v, w, x, y},
φ(w) = φ(x) = λ(w∗) and φ(v) = φ(y) = λ(v∗). It is easy to see that there is a
color for φ(u) to get the full required 3-coloring φ(G). A contradiction.

Case 2. Let G contain a (3, 4, 4, 5)-vertex u which is not contained in any
separating 4-cycle. Let it be incident to a 3-face [u, v, y], two 4-faces [u, v, r, w] and
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[u,w, p, x], and a 5-face [u, x, s, z, y]. Remove the vertex u from G and through
the face newly obtained identify the vertices x, y and r in new vertex x∗. The
obtained smaller graph G∗ has a required 3-coloring λ(G∗) which yields to a
partial required 3-coloring φ(G) in which all the vertices of G are colored up to
u; namely φ(t) = λ(t) for any t ∈ V (G)\{u, r, x, y}, φ(x) = φ(y) = φ(r) = λ(x∗).
It is easy to see that there is a color for φ(u) to get the full required 3-coloring
φ(G). A contradiction.

Observe that there can be several facial 3-paths between v and y (and, of
course, between w and x) omitting u. These facial 3-paths together with the facial
3-path vuy (wux) form separating 4-cycles. We are interested in such a separating
4-cycle C∗ = uvmy (or C∗ = uwnx) for which the subgraph B∗ = C∗ ∪ intG(C

∗)
does not contain as a proper subgraph any other subgraph B′ = C ′ ∪ intG(C

′)
for a separating 4-cycle C ′ = uvoy (or C ′ = uwōx) through the edges uv and uy
(or uw and ux). This separating 4-cycle C∗ is called the light-separating 4-cycle
for the triple (u; {v, y}) (for the triple (u; {w, x})).

Note that the subpath vuy appears in one or two light-separating 4-cycles. In
the later case, these two separating cycles have disjoint interiors. Observe, that
there can be other light-separating 4-cycles through u that use another pairs of
edges incident to u.

From now on, let C∗ denote the lightest-separating 4-cycle, that is, the
light-separating 4-cycle with the minimum number of vertices and then with
the minimum number of edges in the subgraph B∗ = C∗ ∪ intG(C

∗) among all
light-separating 4-cycles on all 4-vertices of G. Without loss of generality, let
C∗ = uvmy.

Now we are interested in what is inside B = B∗ of C∗. To find out this,
consider it. Observe that degB(v) ≥ 3, degB(y) ≥ 3, degB(m) ≥ 2, and 2 ≤
degG(u) ≤ 3. We distinguish two cases.

Case 1. Let degB(u) = 2. Suppress the vertex u. Denote by D the resulting
graph. Construct an auxiliary graph H as follows. The construction starts with a
plane graph W of a 6-sided double-wheel W , all faces of which are 3-faces [v, y,m]
with degW (m) = 6, degW (v) = degW (y) = 4. We insert the graph D into each
3-face of W so that the boundary cycle vmy of each face of W is identified to the
outer cycle vmy of D. Observe that the normal plane map H obtained has the
following properties : degH(m) ≥ 6, degH(v) ≥ 8, degH(y) ≥ 8, and any vertex
that could appear in H by Lebesgue’s theorem [14] has to be present inside a
copy of B∗ in H, and therefore in G. Applying Claims 5, 10, and Claim 14 on H
it follows that δ∗(H) = 4. Observe that H does not contain (3, 4, 3, 4+)-vertices
(by Claim 11), (3, 4, 4, 4)-vertices (by Claim 12), and (3, 5+, 3, 5+)-vertices (by
Claim 13). This means that H must contain (3, 4, 5, 4)-vertices and/or (3, 4, 4, 5)-
vertices. All these vertices are present inside C∗ of G by the statement of Claim
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14. The graph B contains inside the (3, 4, 5, 4)-vertices and/or the (3, 4, 4, 5)-
vertices. A light-separating 4-cycle C̄ through such a 4-vertex inside B in G
bounds (according to Claim 15) less vertices than the lightest-separating 4-cycle
C∗ in the interior of C∗. A contradiction.

Case 2. Let degB(u) ≥ 3. To learn a structure of B we construct an auxiliary
graph H. Consider the subgraph B. Observe that degB(v) ≥ 3, degB(y) ≥ 3,
3 degB(u) ≤ 4, and degB(m) ≥ 2.

The construction of H starts with a normal plane map A = A6, the dual
plane graph to the 6-sided anti-prism all faces of which are 4-faces [u, v,m, y]
with degA(u) = degA(v) = degQ(y) = 3 and degA(m) = 6. We insert in each
4-face of A the subgraph B so that the boundary cycle uvmy of it is identified
to the boundary cycle uvmy of B. Observe that the normal plane map H so
obtained has the following properties: Each of the vertices u, v,m, and y has in
H the degree at least 6.

To get a contradiction in this case, we proceed in the rest of this proof in the
same way as in Case 1 above.

This finishes the proof of Theorem 3.
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