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Abstract

The anti-Ramsey number AR(Kn, G) is defined as the maximum integer
k such that there is an edge coloring of Kn using k colors, in which there is
no rainbow copy of G, namely, a copy of G whose edges have distinct colors.
In 2016, Gilboa and Roditty provided the upper and lower bounds of the
anti-Ramsey number for Pk ∪ tP2 with k ≥ 5. The problem on linear forests
was considered in recent years. In this paper, we consider the case k = 5 and
we determine the exact value of the anti-Ramsey number AR(Kn, P5 ∪ tP2)
for n ≥ 2t+ 6.
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1. Introduction

In this paper, we consider only finite simple undirected graphs. A subgraph
of an edge-colored graph is called rainbow if all of its edges receive different
colors. For a graph G and a positive n, the anti-Ramsey number AR(Kn, G) is
the maximum number of colors in an edge-coloring of G with no rainbow copy
of G.

The concept of anti-Ramsey number was introduced by Erdős et al. [4]. They
showed that these are closely related to Turán number. Since then, a significant
number of results were established for a wide variety of graphs in complete graphs,
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especially for matchings, see [3, 6, 7, 10, 12, 21, 33]. In recent years, numerous
scholars have focused their attention on the study of anti-Ramsey number for
disjoint union of graphs. An interesting problem concerning anti-Ramsey number
is the determination of anti-Ramsey number of matchings. Later, the host graphs
are generalized to other graphs. Besides of complete graphs as host graphs, the
anti-Ramsey number of matchings has also been studied extensively in planar
graphs [2,13,14,16,22,24,30–32], hypergraphs [9,18,29,35] and bipartite graphs
[15,17,23,25–28].

Bialostocki et al. [1] determined the anti-Ramsey number for all graphs with
no more than four edges in their research. However, for more complex structures,
Gilboa and Roditty [8] determined that the anti-Ramsey numbers of L∪ tP2 and
L∪kP3 when t and k are large enough and L is a graph satisfying some conditions,
including C3 ∪ tP2, P3 ∪ tP2, P4 ∪ tP2 and P2 ∪ tP3, in Kn for large enough n.
Furthermore, they obtain upper and lower bounds of the anti-Ramsey number
for Pk ∪ tP2 ,where k ≥ 5, t ≥ 1 and n is large enough. The analogue results were
present in [5,34], where the authors obtained the anti-Ramsey number of several
kinds of forests in Kn for large enough n. Jin and Gu [19] improved the bound
on n and obtained the value of AR(Kn, C3 ∪ tP2) for all n ≥ 2t+3 and they also
determined the value of AR(Kn,K4∪tP2) for all n ≥ 2t+4. Additionally, He and
Jin [11] improved the bound on n and obtained the value of AR(Kn, P3 ∪ tP2)
for all n ≥ 2t + 3. Later, Jin et al. [20] improved the bound on n and obtained
the value of AR(Kn, P4 ∪ tP2) for all n ≥ 2t+ 4.

It is important to note that Gilboa and Roditty [8] only provided the upper
and lower bounds of the anti-Ramsey number for Pk ∪ tP2 with k ≥ 5. In this
paper, we consider the case where k = 5. We obtain the precise anti-Ramsey
number of P5 ∪ tP2 for all n ≥ 2t+ 6 in complete graphs.

The paper is organized as follows. In Section 2, we present some definitions,
notations and preliminary results, which will be used in the subsequent sections.
Our main results show that the anti-Ramsey number AR(Kn, P5 ∪ tP2) is not
a single formula for different t ≥ 1. Therefore, the proofs of our main results
are divided into three sections. In Section 3, we obtain the value for P5 ∪ P2 for
n ≥ 7. In Section 4, we get the anti-Ramsey number of P5 ∪ tP2 for n ≥ 2t + 6
and 2 ≤ t ≤ 4. In Section 5, the anti-Ramsey number of P5 ∪ tP2 for n ≥ 2t+ 6
and t ≥ 5 is determined.

2. Preliminaries

Firstly, we present some definitions and notations necessary in the paper.
Notice that throughout the paper, we consider the anti-Ramsey problem with
complete graph as host graphs. Given an edge-colored graph G, denote by c(G)
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the set of colors of all edges of G and by c(e) the color of edge e. Furthermore,
for a subset E

′
of E(G), denote by c(E

′
) the set of colors of all edges in E

′
. Let

S and T be two disjoint vertex subsets of V (G), denote by [S, T ]G the set of all
edges between S and T in G. When G = Kn, we write [S, T ] for short. Moreover,
if S = {v}, we write [v, T ]G for short.

In addition to this, given a subset S ⊆ V (Kn) denote by l(S) the set of the
colors only appearing at the edges incident with vertices in S, namely, l(S) =
c(Kn)\c(Kn − S). When S = {v}, we write l(v) for short and the number
of colors in l(v) is called the saturated degree of v in Kn. If c(vx) ∈ l(v),
then we call that x saturates v. In the proof of our main results, we always
partition a complete graph Kn (or its vertices) into graphs (or sets) in the order
H1, H2 and D. Also, let H = H1 ∪ H2. For each vertex u ∈ V (Kn), denote
l1(H1, u) = l(u) ∩ c([H1, u]), l2(H2, u) = l(u) ∩ c([H2, u])\l1(H1, u), l(H,u) =
l1(H1, u) ∪ l2(H2, u), and l3(D,u) = l(u)\l(H,u).

Secondly, we introduce some preliminary results which are useful. Bialo-
stocki, Gilboa and Roditty [1] determined the anti-Ramsey number of graphs
with no more than four edges. In particular, they proved the following theorem
for P5.

Theorem 1 [1]. For n ≥ 5, AR(Kn, P5) = n.

Furthermore, Gilboa and Roditty [8] proved the following theorem which
enables us to get the upper bound of AR(Kn, L ∪ tP2) from the upper bound on
the disjoint union of L and a smaller matching for large enough n.

Theorem 2 [8]. Given a graph L. Let n0 ≥ 2t1 + |V (L)|, t1 ≥ 0, and s and r be
real numbers. Suppose that AR(Kn, L ∪ t1P2) ≤ (t1 + s)

(
n− t1+s+1

2

)
+ r for any

integers n ≥ n0. Then there exists a constant γ, which depends only on integers
L, t1, s, r and n0, such that for any positive integers t ≥ t1 and n > 5t

2 + γ,

AR(Kn, L ∪ tP2) ≤ (t+ s)

(
n− t+ s+ 1

2

)
+ r.

Based on Theorem 2, the authors got the results for some special graphs L,
including P3, P4, C3, etc., in Kn for large enough n. Moreover, the authors gave
the upper and lower bound of AR(Kn, Pk ∪ tP2) with k ≥ 5 and they proved the
following theorem as a corollary for Pk ∪ tP2 with k ≥ 5.

Theorem 3 [8]. For any integers k ≥ 5, t ≥ 0 and n ≥ 2t+ k,

AR(n, Pk ∪ tP2) ≥
(
t+

⌈
k − 1

2

⌉
− 2

)(
n−

t+
⌈
k−1
2

⌉
− 1

2

)
+ 1.
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and for any integer k ≥ 5 there is a constant γ2(Pk) such that for any integers
t ≥ 0 and n > 5t

2 + γ2(Pk),

AR(n, Pk ∪ tP2) ≤
(
t+

⌊
k − 1

2

⌋
− 1

)(
n−

t+
⌊
k−1
2

⌋
2

)
+ 1 + (k − 1 mod 2).

In particular, He and Jin [11] improved the bound on n and obtained the
exact value of AR(Kn, P3 ∪ tP2) for all n ≥ 2t + 3 based on Theorem 2 when
L = P3. They got the following theorem.

Theorem 4 [11]. Let n(t) = 5t+2
2 + 1

t−1 . For n ≥ 2t+3 and t ≥ 2, AR(Kn, P3 ∪
tP2) = f(n, t), where

f(n, t) =

{
t(2t− 1) + 1, if 2t+ 3 ≤ n ≤ ⌊n(t)⌋,
(t− 1)(n− t

2) + 1, if n ≥ ⌈n(t)⌉.

Later, Fang et al. [5] considered the anti-Ramsey number of more general
graphs which consist of small components, i.e., forests, including star-forest, linear
forest and double stars. Especially for linear forest, they gave an approximate
value of anti-Ramsey number of a linear forests with at least one even path
component.

Theorem 5 [5]. Let F =
⋃k

i=1 Pki be a linear forest with at least one even path
component, where ki ≥ 2 for all 1 ≤ i ≤ k. Then

AR(Kn, F ) =

(
k∑

i=1

⌊
ki
2

⌋
− 2

)
n+O(1).

Soon after, on the base of Theorem 5, Xie et al. [34] determined the precise
value of anti-Ramsey number of a linear forest when it contains even paths and
obtained the following theorem.

Theorem 6 [34]. Let F =
⋃k

i=1 Pki be a linear forest with at least one even path
component, where k ≥ 2 and ki ≥ 2 for all 1 ≤ i ≤ k. Then for large enough n,

AR(Kn, F ) =

( k∑
i=1

⌊
ki
2

⌋
− 2

2

)
+

(
k∑

i=1

⌊
ki
2

⌋
− 2

)(
n−

k∑
i=1

⌊
ki
2

⌋
+ 2

)
+ 1 + ε,

where ε = 0 if at least two ki are even, or ε = 1 otherwise.

Theorem 3 only gave the lower and upper bounds of AR(Kn, P5∪ tP2). From
Theorem 6, we can know the value of AR(Kn, P5 ∪ tP2) for large enough n. It is
worth to pay attention to seek the exact value of AR(Kn, P5 ∪ tP2).
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3. Result for P5 ∪ P2

Lemma 7. AR(K7, P5 ∪ P2) = 8.

This lemma plays a role as the inductive basis in the proof of the following
theorem. Since the proof of this lemma is cases analysis, we present its proof
details in APPENDIX.

Theorem 8. For n ≥ 7, AR(Kn, P5 ∪ P2) = n+ 1.

Proof. To show that AR(Kn, P5∪P2) ≥ n+1, first we construct an edge-coloring
of Kn without rainbow P5∪P2. Take a vertex v ∈ V (Kn), all edges incident with
the vertex v are colored by distinct colors, and all other edges are colored by two
additional colors. We can see that the number of colors is n+ 1 and there is no
rainbow P5 ∪ P2. This implies that AR(n, P5 ∪ P2) ≥ n+ 1.

Next we will prove the upper bound, that is, the inequality AR(Kn, P5∪P2) ≤
n+1. According to Lemma 7, we can know that AR(K7, P5 ∪P2) = 8. It follows
that we need to show AR(Kn, P5∪P2) ≤ n+1 for any integer n ≥ 8. Let c be an
(n+2)-edge-coloring of Kn. We need to show that Kn contains a rainbow P5∪P2.
Instead, we assume that Kn does not contain any rainbow P5 ∪ P2. Evidently,
any subgraph Kn−1 has no rainbow P5 ∪ P2. Then by the induction hypothesis
on n, we have |c(Kn−1)| ≤ n for any subgraph Kn−1 in Kn with edge-coloring
c. Therefore, the saturated degree of each vertex in Kn is at least 2. According
to Theorem 1, we know that Kn contains a rainbow P5. Let H = v1v2v3v4v5
be a rainbow path P5 and D = V (Kn)\V (H). As Kn does not contain any
rainbow P5∪P2, we can easily get c(Kn[D]) ⊆ c(H). Take three different vertices
u, v, w ∈ D. Denote by Q the graph on vertex set V (H)∪{u, v, w} with the edges
E(H) and all the edges saturating u, v, w. Clearly, Q is rainbow and Q contains a
rainbow P5∪P2 except for the graph in Figure 1, where |l(u)| = |l(v)| = |l(w)| = 2
and both v2 and v4 saturate all u, v, w. For convenience, the colors of edges of Q
are illustrated in Figure 1.

v1 v2 v3 v4 v51 2 3 4

5 6
7

8 9 10

u v w

Figure 1. The graph Q with no rainbow P5 ∪ P2.

Notice that Kn does not contain any rainbow P5 ∪ P2. Consider a copy of
P5 ∪ P2, where P5 = v1v2uv4v3 and P2 = wv5, we have c(wv5) ∈ {1, 5, 8, 3}.
Similarly, consider another copy of P5 ∪ P2, where P5 = uv2vv4v3 and P2 =
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wv5, we have c(wv5) ∈ {5, 6, 9, 3}. Consider the third copy of P5 ∪ P2, where
P5 = v1v2vv4u and P2 = wv5, we have c(wv5) ∈ {1, 6, 9, 8}. Since {1, 5, 8, 3} ∩
{5, 6, 9, 3} ∩ {1, 6, 9, 8} = ∅, a contradiction. This completes the proof of the
theorem.

4. Result for P5 ∪ tP2 with 2 ≤ t ≤ 4

Lemma 9. For any integers 2 ≤ t ≤ 4 and n = 2t+ 6,

AR(Kn, P5 ∪ tP2) =
3t2

2
+

11t

2
+ 1.

This lemma is necessary and also plays a role as the inductive basis in the
proof of the following theorem. The proof idea of this lemma is similar to the
proof of result for t ≥ 5 in next section. In order to improve the accessibility of
the paper for readers, we present its proof details in APPENDIX.

Theorem 10. For any integers 2 ≤ t ≤ 4 and n ≥ 2t+ 6,

AR(Kn, P5 ∪ tP2) = t(n− t) +

(
t

2

)
+ 1.

Proof. To show that AR(Kn, P5 ∪ tP2) ≥ t(n − t) +
(
t
2

)
+ 1, first we construct

an edge-coloring of Kn without rainbow P5 ∪ tP2. Take a complete subgraph
G = Kn−t of Kn. Color all the edges of G by the same color and then color the
other edges by distinct new colors. Then we obtain a (t(n − t) +

(
t
2

)
+ 1)-edge-

colored graph Kn with no rainbow P5∪tP2. This implies that AR(Kn, P5∪tP2) ≥
t(n− t) +

(
t
2

)
+ 1.

Next we will prove the upper bound, that is, the inequality AR(Kn, P5 ∪
tP2) ≤ t(n − t) +

(
t
2

)
+ 1. According to Lemma 9, we only need to show that

AR(Kn, P5 ∪ tP2) ≤ t(n − t) +
(
t
2

)
+ 1 for any integer n ≥ 2t + 7. Let c be a

(t(n − t) +
(
t
2

)
+ 2)-edge-coloring of Kn. We need to show that Kn contains a

rainbow P5∪tP2. On the contrary, assume that Kn does not contain any rainbow
P5 ∪ tP2. Evidently, any subgraph Kn−1 has no rainbow P5 ∪ tP2. Then by the
induction hypothesis on n, we have |c(Kn−1)| ≤ t(n− 1− t) +

(
t
2

)
+ 1. Thus the

saturated degree of each vertex v of Kn satisfies

|l(v)| ≥ t(n− t) +

(
t

2

)
+ 2− t(n− 1− t)−

(
t

2

)
− 1 = t+ 1 ≥ 3.

Therefore, the saturated degree of each vertex inKn is at least 3. By Theorem
4, we have |c(Kn)| > AR(Kn, P3∪ (t+1)P2) for 2 ≤ t ≤ 4. So Kn must contain a
rainbow subgraph P3∪ (t+1)P2, say H, where H = H1∪H2. Let H1 = (t+1)P2
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with E(H1) = {ei|ei = xiyi, 1 ≤ i ≤ t+1} and H2 = v1v2v3. Let D = Kn−V (H).
Since n ≥ 2t+ 7, we can get that |V (D)| ≥ 2. Take a vertex u ∈ V (D). Now we
consider the value of |l3(D,u)|.

Suppose that |l3(D,u)| = 0 for each vertex u ∈ V (D). Notice that |l1(H1, v1)|
= 0 and |l2(H2, v1)| ≤ 2. So |l3(D, v1)| ≥ 1. Take a vertex w ∈ V (D) with w ̸= u.
Since Kn has no rainbow P5 ∪ tP2, we can get that |l(H,w)| ≤ 2. So 3 ≤ |l(w)| =
|l3(D,w)| + |l(H,w)| ≤ 2, a contradiction. Suppose that |l3(D,u)| ≥ 1 for each
vertex u ∈ V (D). Since Kn does not contain rainbow P5∪tP2, we can obtain that
|l1(H1, v1)| = 0 and |l3(D, v1)| = 0. So 3 ≤ |l(v1)| = |l1(H1, v1)| + |l2(H2, v1)| +
|l3(D, v1)| ≤ 2, a contradiction. Hence we can assume that there are two distinct
vertices v, w ∈ V (D) such that |l3(D, v)| = 0 and |l3(D,w)| ≥ 1. If there is a
vertex v ∈ V (Kn) such that |l(v)| ≥ 4, it is easy to obtain a rainbow P5 ∪ tP2.
Hence |l(v)| = 3 for each vertex v ∈ V (Kn). Since Kn has no rainbow P5 ∪ tP2,
we can deduce that each component of Kn is K4. Now, take two distinct K4,
say K4[vi, vj , vk, vl] and K4[v

′
i, v

′
j , v

′
k, v

′
l ]. Then we can consider the color of edge

vivi′ . Regardless of the color of edge vivi′ , we can get a rainbow P5 ∪ tP2, a
contradiction.

This completes the proof of the theorem.

5. Result for P5 ∪ tP2 with t ≥ 5

Theorem 11. Let n0(t) =
5t+7
2 + 1

t . For n ≥ 2t+6 and t ≥ 5, AR(Kn, P5∪tP2) =
f(n, t), where

f(n, t) =

{
(t+ 1)(2t+ 1) + 1, if 2t+ 6 ≤ n ≤ ⌊n0(t)⌋,
t(n− t) +

(
t
2

)
+ 1, if n ≥ ⌈n0(t)⌉.

It is worth noting that (t+ 1)(2t+ 1) + 1 = t(n− t) +
(
t
2

)
+ 1 if and only if

n = n0(t). Furthermore, (t + 1)(2t + 1) + 1 ≥ t(n − t) +
(
t
2

)
+ 1 if and only if

n ≤ n0(t). We prove Theorem 11 in the following subsections.

5.1. Lower bound of AR(Kn, P5 ∪ tP2)

Proof. In order to prove the lower bound of AR(Kn, P5∪tP2), we give two edge-
colorings of Kn without rainbow P5∪tP2, which contains exactly (t+1)(2t+1)+1
and t(n− t) +

(
t
2

)
+ 1 colors, respectively.

For the first coloring, take a subgraphK2t+2 ofKn. Color the subgraphK2t+2

into rainbow and the remaining edges are colored with one new color. Then we
can get exactly a ((t+1)(2t+1)+1)-edge-coloring ofKn without rainbow P5∪tP2.

In the second coloring, take a subgraph Kn−t of Kn. Color all the edges of
Kn−t by the same color, which is never used again. The remaining edges are each
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colored with a unique color. Then we can get exactly a (t(n− t) +
(
t
2

)
+1)-edge-

coloring of Kn without any rainbow P5 ∪ tP2.

5.2. Upper bound of AR(Kn, P5 ∪ tP2)

Proof. We prove this by induction on n. Let c be an edge-coloring of Kn and
|c(Kn)| = f(n, t) + 1. By Theorem 4, we have |c(Kn)| > AR(Kn, P3 ∪ (t+1)P2).
SoKn must contain a rainbow subgraph P3∪(t+1)P2, sayH, whereH = H1∪H2.
Let H1 = (t+ 1)P2 with E(H1) = {ei|ei = xiyi, 1 ≤ i ≤ t+ 1} and H2 = v1v2v3.
Let D = Kn − V (H). Then we can get 1 ≤ |V (D)| ≤ n− (2t+ 5).

We need to prove that there is a rainbow P5 ∪ tP2 in Kn. On the contrary,
we suppose that there is no rainbow P5 ∪ tP2. Obviously, any subgraph Kn−1 in
Kn has no rainbow P5 ∪ tP2. Below in the following subsection, we will complete
the proof by considering the value of n.

5.2.1. 2t+ 6 ≤ n ≤ ⌊n0(t)⌋.

By the definition of n0(t), we have

⌊n0(t)⌋ =

{
5t+6
2 , if t is even and t ≥ 6,

5t+7
2 , if t is odd and t ≥ 5.

Then we have

|V (D)| ≤

{
t−4
2 , if t is even and t ≥ 6,

t−3
2 , if t is odd and t ≥ 5.

Let G ba a rainbow spanning subgraph of Kn with |c(Kn)| edges and H ⊆ G.
SinceKn has no rainbow P5∪tP2, we can deduce that c([{v1, v3}, V (H1)]) ⊆ c(H).
We can see that there is no P5 in G[V (D)]. Otherwise, we can obtain a rainbow
P5 ∪ tP2. So we can get that each component of the graph G[V (D)] consists
of stars, cycles, K4 or isolated vertices. So we can deduce that |E(G[V (D)])| ≤
3|V (D)|

2 . Moreover, for each vertex v ∈ V (D), it mush hold that v is adjacent to at
most one component of H in G and this implies that |[v, V (H)]G| ≤ 3. According
to c([{v1, v3}, V (H1)]) ⊆ c(H), we can get that |[V (H2), V (H1)]G| ≤ 2t + 2, i.e.
|[v2, V (H1)]G| ≤ 2t+ 2. Below, we will discuss the value of |[v2, V (H1)]G|.

Case 1. |[v2, V (H1)]G| ≥ 1. Without loss of generality, let v2x1 ∈ E(G).
Then we can get c(v1v3) ∈ c(H1) ∪ c(v2x1). And we have the following claims.

Claim 1. [{v1, v3, y1}, V (D)]G = ∅.

Proof. Suppose that [{v1, v3, y1}, V (D)]G ̸= ∅. Then we can see that there is a
rainbow P5 on the vertex set V (H2)∪{x1, y1, v}, the union of this P5 andH1−x1y1
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forms a rainbow P5 ∪ tP2, a contradiction. Thus [{v1, v3, y1}, V (D)]G = ∅ and so
the claim holds. 2

From Claim 1, we can deduce that |[v, V (H)]G| ≤ 2 for each vertex v ∈ V (D).

Claim 2. |E(D) ∩ E(G)| = 0.

Proof. Suppose that E(D)∩E(G) ̸= ∅. Let vw ∈ E(G) with v, w ∈ V (D). Then
we can get that [V (e1), V (H1 − e1)]G = ∅. So we have |E(G[V (H1)])| ≤

(
2t
2

)
+ 1.

Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤
(
2t

2

)
+ 1 + 2 + 2(t+ 1) + 2|V (D)|+ 3|V (D)|

2

= 2t2 + t+ 5 +
7|V (D)|

2

≤

{
2t2 + 11t

4 − 2, if t is even and t ≥ 6,

2t2 + 11t
4 − 1

4 , if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 + 3t+ 3, we can see that |E(G)| < |c(Kn)|, a
contradiction. Thus |E(D) ∩ E(G)| = 0 and so the claim holds. 2

Claim 3. |E(G[V (H1)])| ≤ 2t2 + 1.

Proof. By [{v1, v3, y1}, V (D)]G = ∅, we have c([{v1, v3}, V (D)]) ⊆ c(H) ∪
c(v2x1). Now we will consider the color of edge v1v.

Assume that c(v1v) ∈ c(H2). If c(v1v) = c(v2v3), there is a rainbow P5 =
vv1v2x1y1, and the union of this P5 and H1 − x1y1 forms a rainbow P5 ∪ tP2,
a contradiction. Hence we can assume that c(v1v) = c(v1v2). Then we have
[V (e1), V (H1 − e1)]G = ∅. Otherwise we can obtain that there is a rainbow
P5 ∪ P2 on the vertex set V (H2) ∪ {x1, y1, xi, yi, v} with 2 ≤ i ≤ t+ 1, the union
of this P5 ∪ P2 and H1 − e1 − ei forms a rainbow P5 ∪ tP2, a contradiction. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 4t = 2t2 − t+ 1 < 2t2 + 1.

Assume that c(v1v) = c(v2x1). Then we have [V (e1), V (H1 − e1)]G = ∅.
Suppose that [V (e1), V (H1 − e1)]G ̸= ∅. Without loss of generality, let x1x2 ∈
E(G). Since Kn has no rainbow P5 ∪ tP2, we can get that [V (e2), V (ei)]G = ∅
with 3 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 4(t − 1) = 2t2 − t + 5. Then

we have
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|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 − t+ 5 + 2 + 2(t+ 1) + 2|V (D)| − 1 = 2t2 + t+ 8 + 2|V (D)|

≤

{
2t2 + 2t+ 4, if t is even and t ≥ 6,

2t2 + 2t+ 5, if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 +3t+3, we can see that |E(G)| < |c(Kn)| for
all t ≥ 5, a contradiction. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
−4t = 2t2−t+1 < 2t2+1.

Hence we can assume that c(v1v) ∈ c(H1). Suppose that c(v1v) = c(e1). We
can obtain that [V (e1), V (H1−e1)]G = ∅. Suppose that [V (e1), V (H1−e1)]G ̸= ∅.
Clearly, [x1, V (H1−e1)]G = ∅. Hence without loss of generality, let y1x2 ∈ E(G).
Then we have |[V (e2), V (ei)]G| ≤ 2 with 3 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤(
2(t+1)

2

)
− 2t− 2(t− 1) = 2t2 − t+ 3. Then

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 − t+ 3 + 2 + 2(t+ 1) + 2|V (D)| = 2t2 + t+ 7 + 2|V (D)|

≤

{
2t2 + 2t+ 3, if t is even and t ≥ 6,

2t2 + 2t+ 4, if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 +3t+3, we can see that |E(G)| < |c(Kn)| for
all t ≥ 5, a contradiction. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
−4t = 2t2−t+1 < 2t2+1.

Hence without loss of generality, we can assume that c(v1v) = c(e2). SinceKn has
no rainbow P5 ∪ tP2, we can obtain that |[V (e2), V (ei)]G| ≤ 1 with 1 ≤ i ≤ t+ 1
and i ̸= 2. Suppose |[V (e2), V (ei)]G| ≥ 3, there are two independent edges in
[V (e2), V (ei)]G, say x2xi and y2yi. Then vv1v2xix2, y2yi and H1− e1− e2 form a
rainbow P5 ∪ tP2 with i = 1 or vv1v2x1y1, x2xi, y2yi and H1− e1− e2− ei form a
rainbow P5 ∪ tP2 with i ≥ 2, a contradiction. Hence we can assume that there is
an edge ei such that |[V (e2), V (ei)]G| = 2 with 1 ≤ i ≤ t+ 1 and i ̸= 2. Without
loss of generality, let x2x1, y2x1 ∈ E(G), then we have [V (e2), V (ej)]G = ∅ with

3 ≤ j ≤ t+1. So |E(G[V (H1)])| ≤
(
2(t+1)

2

)
−4(t−1) = 2t2− t+5. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 − t+ 5 + 2 + 2(t+ 1) + 2|V (D)| = 2t2 + t+ 9 + 2|V (D)|

≤

{
2t2 + 2t+ 5, if t is even and t ≥ 6,

2t2 + 2t+ 4, if t is odd and t ≥ 5.
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By |c(Kn)| = f(n, t) + 1 = 2t2 + 3t + 3, we can see that |E(G)| < |c(Kn)|
for all t ≥ 5, a contradiction. Thus |[V (e2), V (ei)]G| ≤ 1 with 1 ≤ i ≤ t + 1
and i ̸= 2. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 3t = 2t2 + 1. This implies that

|E(G[V (H1)])| ≤ 2t2 + 1 and so the claim holds. 2

Combined with the above claims, we can obtain that

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 + 1 + 2 + 2(t+ 1) + 2|V (D)| = 2t2 + 3t+ 5 + 2|V (D)|

≤

{
2t2 + 3t+ 1, if t is even and t ≥ 6,

2t2 + 3t+ 2, if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 + 3t+ 3, we can see that |E(G)| < |c(Kn)| for all
t ≥ 5, a contradiction.

Case 2. |[v2, V (H1)]G| = 0. By [{v1, v3}, V (H1)]G = ∅ and [v2, V (H1)]G = ∅,
we can obtain that [V (H2), V (H1)]G = ∅. And we have the following claims.

Claim 4. For each vertex v ∈ V (D), |[v, V (H2)]G| ≤ 2.

Proof. Suppose that there is a vertex v ∈ V (D) such that |[v, V (H2)]G| =
3. Without loss of generality, let {vv1, vv2, vv3} ⊆ E(G). Then we can obtain
that [w, V (H2)]G = ∅ for each vertex w ∈ V (D) with w ̸= v. Thus we have
|[V (D), V (H)]G| ≤ 3 + 2(|V (D)| − 1) = 2|V (D)|+ 1.

Now consider the color of edge y1v3. Suppose that c(y1v3) ∈ c(H2), there is
a rainbow P5 on the vertex set V (H2) ∪ {v}, the union of this P5 and H1 − x1y1
forms a rainbow P5 ∪ tP2, a contradiction. Hence c(y1v3) ∈ c(H1). Assume
that c(y1v3) = c(e1), we can get a rainbow P5 = v2v1vv3y1, the union of this
P5 and H1 − x1y1 forms a rainbow P5 ∪ tP2, a contradiction. Thus, without
loss of generality, assume that c(y1v3) = c(e2), then we have E(G[V (D)]) = ∅
and |[V (e2), V (ei)]G| ≤ 2 with 1 ≤ i ≤ t + 1 and i ̸= 2. So |E(G[V (H1)])| ≤(
2(t+1)

2

)
− 2t = 2t2 + t+ 1. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 + t+ 1 + 3 + 2|V (D)|+ 1 = 2t2 + t+ 5 + 2|V (D)|

≤

{
2t2 + 2t+ 1, if t is even and t ≥ 6,

2t2 + 2t+ 2, if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 +3t+3, we can see that |E(G)| < |c(Kn)| for
all t ≥ 5. Thus we get a contradiction. This implies that |[v, V (H2)]G| ≤ 2 for
each vertex v ∈ V (D) and so the claim holds. 2
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Claim 5. [V (D), V (H1)]G = ∅.

Proof. Take a vertex v ∈ V (D). Without loss of generality, let vx1 ∈ E(G).
Now consider the color of edge y1v3. Suppose that c(y1v3) ∈ c(H2). Let c(y1v3) =
c(v1v2), there is a rainbow P5 = vx1y1v3v2, the union of this P5 and H1 − x1y1
forms a rainbow P5 ∪ tP2, a contradiction.

So we can assume c(y1v3) = c(v2v3). Then we can obtain that v1v3 /∈ E(G)
and [V (e1), V (H1 − e1)]G = ∅. Otherwise we can obtain a rainbow P5 ∪ tP2. So
|E(G[V (H1)])| ≤

(
2t
2

)
+ 1 = 2t2 − t+ 1. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 − t+ 1 + 2 + 2|V (D)|+ 3|V (D)|
2

= 2t2 − t+ 3 +
7|V (D)|

2

≤

{
2t2 + 3t

4 − 4, if t is even and t ≥ 6,

2t2 + 3t
4 − 9

4 , if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 +3t+3, we can see that |E(G)| < |c(Kn)| for
all t ≥ 5, a contradiction. Hence c(y1v3) ∈ c(H1).

Suppose that c(y1v3) = c(e1). Then we get that |[V (e1, V (ei)]G| ≤ 2 with
2 ≤ i ≤ t+ 1. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t = 2t2 + t+ 1. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 + t+ 1 + 3 + 2|V (D)|+ 3|V (D)|
2

= 2t2 + t+ 4 +
7|V (D)|

2

≤

{
2t2 + 11t

4 − 3, if t is even and t ≥ 6,

2t2 + 11t
4 − 5

4 , if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 + 3t + 3, we can see that |E(G)| < |c(Kn)|
for all t ≥ 5, a contradiction. Hence, without loss of generality, let c(y1v3) =
c(e2). Then we have |[V (e2), V (ei)]G| ≤ 2 with 1 ≤ i ≤ t + 1 and i ̸= 2. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t = 2t2 + t+ 1. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 + t+ 1 + 3 + 2|V (D)|+ 3|V (D)|
2

= 2t2 + t+ 4 +
7|V (D)|

2

≤

{
2t2 + 11t

4 − 3, if t is even and t ≥ 6,

2t2 + 11t
4 − 5

4 , if t is odd and t ≥ 5.
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By |c(Kn)| = 2t2 + 3t + 3, we have |E(G)| < |c(Kn)| for all t ≥ 5, a contra-
diction. This implies that |[V (D), V (H1)]G| = ∅ and so the claim holds. 2

From Claims 4 and 5, we can deduce that |[v, V (H)]G| ≤ 2 for each vertex
v ∈ V (D).

Claim 6. |E(G[V (H1)])| ≤ 2t2 + t+ 2.

Proof. Notice that [V (D), V (H1)]G = ∅, which means that c([V (D), V (H1)]) ⊆
c(H). Take a vertex v ∈ V (D) and below we will consider the color of edge x1v.

Suppose that c(vx1) ∈ c(H2). Since Kn has no rainbow P5 ∪ tP2. Then we
have |[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t + 1. Otherwise we can easily get a
rainbow P5∪ tP2, a contradiction. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
−2t = 2t2+ t+1.

Hence we can assume that c(vx1) ∈ c(H1). Assume that c(vx1) = c(e1), we
can obtain that |[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤(
2(t+1)

2

)
−2t = 2t2+t+1. Hence, without loss of generality, let c(vx1) = c(e2). Now

consider the color of edge y1v3. If c(y1v3) ∈ c(H2), then let c(y1v3) = c(v1v2).
Hence |[V (e2), V (e1)]G| ≤ 3 and |[V (e2), V (ei)]G| ≤ 2 with 3 ≤ i ≤ t + 1. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
−2(t−1)−1 = 2t2+t+2. Hence let c(y1v3) = c(v2v3), we

have |[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t+1. So |E(G[V (H1)])| ≤
(
2(t+1)

2

)
− 2t =

2t2 + t + 1. Hence c(y1v3) ∈ c(H1). Suppose that c(y1v3) = c(e1). We have
|[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t =

2t2 + t + 1. Hence, without loss of generality, let c(y1v3) = c(e2). Then we
have |[V (e2), V (ei)]G| ≤ 2 with 1 ≤ i ≤ t + 1 and i ̸= 2. So |E(G[V (H1)])| ≤(
2(t+1)

2

)
− 2t = 2t2 + t+ 1. This implies that |E(G[V (H1)])| ≤ 2t2 + t+ 2 and so

the claim holds. 2

Combined with the above claims, we can obtain that

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 + t+ 2 + 3 + 2|V (D)|+ 3|V (D)|
2

= 2t2 + t+ 5 +
7|V (D)|

2

≤

{
2t2 + 11t

4 − 2, if t is even and t ≥ 6,

2t2 + 11t
4 − 1

4 , if t is odd and t ≥ 5.

By |c(Kn)| = f(n, t) + 1 = 2t2 + 3t+ 3, we can see that |E(G)| < |c(Kn)| for all
t ≥ 5, a contradiction.

5.2.2. n = ⌊n0(t)⌋+ 1.

We have proved that the theorem holds for 2t + 6 ≤ n ≤ ⌊n0(t)⌋. Since n =
⌊n0(t)⌋+1 ≥ ⌈n0(t)⌉, we can obtain that |c(Kn)| = t(n− t)+

(
t
2

)
+2. We can see

that any subgraph Kn−1 does not contain rainbow P5 ∪ tP2. So by the induction
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on n, we have |c(Kn−1)| ≤ (t+1)(2t+1)+1. Thus, the saturated degree of each
vertex of Kn satisfies

|l(v)| ≥ t(n− t) +

(
t

2

)
+ 2− (t+ 1)(2t+ 1)− 1 = nt− 5t2

2
− 7t

2
.

According to the definition of n0(t), we have

n = ⌊n0(t)⌋+ 1 =

{
5t+8
2 , if t is even and t ≥ 6,

5t+9
2 , if t is odd and t ≥ 5.

Hence

|l(v)| ≥

{
t
2 , if t is even and t ≥ 6,

t, if t is odd and t ≥ 5,

≥

{
3, if t is even and t ≥ 6,

5, if t is odd and t ≥ 5.

Thus |l(v)| ≥ 3 for each vertex v ∈ V (Kn). Take a vertex u ∈ V (D). Now
we consider the value of |l3(D,u)|.

Suppose that |l3(D,u)| = 0 for each vertex u ∈ V (D). Notice that |l1(H1, v1)|
= 0 and |l2(H2, v1)| ≤ 2. So |l3(D, v1)| ≥ 1. Take a vertex w ∈ V (D) with w ̸= u.
Since Kn has no rainbow P5 ∪ tP2, we can get that |l(H,w)| ≤ 2. So 3 ≤ |l(w)| =
|l3(D,w)| + |l(H,w)| ≤ 2, a contradiction. Suppose that |l3(D,u)| ≥ 1 for each
vertex u ∈ V (D). Since Kn does not contain rainbow P5∪tP2, we can obtain that
|l1(H1, v1)| = 0 and |l3(D, v1)| = 0. So 3 ≤ |l(v1)| = |l1(H1, v1)| + |l2(H2, v1)| +
|l3(D, v1)| ≤ 2, a contradiction. Hence we can assume that there are two distinct
vertices v, w ∈ V (D) such that |l3(D, v)| = 0 and |l3(D,w)| ≥ 1. If there is a
vertex v ∈ V (Kn) such that |l(v)| ≥ 4, it is easy to obtain a rainbow P5 ∪ tP2.
Hence |l(v)| = 3 for each vertex v ∈ V (Kn). Since Kn has no rainbow P5 ∪ tP2,
we can deduce that each component of Kn is K4. Now, take two distinct K4,
say K4[vi, vj , vk, vl] and K4[v

′
i, v

′
j , v

′
k, v

′
l ]. Then we can consider the color of edge

vivi′ . Regardless of the color of edge vivi′ , we can get a rainbow P5 ∪ tP2, a
contradiction.

5.2.3. n > ⌊n0(t)⌋+ 1.

Now we proved that the theorem holds for 2t + 6 ≤ n ≤ ⌊n0(t)⌋ + 1. Since
n > ⌊n0(t)⌋+1 ≥ ⌈n0(t)⌉, we have |c(Kn)| = t(n− t)+

(
t
2

)
+2. By the induction

hypothesis on n, we can obtain that |c(Kn−1)| ≤ t(n− 1− t) +
(
t
2

)
+1. Thus the

saturated degree of each vertex v of Kn satisfies

|l(v)| ≥ t(n− t) +

(
t

2

)
+ 2− t(n− 1− t)−

(
t

2

)
− 1 = t+ 1 ≥ 6.
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Thus |l(v)| ≥ 6 for each vertex v ∈ V (Kn). Take a vertex u ∈ V (D). Notice that
|l(H,u)| ≤ 3. By |l(u)| ≥ 6, we have |l3(D,u)| ≥ 3 for each u ∈ V (D). Since Kn

does not contain rainbow P5 ∪ tP2, we have |l1(H1, v1)| = 0 and |l3(D, v1)| = 0.
Hence

6 ≤ |l(v1)| = |l1(H1, v1)|+ |l2(H2, v1)|+ |l3(D, v1)| ≤ 2,

a contradiction.
This completes the proof of the theorem.
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[4] P. Erdős, M. Simonovits and V.T. Sós, Anti-Ramsey theorems, in: Infinite and
Finite Sets, Vol. II, A. Hajnal, R. Rado, and V.T. Sós (Ed(s)), Colloq. Math. Soc.
János Bolyai 10 (North-Holland, Amsterdam, 1975) 633–643.
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[29] L. Özkahya and M. Young, Anti-Ramsey number of matchings in hypergraphs, Dis-
crete Math. 313 (2013) 2359–2364.
https://doi.org/10.1016/j.disc.2013.06.015

[30] Y.F. Pei, Y.X. Lan and H. He, Improved bounds for anti-Ramsey numbers of match-
ings in outer-planar graphs, Appl. Math. Comput. 418 (2022) 126843.
https://doi.org/10.1016/j.amc.2021.126843

[31] Z.M. Qin, Y.X. Lan, Y.T. Shi and J. Yue, Exact rainbow numbers for matchings in
plane triangulations, Discrete Math. 344(4) (2021) 112301.
https://doi.org/10.1016/j.disc.2021.112301

[32] Z.M. Qin, Y.X. Lan and Y.T. Shi, Improved bounds for rainbow numbers of match-
ings in plane triangulations, Discrete Math. 342 (2019) 221–225.
https://doi.org/10.1016/j.disc.2018.09.031

[33] I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math.
286) (2004) 157–162.
https://doi.org/10.1016/j.disc.2003.11.057

[34] T.Y. Xie and L.-T. Yuan, On the anti-Ramsey numbers of linear forests, Discrete
Math. 343(12) (2020) 112130.
https://doi.org/10.1016/j.disc.2020.112130

[35] Y.S. Xue, E.F. Shan and L.Y. Kang, Anti-Ramsey number of matchings in r-partite
r-uniform hypergraphs, Discrete Math. 345(4) (2022) 112782.
https://doi.org/10.1016/j.disc.2021.112782

https://doi.org/10.1016/j.ejc.2018.01.010
https://doi.org/10.1016/j.dam.2023.11.049
https://doi.org/10.1007/s10878-015-9926-2
https://doi.org/10.1016/j.disc.2024.114011
https://doi.org/10.1016/j.disc.2008.05.011
https://doi.org/10.1016/j.aml.2009.03.019
https://doi.org/10.1016/j.disc.2013.06.015
https://doi.org/10.1016/j.amc.2021.126843
https://doi.org/10.1016/j.disc.2021.112301
https://doi.org/10.1016/j.disc.2018.09.031
https://doi.org/10.1016/j.disc.2003.11.057
https://doi.org/10.1016/j.disc.2020.112130
https://doi.org/10.1016/j.disc.2021.112782


18 Q. Jie and Z.M. Jin

Appendix

Proof of Lemma 7. In order to show that the lower bound, first we construct
an edge-coloring of K7 without rainbow P5 ∪ P2. Take a vertex v ∈ V (K7). All
edges incident with the vertex v are colored by distinct colors, and all other edges
are colored by two additional colors. Then we can see that the number of color
is 8 and there is no rainbow P5 ∪ P2. This implies that AR(K7, P5 ∪ P2) ≥ 8.

Next we prove the upper bound, that is, the inequality AR(K7, P5∪P2) ≤ 8.
Suppose that there is a 9-edge-coloring of the graph K7 such that the graph
K7 does not contain rainbow P5 ∪ P2. According to Theorem 4, we know that
AR(K7, P3 ∪ 2P2) = 7. Thus, K7 contains a rainbow P3 ∪ 2P2. Let G be a
rainbow spanning subgraph of size 9 which contains a subgraph isomorphic to
the graph P3 ∪ 2P2. Let H1 = P3 and H2 = 2P2 be vertex disjoint subgraph
of G and let H = H1 ∪ H2. Let H1 = v1v2v3, V (H2) = {v4, v5, v6, v7} and
E(H2) = {v4v5, v6v7}. Then we can get |c(G)\c(H)| = 5. For convenience, we
use the set {1, 2, . . . , 9} to represent the set of colors of E(G). Let c(v1v2) =
1, c(v2v3) = 2, c(v4v5) = 3 and c(v6v7) = 4. Since c(K7) does not contain
rainbow P5 ∪ P2, we can deduce that c([{v1, v3}, V (H2)]) ⊆ {1, 2, 3, 4}. Let C1 =
[{v4, v5}, {v6, v7}]G and let C2 = {v1v3}∩E(G). Let d∗(v2) = [v2, V (H2)]G. Then
we have |C1| + |C2| + |d∗(v2)| = |c(G)\c(H)| = 5. Note that when |d∗(v2)| ≥ 1,
we can obtain that |C2| = 0, otherwise we can easily get a rainbow P5∪P2. Next
we distinguish the cases on |d∗(v2)|.

Case 1. |d∗(v2)| = 0. In this case, we have |C1| + |C2| = 5, i.e., {v1v3, v4v6,
v4v7, v5v6, v5v7} ⊆ E(G), see Figure 2. Now consider the color of edge v4v2. It is
that no matter which color c(v4v2) takes, we can get a rainbow P5 ∪ P2, where
P5 = v2v4v7v5v6 and P2 = v1v3, a contradiction.

v1
v2

v3

v6 v7

v4 v5

21

3

4

5
6 7 8 9

Figure 2. Edge-coloring of G when |d∗(v2)| = 0.

Case 2. |d∗(v2)| = 1. In this case, we have |C1| = 4, see Figure 3. By
symmetry, assume that v2v4 ∈ E(G). Then we have c(v1v6) = 2, else K7 contains
a rainbow P5 ∪ P2 with P5 = v1v6v5v7v4 and P2 = v2v3. Similarly, we have
c(v3v7) = 1, else K7 contains a rainbow P5 ∪ P2 with P5 = v3v7v5v6v4 and
P2 = v1v2. This implies that K7 has a rainbow P5∪P2 with P5 = v1v6v5v7v3 and
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P2 = v2v4, a contradiction.

v1
v2 v3

v6 v7

v4 v5

21

3

4

5

6 7 8 9

Figure 3. Edge-coloring of G when |d∗(v2)| = 1.

Case 3. |d∗(v2)| = 2. In this case, we have |C1| = 3. By symmetry, we
assume that v2 is adjacent to v4 and vi in G, where i ∈ {5, 6}.

Suppose first that v2 is adjacent to v4 and v6 in G. Since |C1| = 3, we
assume that vivj /∈ E(G), where i ∈ {4, 5} and j ∈ {6, 7}. Let {i, i′} = {4, 5}
and {j, j′} = {6, 7}. Then we have c(v1vj) = 2, else we can get a rainbow P5∪P2

in K7 with P5 = v1vjvi′vj′vi and P2 = v2v3. Similarly, we have c(v3vi) = 1, else
we can get a rainbow P5 ∪ P2 in K7 with P5 = v3vivj′vi′vj and P2 = v1v2. This
implies that K7 has a rainbow P5 ∪ P2 with P5 = v3vivj′vjv1 and P2 = v2vi′

when i = 5, and P5 = v3viv2vjv1 and P2 = vi′vj′ when i = 4 and j = 6, and
P5 = v3vivi′vjv1 and P2 = v2vj′ when i = 4 and j = 7, a contradiction.

Suppose that v2 is adjacent to v4 and v5 in G. By symmetry, we assume that
v5v6 /∈ E(G). Then we have c(v1v6) = 2, else we can get a rainbow P5 ∪ P2 in
K7 with P5 = v1v6v4v7v5 and P2 = v2v3. Similarly, we have c(v3v5) = 1, else
we can get a rainbow P5 ∪ P2 in K7 with P5 = v3v5v7v4v6 and P2 = v1v2. This
implies that K7 has a rainbow P5 ∪ P2 with P5 = v3v5v7v6v1 and P2 = v2v4, a
contradiction.

Case 4. |d∗(v2)| = 3. In this case, we have |C1| = 2. By symmetry, we may
assume that v2 is adjacent to v4, v5 and v6. Let {i, i

′} = {4, 5} and {j, j′} = {6, 7}.
Since |C1| = 2, we assume first that vivj , vivj′ ∈ E(G). Then we have c(v3vi′ ) = 1,
else we can get a rainbow P5 ∪ P2 in K7 with P5 = v1v2vjvivj′ and P2 = v3vi′ .
Similarly, we have c(v1vj) ∈ {2, 3}, else we can get a rainbow P5 ∪P2 in K7 with
P5 = v3v2vj′vivi′ and P2 = v1vj . This implies that K7 contains a rainbow P5∪P2

with P5 = v1vjv2vj′vi and P2 = v3vi′ , a contradiction.
Suppose that vivj , vi′vj′ ∈ E(G). Now consider the color of edge v1v3. It is

that no matter which color c(v1v3) takes, we can get a rainbow P5 ∪ P2, where
P5 = vivjv2vj′vi′ and P2 = v1v3, a contradiction. Without loss of generality,
suppose that vivj , vi′vj ∈ E(G). It is that no matter which color c(v1v3) takes, we
can get a rainbow P5∪P2, where P5 = vj′v2vivjvi′ and P2 = v1v3, a contradiction.

Case 5. |d∗(v2)| = 4. In this case, we have |C1| = 1. By symmetry, we
may assume that v4v6 ∈ E(G), see Figure 4. Then we have c(v1v3) ∈ {3, 4},
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else we can get a rainbow P5 ∪ P2 in K7 with P5 = v5v4v6v7v2 and P2 = v1v3.
However, we can see that there is a rainbow P5 ∪ P2 in K7 with P5 = v5v2v4v6v7
and P2 = v1v3 when c(v1v3) = 3, and P5 = v7v2v6v4v5 and P2 = v1v3 when
c(v1v3) = 4, a contradiction. This completes the proof of the lemma.

v1
v2

v3

v6 v7

v4 v5

21

3

4

5 6

7 89

Figure 4. Edge-coloring of G when |d∗(v2)| = 4.

Proof of Lemma 9. To show that AR(n, P5 ∪ tP2) ≥ 3t2

2 + 11t
2 + 1, first we

construct an edge-coloring of Kn without rainbow P5 ∪ tP2. Take a complete
subgraph G = Kt of Kn. Color all the edges of G by the same color and then
color all the other edges by distinct new colors. Then we get a (3t

2

2 + 11t
2 + 1)-

edge-colored graph Kn with no rainbow P5 ∪ tP2.

Next we prove the upper bound, that is, the inequality AR(Kn, P5 ∪ tP2) ≤
3t2

2 + 11t
2 + 1. Let c be an edge-coloring of Kn and |c(Kn)| = 3t2

2 + 11t
2 + 2. By

Theorem 4, we have |c(Kn)| > AR(Kn, P3 ∪ (t + 1)P2). So Kn must contain a
rainbow subgraph P3∪ (t+1)P2, say H, where H = H1∪H2. Let H1 = (t+1)P2

with E(H1) = {ei|ei = xiyi, i ≤ 1 ≤ t+1} and H2 = v1v2v3. Let D = Kn−V (H).
Since n = 2t+ 6, we can obtain that |V (D)| = 1 and let V (D) = {v}.

Let G be a rainbow spanning subgraph of size |c(Kn)| and H ⊆ G. Since
Kn has no rainbow P5 ∪ tP2, we can obtain that c([{v1, v3}, V (H1)]) ⊆ c(H).
Moreover, it must be hold that v is adjacent to at most one component of H in
G and this implies that |[v, V (H)]G| ≤ 3. From c([{v1, v3}, V (H1)]) ⊆ c(H), we
have |[V (H2), V (H1)]G| ≤ 2(t+ 1), i.e. |[v2, V (H1)]G| ≤ 2(t+ 1). Below, we will
discuss the value of |[v2, V (H1)]G|.

Case 1. |[v2, V (H1)]G| ≥ 1. Without loss of generality, let v2x1 ∈ E(G).
Then we have c(v1v3) ∈ c(H) ∪ c(v2x1). And we have the following claims.

Claim 1. [{v1, v3, y1}, v]G = ∅.

Proof. Suppose that [{v1, v3, y1}, v]G ̸= ∅. Then we can see that there is a
rainbow P5 on the vertex set V (H2)∪{x1, y1, v}, the union of this P5 andH1−x1y1
forms a rainbow P5 ∪ tP2, a contradiction. Thus [{v1, v3, y1}, v]G = ∅ and so the
claim holds. 2

Claim 2. [V (H1 − e1), v]G = ∅.
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Proof. Suppose that [V (H1 − e1), v]G ̸= ∅. Without loss of generality, let
vx2 ∈ E(G). Then we can obtain that |[V (e2), V (ej)]G| ≤ 2 with 1 ≤ j ≤ t + 1
and j ̸= 2. Now consider the color of edge v1y2. Suppose that c(v1y2) ∈ c(H2).
Let c(v1y2) = c(v2v3), it is easy to obtain a rainbow P5 = vx2y2v1v2, the union
of this P5 and H1 − x2y2 forms a rainbow P5 ∪ tP2, a contradiction. Hence
c(v1y2) = c(v1v2). Then we have |[V (e1), V (ei)]G| = ∅ with 1 ≤ i ≤ t + 1. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t− 4t+ 2 = 2t2 − 3t+ 3. Then

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 − 3t+ 3 + 2 + 2(t+ 1) + 2 = 2t2 − t+ 9.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

13t

2
− 7.

Let f(t) = − t2

2 + 13t
2 − 7 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 11 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4. Thus we get a
contradiction. Thus c(v1y2) ∈ c(H1). Suppose that c(v1y2) = c(e1) or c(e2).
Then we have |[V (e1), V (ei)]G| = ∅ with 1 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤(
2(t+1)

2

)
− 2t− 4t+ 2 = 2t2 − 3t+ 3. Then

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 − 3t+ 3 + 2 + 2(t+ 1) + 2 = 2t2 − t+ 9.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

13t

2
− 7.

Let f(t) = − t2

2 + 13t
2 − 7 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 11 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4. Thus we get a
contradiction. Hence without loss of generality, we can assume that c(v1y2) =
c(e3), then we have |[V (e3), V (ei)]G| ≤ 2 with 1 ≤ i ≤ t+1. So |E(G[V (H1)])| ≤(
2(t+1)

2

)
− 2t− 2t = 2t2 − t+ 1. Then

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 − t+ 1 + 2 + 2(t+ 1) + 2 = 2t2 + t+ 7.
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By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

9t

2
− 5.

Let f(t) = − t2

2 + 9t
2 − 5 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 5 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction. Thus
[V (H1 − e1), V (D)]G = ∅ and so the claim holds. 2

From Claim 2 above, we have |[v, V (H)]G| ≤ 1.

Claim 3. |E(G[V (H1)])| ≤ 2t2 + 1.

Proof. By [{v1, v3}, v]G = ∅, we have c([{v1, v3}, v]) ⊆ c(H) ∪ c(v2x1). Next we
will consider the color of edge v1v.

Suppose that c(v1v) ∈ c(H2). Suppose that c(v1v) = c(v2v3). There is a
rainbow P5 = vv1v2x1y1, the union of this P5 and H1 − x1y1 forms a rainbow
P5 ∪ tP2, a contradiction. Hence we can assume that c(v1v) = c(v1v2). Then we
can get that [V (e1), V (H1−e1)]G = ∅. Otherwise, it is easy to obtain that there is
rainbow P5∪P2 on the vertex set V (H2)∪{x1, y1, xi, yi, v} with 2 ≤ i ≤ t+1, the
union of this P5 ∪P2 and H1 − e1 − ei forms a rainbow P5 ∪ tP2, a contradiction.
So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 4t = 2t2 − t+ 1.

Suppose that c(v1v) = c(v2x1). Since Kn has no rainbow P5∪tP2, we can ob-
tain that [V (e1), V (H1−e1)]G = ∅. Suppose that [V (e1), V (H1−e1)]G ̸= ∅. With-
out loss of generality, let x1x2 ∈ E(G), then we can get that [V (e2), V (ei)]G = ∅
with 3 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 4(t − 1) = 2t2 − t + 5. Then

we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 − t+ 5 + 2 + 2(t+ 1) + 1 = 2t2 + t+ 10.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

9t

2
− 8.

Let f(t) = − t2

2 + 9t
2 − 8 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 2 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 4t = 2t2 − t+ 1.

Hence we ca assume that c(v1v) ∈ c(H1). Suppose that c(v1v) = c(e1).
Since Kn has no rainbow P5 ∪ tP2, we can obtain that [V (e1), V (H1 − e1)]G = ∅.
Suppose that [V (e1), V (H1 − e1)]G ̸= ∅. Clearly, [x1, V (H1 − e1)]G = ∅. Hence
without loss of generality, let y1x2 ∈ E(G). Then we have |[V (e2), V (ei)]G| ≤ 2
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with 3 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤
(
2(t+1)

2

)
− 2t − 2(t − 1) = 2t2 − t + 3.

Then

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 − t+ 3 + 2 + 2(t+ 1) + 1 = 2t2 + t+ 8.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

9t

2
− 6.

Let f(t) = − t2

2 + 9t
2 − 6 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 4 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 4t = 2t2 − t+ 1. Hence without loss of generality, let

c(v1v) = c(e2).
Since Kn has no rainbow P5 ∪ tP2, we can obtain that |[V (e2), V (ei)]G| ≤ 1

with 1 ≤ i ≤ t + 1 and i ̸= 2. Suppose |[V (e2), V (ei)]G| ≥ 3, there are two
independent edges in [V (e2), V (ei)]G, say x2xi and y2yi. Then vv1v2xix2, y2yi
and H1− e1− e2 form a rainbow P5 ∪ tP2 with i = 1 or vv1v2x1y1, x2xi, y2yi and
H1−e1−e2−ei form a rainbow P5∪tP2 with i ≥ 2, a contradiction. Hence we can
assume that there is an edge ei such that |[V (e2), V (ei)]G| = 2 with 1 ≤ i ≤ t+1
and i ̸= 2. Without loss of generality, let x2x1, y2x1 ∈ E(G), then we have
[V (e2), V (ej)]G = ∅ with 3 ≤ j ≤ t+1. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 4(t− 1) =

2t2 − t+ 5. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 − t+ 5 + 2 + 2(t+ 1) + 1 = 2t2 + t+ 10.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

9t

2
− 8.

Let f(t) = − t2

2 + 9t
2 − 8 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 2 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
−3t = 2t2+1. This implies that |E(G[V (H1)])| ≤ 2t2+1

and so the claim holds. 2

Combined with the above claims, we can obtain that

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 + 1 + 2 + 2(t+ 1) + 1 = 2t2 + 2t+ 6.



24 Q. Jie and Z.M. Jin

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

7t

2
− 4.

Let f(t) = − t2

2 + 7t
2 − 4. Since f(2) = 1 and f(3) = f(4) = 2 > 0, we have that

f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction.

Case 2. |[v2, V (H1)]G| = 0. By [{v1, v3}, V (H1)]G = ∅ and |[v2, V (H1)]G| = 0,
we have [V (H2), V (H1)]G = ∅. And we have the following claims.

Claim 4. [v, V (H1)]G = ∅.

Proof. Without loss of generality, let vx1 ∈ E(G). Now consider the color
of edge y1v3. Suppose that c(y1v3) ∈ c(H2). Let c(y1v3) = c(v1v2), there is a
rainbow P5 = vx1y1v3v2, the union of this P5 and H1 − x1y1 forms a rainbow
P5 ∪ tP2, a contradiction.

So we can assume that c(y1v3) = c(v2v3). Then we can obtain that v1v3 /∈
E(G) and [V (e1), V (H1 − e1)]G = ∅. Otherwise we can easily get a rainbow
P5 ∪ tP2. So |E(G[V (H1)])| ≤

(
2t
2

)
+ 1 = 2t2 − t+ 1. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 − t+ 1 + 2 + 2 = 2t2 − t+ 5.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

13t

2
− 3.

Let f(t) = − t2

2 + 13t
2 − 3 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 15 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4. Thus we get a
contradiction. Hence c(y1v3) ∈ c(H1).

Suppose that c(y1v3) = c(e1). Then we can get that |[V (e1), V (ei)]G| ≤ 2
with 1 ≤ i ≤ t+1. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t = 2t2+ t+1. Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 + t+ 1 + 3 + 2 = 2t2 + t+ 6.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

9t

2
− 4.
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Let f(t) = − t2

2 + 9t
2 − 4 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 6 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction. Hence,
without loss of generality, let c(y1v3) = c(e2). Then we have |[V (e2, V (ei)]G| ≤ 2
with 1 ≤ i ≤ t + 1 and i ̸= 2. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t = 2t2 + t + 1.

Then we have

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|

≤ 2t2 + t+ 1 + 3 + 2 = 2t2 + t+ 6.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

9t

2
− 4.

Let f(t) = − t2

2 + 9t
2 − 4 and then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 6 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction. This
implies that |[V (D), V (H1)]G| = ∅ and so the claim holds. 2

From Claim 3, we can deduce that c([v, V (H)]) ≤ 3.

Claim 5. |E(G[V (H1)])| ≤ 2t2 + t+ 2.

Proof. By [v, V (H1)]G = ∅, we have c([v, V (H1)]) ⊆ c(H). Below we will
consider the color of edge vx1.

Suppose that c(vx1) ∈ c(H2). Since Kn has no rainbow P5 ∪ tP2. Then we
have |[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t + 1. Otherwise we can easily get a
rainbow P5∪ tP2, a contradiction. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
−2t = 2t2+ t+1.

Hence we can assume that c(vx1) ∈ c(H1). Assume that c(vx1) = c(e1), we
can obtain that |[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t + 1. So |E(G[V (H1)])| ≤(
2(t+1)

2

)
− 2t = 2t2 + t + 1. Hence, without loss of generality, let c(vx1) = c(e2).

Now consider the color of edge y1v3. If c(y1v3) ∈ c(H2), then let c(y1v3) =
c(v1v2). Thus we have |[V (e2), V (e1)]G| ≤ 3 and |[V (e2), V (ei)]G| ≤ 2 with
3 ≤ i ≤ t + 1, So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2(t − 1) − 1 = 2t2 + t + 2. Hence

let c(y1v3) = c(v2v3), we have |[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t + 1. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t = 2t2 + t + 1. Hence c(y1v3) ∈ c(H1). Suppose

that c(y1v3) = c(e1). We have |[V (e1), V (ei)]G| ≤ 2 with 2 ≤ i ≤ t + 1. So
|E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t = 2t2 + t + 1. Hence, without loss of generality,

let c(y1v3) = c(e2). Then we have |[V (e2), V (ei)]G| ≤ 2 with 1 ≤ i ≤ t + 1
and i ̸= 2. So |E(G[V (H1)])| ≤

(
2(t+1)

2

)
− 2t = 2t2 + t + 1. This implies that

|E(G[V (H1)])| ≤ 2t2 + t+ 2 and so the claim holds. 2
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Combined with the above claims, we can obtain that

|E(G)| = |E(G[V (H1)])|+ |E(G[V (H2)])|+ |[V (H2), V (H1)]G|
+ |[V (D), V (H)]G|+ |E(G[V (D)])|

≤ 2t2 + t+ 2 + 3 + 3 = 2t2 + t+ 8.

By |c(Kn)| = 3t2

2 + 11t
2 + 2, we can obtain that

|c(Kn)| − |E(G)| ≥ − t2

2
+

9t

2
− 6.

Let f(t) = − t2

2 + 9t
2 − 6. Then we have f

′
(t) < 0 for all 2 ≤ t ≤ 4. Since

f(4) = 4 > 0, we can get that f(t) > 0 for all 2 ≤ t ≤ 4, a contradiction.
This completes the proof of the lemma.
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