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Abstract

Let G = (V,E) be a graph. A subset S ⊆ V is an isolating set of G if the
graph induced by the set V \N [S] contains no edge. The size of a smallest
isolating set of G is called the isolation number, denoted by ι(G). In this
paper, we obtain the upper bounds on ι(G) via probabilistic method, and
improve the previous bound on ι(G) given by Caro and Hansberg.
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1. Introduction

In this article, we consider a simple undirected graph G with the vertex set V (G)
and edge set E(G). For any vertex v ∈ V (G), the open neighborhood of v,
denoted by NG(v) (or simply N(v)), is defined to be {u ∈ V (G) : uv ∈ E(G)},
and the closed neighborhood of v, denoted by NG[v] (or simply N [v]), is the set
NG(v)∪{v}. The degree of a vertex v is |N(v)|, denoted by dG(v). The maximum
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degree and minimum degree of G are denote by ∆(G) and δ(G), respectively. A
vertex v is called an isolated vertex of G if dG(v) = 0.

For any subset S ⊆ V (G), the open neighborhood of S, denoted by NG(S)
(or simply N(S)), is defined to be

⋃
v∈S N(v), and the closed neighborhood of

S, denoted by NG[S] (or simply N [S]), is the set N(S) ∪ S. For any subset
S ⊆ V (G), let G[S] denote the subgraph of G induced by S, and V (G)\S denote
the subset removing all elements of S from V (G). A subset S ⊆ V (G) is a
dominating set of G if every vertex in G is either in S or adjacent to a vertex in
S. The minimum cardinality of a dominating set of G is called the domination
number of G, denoted by γ(G).

The study of domination in graphs has experienced rapid development since
its introduction, owing to its wide range of applications in various research areas.
Much of the research relating to domination can be found in [9, 10, 11]. Since
the decision problems related to the domination number is NP-complete, it is
meaningful to determine good upper bounds on domination number, where some
basic bounds on the domination number are given in terms of the order and
minimum degree of a graph. However, the tight bound on the domination number
of a graph is not yet known for δ ≥ 4, but when δ is sufficiently large, probability
method can be used to find the asymptotically optimal bound of the domination
number. The bound of the following result gets increasingly tight as δ increases.

Theorem 1 [1]. If G is a graph of order n with minimum degree δ ≥ 1, then

γ(G) ≤ ln(δ + 1) + 1

δ + 1
n.

Rad [15] provided the following new upper bound on the domination number
and improved on previous bounds by applying the Alon-Spencer procedure while
removing unnecessary vertices from a dominating set.

Theorem 2 [15]. If G is a graph on n vertices with minimum degree δ > 1 and
maximum degree ∆, then for any integer k ≥ 1,

γ(G) ≤ n

δ + 1

[
ln(δ + 1) + 1− (δ − ln(1 + δ))

k∑
i=1

(
ln(1 + δ)

1 + δ

)i(1+∆)
]
.

In recent years, many variants of domination have attracted a great deal
of attention and research. Among them, we introduce a specific variant called
isolation proposed by Caro and Hansberg [7] in 2017.

A subset S ⊆ V (G) is an isolating set of G if the graph induced by the set
V (G)\N [S] contains no edge. The minimum cardinality of an isolating set of G
is called the isolation number of G, denoted by ι(G). We refer an isolating set
of the cardinality ι(G) as an ι(G)-set. For two subsets A,B ⊆ V (G), we say
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that A isolates B if A is an isolating set of G[B]. Currently, the isolation related
problems of graphs have garnered a lot research attention and yielded numerous
results. In particular, Borg and his collaborators have conducted in-depth studies
on the properties of certain isolation parameters (see [2, 3, 4, 5, 6]), more related
results could be seen [8, 12, 16, 17, 18, 19].

Despite the some research on the isolation number, more refined upper bounds
related to the minimum degree of a graph remain unknown, except for the fol-
lowing result. Theorem 3 established the upper bound of isolation number by
the probabilistic method outlined in Theorem 1.

Theorem 3 [7]. For any graph G of order n with minimum degree δ ≥ 1,

ι(G) ≤
ln(δ + 1) + 1

2

δ + 1
n.

In this paper, we obtain two upper bounds on ι(G) based on the fundamental
probabilistic methods in [15] and [7], along with some additional ideas.

2. Main Results

In this section, we present two theorems concerning the upper bounds of the
isolation number. First, we obtain a new upper bound of the isolation number in
Theorem 6 by following the method in [7]. The following results are required to
prove Theorem 6.

Lemma 4 [13]. If G is an isolate-free graph of order n, then γ(G) ≤ 1
2n.

Obviously, there is the following result from Lemma 4.

Lemma 5. If G is a graph of order n, then there exists an isolating set D of G
with |D| ≤ 1

2n such that D dominates all isolated vertices of G.

Proof. Let I be the isolated vertex set of G and G1, . . . , Gt be the connected
components of G with |V (Gi)| ≥ 2, where i = 1, . . . , t. By Lemma 4, there is a
dominating set Di of Gi such that |Di| ≤ 1

2 |V (Gi)|. Assume D = D1 ∪ · · · ∪Dt.
Then D is a dominating set of G[V (G)\I], that is, D dominates all isolated
vertices of G. Clearly, D is an isolating set of G. Moreover, |D| =

∑t
i=1 |Di| ≤∑t

i=1
1
2 |V (Gi)| ≤ 1

2n. (Note that t may not exist, that is, V (G) = I and D =
∅.)

Theorem 6. Let G be an n-vertex graph with minimum degree δ ≥ 1. Then

ι(G) ≤ ln(1 + δ)− ln 2 + 1

1 + δ
n.
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Proof. Let A be a set of vertices in which each vertex v ∈ A is independently
and uniformly selected from V (G) with probability p, where p ∈ [0, 1]. Then the
expected value of |A| is E (|A|) = np. Let I be the set of isolated vertices in
G[V (G)\A] and B = V (G)\(N [A] ∪ I). Consequently,

Pr(v ∈ B) = Pr(v ∈ V (G)\N [A]) = (1− p)1+dG(v) ≤ (1− p)1+δ,

the first equation holds because I ⊆ N(A). By Lemma 5, there is an isolating
set D of G[B] such that |D| ≤ 1

2 |B|. It is not difficult to see that A ∪ D is an
isolating set of G. By linearity of expectation,

E (|A ∪D|) = E (|A|) + E (|D|) ≤ E (|A|) + 1

2
E (|B|) ≤ np+

1

2
(1− p)1+δn.

By using the inequality 1− p ≤ e−p for p ∈ [0, 1], we have

E (|A ∪D|) ≤
(
p+

1

2
e−p(1+δ)

)
n.

Furthermore, since the function f(x) = x+ 1
2e

−x(1+δ) attains its minimum when

x = ln(1+δ)−ln 2
1+δ , we take p = ln(1+δ)−ln 2

1+δ . Thus, E (|A ∪ D|) ≤ ln(1+δ)−ln 2+1
1+δ n.

Hence ι(G) ≤ |A ∪D| ≤ ln(1+δ)−ln 2+1
1+δ n.

Now, we give another upper bound on the isolation number of a graph, which
constitutes the main result of this section.

Theorem 7. Let G be an n-vertex graph with minimum degree δ > 1 and maxi-
mum degree ∆. Then for every integer k ≥ 1,

ι(G) ≤ n

1 + δ

[
ln(1 + δ)− ln 2 + 1

− (δ − ln(1 + δ) + ln 2)

k∑
i=1

(
ln(1 + δ)− ln 2

1 + δ

)i(1+∆)
]
.

The bound of Theorem 7 will be derived by applying the following lemmas.

Lemma 8. Let G be an n-vertex graph with minimum degree δ > 1 and maximum
degree ∆. Let A be a subset of V (G) in which each vertex v ∈ A is independently
chosen from V (G) with probability p, where p ∈ (0, 1). And let A′ = {v ∈ V (G) :
N [v] ⊆ A} and A′′ = {v ∈ V (G) : N [v] ⊆ A′}. For every integer x ≥ 1, there is
a subset S ⊆ A′ such that S isolates A′′ and |S| ≤ f(x− 1)|A′|, where

f(0) = p+
1

2
(1− p)1+δ and f(j) = f(0)− (1− f(0))

j∑
i=1

pi(1+∆)

for any integer j ≥ 1.
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Proof. We proceed by induction on x ≥ 1. For x = 1, we show that there is a
subset S ⊆ A′ such that S isolates A′′ and |S| ≤ f(0)|A′| = (p+ 1

2(1− p)1+δ)|A′|.
Let A1 ⊆ A′ and v ∈ A1 be independently chosen from A′ with probability p, and
let B1 ⊆ (A′′\N [A1]) be the set of all vertices in A′′ that are not isolated by A1.
Then by Lemma 5, one can find a set I1 ⊆ B1 to isolate B1 with |I1| ≤ 1

2 |B1|.
Assume S1 = A1 ∪ I1. Then it is easy to see that S1 isolates A′′. Clearly, the
expected value of |A1| is E (|A1|) = |A′|p. Furthermore, we have

Pr(v ∈ B1) = Pr(v ∈ A′′\N [A1]) = (1−p)1+dG[A′](v) = (1−p)1+dG(v) ≤ (1−p)1+δ,

where the second equation holds because dG[A′](v) = dG(v) for any vertex v ∈ A′′.

Thus E (|B1|) ≤ |A′|(1− p)1+δ.
So by linearity of expectation,

E (|S1|) = E (|A1 ∪ I1|) = E (|A1|) +
1

2
E (|B1|) ≤ |A′|p+ 1

2
|A′|(1− p)1+δ

= (p+
1

2
(1− p)1+δ)|A′| = f(0)|A′|.

(1)

Hence, when x = 1, there is a subset S ⊆ A′ such that S isolates A′′ and
|S| ≤ f(0)|A′|.

Assume that the result holds for all positive integers x′ with x′ ≤ x by the
inductive hypothesis. It suffices to prove that the result holds for x + 1. Let
A1 ⊆ A′ and v ∈ A1 be is independently chosen from A′ with probability p, and
let B1 ⊆ (A′′\N [A1]) be the set of all vertices in A′′ that are not isolated by A1

and I1 ⊆ B1 isolate B1 with |I1| ≤ 1
2 |B1|. Let A′

1 = {v ∈ A1 : NG[A′][v] ⊆ A1},
and A′′

1 = {v ∈ A1 : NG[A′][v] ⊆ A′
1}. Since G[A′] is a graph with minimum

degree δ > 1, we apply the inductive hypothesis to the graph G[A′]. Thus, there
is a subset Sx ⊆ A′

1 such that Sx isolates A′′
1 and |Sx| ≤ f(x − 1)|A′

1|. Assume
Sx+1 = (A1\A′

1) ∪ Ss ∪ I1. Then it is easy to see that Sx+1 isolates A′′, see
Figure 1.

A′A′′I1A′
1A′′

1Sx A1

Figure 1. The illustration of Lemma 8.

Moreover, we have

E (|A1|) = |A′|p, E (|B1|) ≤ |A′|(1− p)1+δ and E (|A′
1|) ≥ |A′|p1+∆.
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Thus by linearity of expectation,

E (|Sx+1|) = E (|(A1\A′
1) ∪ Sx ∪ I1|)

= E (|A1|)− E (|A′
1|) + E (|Sx|) +

1

2
E (|B1|)

≤ |A′|p− E (|A′
1|) + f(x− 1)E (|A′

1|) +
1

2
|A′|(1− p)1+δ

= |A′|p+ 1

2
|A′|(1− p)1+δ − (1− f(x− 1))E (|A′

1|)

≤ |A′|p+ 1

2
|A′|(1− p)1+δ − (1− f(x− 1))|A′|p1+∆.

(2)

In addition, according to the definition of f ,

(1− f(x− 1))p1+∆ =

[
1− p− 1

2
(1− p)1+δ

+

(
1− p− 1

2
(1− p)1+δ

) x−1∑
i=1

pi(1+∆)

]
p1+∆

=

(
1− p− 1

2
(1− p)1+δ

) x∑
i=1

pi(1+∆).

(3)

So

E (|Sx+1|) ≤ |A′|p+ 1

2
|A′|(1− p)1+δ − (1− f(x− 1))|A′|p1+∆

= |A′|p+ 1

2
|A′|(1− p)1+δ − |A′|

(
1− p− 1

2
(1− p)1+δ

) x∑
i=1

pi(1+∆)

= |A′|

[
p+

1

2
(1− p)1+δ −

(
1− p− 1

2
(1− p)1+δ

) x∑
i=1

pi(1+∆)

]
= f(x)|A′|.

(4)

Hence, there is a subset S ⊆ A′ such that S isolates A′′ and |S| ≤ f(x)|A′|.

By the inequality 1 − p ≤ e−p for 0 ≤ p ≤ 1, the following consequence
follows.

Lemma 9. Let G be an n-vertex graph with minimum degree δ > 1 and maximum
degree ∆. Let A be a subset of V (G) in which each vertex v ∈ A is independently
chosen from V (G) with probability p, where p ∈ (0, 1). And let A′ = {v ∈ V (G) :
N [v] ⊆ A} and A′′ = {v ∈ V (G) : N [v] ⊆ A′}. For every integer x ≥ 1, there is
a subset S ⊆ A′ such that S isolates A′′ and |S| ≤ f(x− 1)|A′|, where

f(0) = p+
1

2
e−p(1+δ)
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and

f(j) = p+
1

2
e−p(1+δ) −

(
1− p− 1

2
e−p(1+δ)

) j∑
i=1

pi(1+∆),

for any integer j ≥ 1.

Next we apply Lemma 9 to prove Theorem 7.

A N(A) B

A′

A′′

S

I

Figure 2. The illustration of Theorem 7.

Proof of Theorem 7. Let B = V (G)\N [A], A′ = {v ∈ V (G) : N [v] ⊆ A} and
A′′ = {v ∈ V (G) : N [v] ⊆ A′}. Note that A′′ ⊆ A′ ⊆ A, dG[A′](v) = dG(v)
for any vertex v ∈ A′′. Furthermore, by the definition of A′, A′′, every vertex
of A′\A′′ has at least one neighbor in A\A′. Thus A\A′ dominates A′\A′′. By
Lemma 9, we know that there is a subset S ⊆ A′ such that S isolates A′′ and
|S| ≤ f(k − 1)|A′|, where

f(0) = p+
1

2
e−p(1+δ)

and

f(j) = p+
1

2
e−p(1+δ) −

(
1− p− 1

2
e−p(1+δ)

) j∑
i=1

pi(1+∆),

for any integer j ≥ 1.
Now let I be a minimum isolating set of B, then |I| ≤ 1

2 |B| by Lemma 5. It
is easy to see that (A\A′) ∪ I ∪ S is an isolating set of G, see Figure 2.

|(A\A′) ∪ I ∪ S| = |A\A′|+ |I|+ |S| ≤ |A| − |A′|+ 1

2
|B|+ |S|

≤ |A|+ 1

2
|B| − |A′|+ f(k − 1)|A′|

= |A|+ 1

2
|B| − (1− f(k − 1))|A′|.
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By the linearity of expectation, we get

E (|(A\A′) ∪D ∪ S|) ≤ E (|A|) + 1

2
E (|B|)− (1− f(k − 1))E (|A′|).

In addition,

E (|A|) = np, E (|B|) = n(1− p)1+δ and E (|A′|) ≥ np1+∆.

So,

E (|(A\A′) ∪D ∪ S|) ≤ E (|A|) + 1

2
E (|B|)− (1− f(k − 1))E (|A′|)

≤ np+
1

2
n(1− p)1+δ − n(1− f(k − 1))p1+∆

≤ np+
1

2
n(1− p)1+δ − n

(
1− p− 1

2
(1− p)1+δ

) k∑
i=1

pi(1+∆)

≤ np+
1

2
ne−p(1+δ) − n

(
1− p− 1

2
e−p(1+δ)

) k∑
i=1

pi(1+∆).

We take p = ln(1+δ)−ln 2
1+δ , then

E (|(A\A′) ∪D ∪ S|)

≤ np+
1

2
ne−p(1+δ) − n

(
1− p− 1

2
e−p(1+δ)

) k∑
i=1

pi(1+∆)

≤ n

1 + δ

[
ln

(
1 + δ

2

)
+ 1−

(
δ − ln

(
1 + δ

2

)) k∑
i=1

(
ln(1 + δ)− ln 2

1 + δ

)i(1+∆)
]
.

Hence,

ι(G) ≤ n

1 + δ

[
ln(1 + δ)− ln 2 + 1− (δ − ln(1 + δ) + ln 2)

k∑
i=1

(
ln(1 + δ)− ln 2

1 + δ

)i(1+∆)
]
.

It is worth noting that the isolation of a graph is closely related to the
vertex-edge domination proposed by Peters in [14]. The vertex-edge domination
problem is a variant of domination on “mixing” vertices and edges. We say
that a vertex v ve-dominates each edge incident to a vertex in N [v]. A subset
S ⊆ V (G) is a vertex-edge dominating set, abbreviated ve-dominating set, if
there exists a vertex v ∈ S such that v ve-dominates e for each edge e ∈ E(G).
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The minimum cardinality of a ve-dominating set of G is called the vertex-edge
domination number, abbreviated ve-domination number, denoted by γve(G). It is
easy to know that a set S is an ι(G)-set of G if and only if S is a γve(G)-set. Thus,
the relevant problems of ve-domination can be solved by studying the isolation
problem.

3. Conclusion

We provide two new upper bounds on the isolation number of a graph. It is clear
that the bounds in Theorem 6 and Theorem 7 are better than the bound given
in Theorem 3, since 1− ln 2 < 1

2 . In addition, the bound in Theorem 6 is better

than the bound given in Theorem 7 for all δ ≥ 2, since δ − ln( δ+1
2 ) > 0.
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