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Abstract

Fujita and Kawarabayashi conjectured that for all positive integers k, m,
there is a (least) non-negative integer fk(m) such that every k-connected
graph G with δ(G) ≥

⌊
3k
2

⌋
+ fk(m) − 1 contains a connected subgraph W

of order m such that G− V (W ) is still k-connected. Mader confirmed that
Fujita-Kawarabayashi’s conjecture is true when W is a path, if fk(m) = m.
Mader conjectured that for every positive integer k and finite tree T of
order m, every k-connected finite graph G with minimum degree δ(G) ≥⌊
3k
2

⌋
+ m − 1 contains a subgraph T ′ ∼= T such that G − V (T ′) remains

k-connected. Till now, there is hardly a result on high connectivity G and
a non-path. Luo, Tian and Wu proposed a stronger conjecture, that is,
for any tree T with bipartition (X,Y ), every k-connected bipartite graph
G with δ(G) ≥ k + w, where w = max{|X|, |Y |}, contains a tree T ′ ∼= T
such that κ(G−V (T ′)) ≥ k. In this paper, we develop Mader’s method and
give a result on high connectivity G and a non-path T . Firstly, the author
proves that for positive integers k ≥ 1 and m ̸= 4 or 5, every k-connected
bipartite graph G with δ(G) ≥ k +

⌈
m+1
2

⌉
contains a star-path T 3

m−3 such
that κ(G− V (T 3

m−3)) ≥ k, where T 3
m−3 is a tree constructed by connecting

one leaf of K1,3 and one end-vertex of a path P on m−4 vertices. Secondly,
we prove Mader’s conjecture is true when T is a star-path under condition
of ∆(G) = |G| − 1.
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1. Introduction

In this paper, all the graphs are finite, undirected and simple. For graph-
theoretical terminology and notations not defined here, we follow [1]. Let G =
(V (G), E(G)) be a graph. The minimum degree and the connectivity number of
a graph G is denoted by δ(G) and κ(G), respectively. For H ⊆ G, both G −H
and G− V (H) stands for G\V (H). Let v be a vertex in G, we denote by dG(v)
the degree of v in G. And we denote the connectivity of graph G by κ(G).

In 1972, Chartrand, Kaigars and Lick [2] proved that every k-connected graph
G with δ(G) ≥

⌊
3k
2

⌋
has a vertex x with κ(G−x) ≥ k. Over 30 years later, Fujita

and Kawarabayashi [4] extended this result by showing that every k-connected
graph G with δ(G) ≥

⌊
3k
2

⌋
+ 2 has an edge xy such that G − {x, y} remains

k-connected. Furthermore, Fujita and Kawarabayashi posed the following con-
jecture.

Conjecture 1 (Fujita and Kawarabayashi [4]). For all positive integers k, m,
there is a (least) non-negative integer fk(m) such that every k-connected graph G
with δ(G) ≥

⌊
3k
2

⌋
+ fk(m)− 1 contains a connected subgraph W of order m such

that G− V (W ) is still k-connected.

In 2010, Mader [11] proved that Conjecture 1 is true if fk(m) = m and W is
a path.

Theorem 2 (Mader [11]). For every positive integer k, every k-connected finite
graph G with minimum degree δ(G) ≥

⌊
3k
2

⌋
+ m − 1 contains a path P on m

vertices such that G− V (P ) remains k-connected.

Mader [11] proposed the following conjecture.

Conjecture 3 (Mader [11]). For every positive integer k and finite tree T of order
m, every k-connected finite graph G with minimum degree δ(G) ≥

⌊
3k
2

⌋
+m− 1

contains a subgraph T ′ ∼= T such that G− V (T ′) remains k-connected.

Many results indicate that the conjecture is extremely likely to be true. IfG is
a graph with small connectivity, Diwan and Tholiya [3] confirmed the conjecture
for k = 1. For 2-connected graphs G, some special trees are studied, such as stars,
double stars and path-stars [13, 14], trees with diameter conditions [6, 9], and
caterpillars and spider trees [8]. In [5], Conjecture 3 is true if certain conditions
on girth in 2-connected graph G are imposed. Hong and Liu [7] confirmed the
conjecture for k = 2, 3. Moreover, Mader [12] showed that the conjecture is true
for k-connected graphs if δ ≥ 2(k−1+m)2+m−1. However, it is unrealistic if one
want to use directly Mader’s method in [11] to prove more results on Conjecture
3. Because Mader in [12] said that ”one can easily construct graphs G with
κ(G) = k + 1 and arbitrarily large δ(G), where the deletion of any n neighbors
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of a prescribed vertex p decreases the connectivity number of G by n. On the
other side, one cannot expect to find in a k-connected graph ’handy parts’ of
connectivity much larger than k”.

IfG is a bipartite graph, Luo, Tian andWu [10] proved that every k-connected
bipartite graph G with minimum degree at least k+m contains a path P with order
m such that κ(G−V (P )) ≥ k. Based on that, they proposed a stronger conjecture
on the bipartite graph.

Conjecture 4. [10] For any tree T with bipartition (X,Y ), every k-connected
bipartite graph G with δ(G) ≥ k + w, where w = max{|X|, |Y |}, contains a tree
T ′ ∼= T such that

κ(G− V (T ′)) ≥ k.

The case that T is caterpillar and k ≤ 2 has been proved by Zhang [17].
Additionally, Yang and Tian [15] verified Conjecture 4 when T is caterpillar and
k = 3, or T is a spider and k ≤ 3. Just as the research of Conjecture 3, there are
no results on high connectivity graph to confirm Conjecture 4.

We end up this section by introducing some necessary definitions and no-
tation. Let G = (V,E) be a graph. For simplicity, |G| := |V (G)| and v ∈ G
means v ∈ V (G). Let x, y-path be a path P from x to y. For u, v ∈ P , let
P [u, v] = P [v, u] be the subpath of P between u and v, and P [u, v) means
P [u, v] − v. If S ⊂ V (G) in G, we denote the graph G ∪ K(S) by G⟨S⟩ and
let ⟨S⟩ be a complete graph on |S| vertices. For any vertex x ∈ V (G), we de-
note the set of neighbors of x in G by NG(x), and for a subgraph H ⊆ G, let
NG(H) =

⋃
x∈H NG(x) \ V (H). A vertex cut of a connected graph G is a subset

S of V (G) such that G − S has more than one connected component. And a
minimum vertex cut is a vertex cut with smallest size in a given connected graph
G, and the size of a minimum vertex cut S is κ(G). For a vertex cut S of a graph
G, a union of components F of G− S, with G− S −F ̸= ∅, is a semifragment F
to S, and the complementary semifragment G− (S ∪ V (F )) is denoted by F̄ . If
S is a minimum vertex cut, then F is called a fragment F to S. Since a complete
graph has no vertex cut, we do not consider the complete graph in this paper.
For a fragment F of G to S, it follows that S = NG(F ). If a fragment of G does
not contain any other fragments of G, then it is an end of G. Clearly, every graph
contains an end except for complete graphs. Let Fi be a fragment of G to Si for
i = 1, 2, and we denote (S1 ∩ F2) ∪ (S1 ∩ S2) ∪ (S2 ∩ F1) by S(F1, F2).

Let K1,s be a star on s+1 vertices with center vertex x and let P be a path
on t vertices. Then we connect the vertex x with a vertex of degree one of P by
an edge, and we denote by T s+1

t the resulting graph, where we call the vertex x
the root. The vertices of degree one in K1,s are called legs.

In this paper, the author confirms Conjecture 4 when T = T 3
m−3 by proving

that for m ̸= 4 or 5, every k-connected bipartite graph G with δ(G) ≥ k+
⌈
m+1
2

⌉
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contains a tree T 3
m−3 such that

κ
(
G− V (T 3

m−3)
)
≥ k,

where T 3
m−3 is a path P on m vertices if m ≤ 3. And then, we prove Mader’s

conjecture is true when T is T t;m−t−1
m under the condition of ∆(G) = |G| − 1.

2. Preliminaries

In order to prove our theorems, we will use some structural lemmas and theorems.
We first define the set Kb

k(t) containing all pairs (G,C) satisfying the following
conditions.

• κ(G) ≥ k;

• C ⊆ G is a complete graph with |C| = k;

• G− C is a bipartite graph with δG(G− C) ≥ k + t;

• every pair of adjacent vertices in V (G−C) have no common neighbors in G;

• we denote by Kb
k+(t) all the pairs (G,C) ∈ Kb

k(t) with κ(G) ≥ k + 1.

Lemma 5 [11]. Let G be a graph with κ(G) = k and let F be a fragment of G to
S. Then we have the following properties.

(i) If F is a fragment of G to S, then G⟨S⟩[S ∪ F ] is k-connected;

(ii) if F is an end of G with |F | ≥ 2, then G⟨S⟩ − V (F̄ ) is (k + 1)-connected.

Lemma 6 [11]. Let S be a vertex cut of G with |S| = k and let S1 be a vertex
cut of G with |S1| = k − 1. Assume that F is a semifragment of G to S and
F1 is a semifragment of G to S1. Furthermore, we assume G⟨S⟩ − V (F ) and
G⟨S⟩ − V (F̄ ) are k-connected. Then we have the following properties.

(i) If F ∩ F1 ̸= ∅, then |S (F, F1)| ≥ k;

(ii) if |S (F, F1)| ≥ k, then |S1 ∩ F | ≥
∣∣S ∩ F̄1

∣∣ , |S ∩ F1| >
∣∣S1 ∩ F̄

∣∣ and F̄ ∩
F̄1 = ∅.

Theorem 7 [16]. For any (G,C) ∈ Kb
k+

(⌈
m+1
2

⌉)
and v0 ∈ V (G−C), there exists

a path P of order m starting from v0 in G− V (C) such that κ(G− V (P )) ≥ k.

Theorem 8 [16]. Every k-connected bipartite graph G with δ(G) ≥ k +
⌈
m+1
2

⌉
contains a path P of order m such that κ(G− V (P )) ≥ k.

Lemma 9 [16]. Let (G,C) ∈ Kb
k

(⌈
m
2

⌉)
and κ(G) = k, where k and m are two

positive integers. Assume S is a minimum vertex cut of G and F is a fragment
of G to S such that C ⊆ G[S ∪ F ]. If there exists a path P ⊆ G − S ∪ V (F ) of
order at most m such that κ(G⟨S⟩ − V (F̄ ∪ P ) ≥ k, then κ(G− V (P )) ≥ k.
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Lemma 10. Every (G,C) ∈ Kb
k

(⌈
m+1
2

⌉)
contains a path P ⊆ G−V (C) of order

m such that κ(G− P ) ≥ k.

Proof. If κ(G) ≥ k + 1, then it holds by Theorem 7. And so we suppose that
κ(G) = k. There is an end F of G with F ∩ C = ∅. Let S := NG(F ) with
|S| = k and let F̄ denote the complementary fragment to F in G. If |F | = 1
holds, then for the vertex x of F , it follows that k = dG(x) ≥ k +

⌈
m+1
2

⌉
, a

contradiction. Hence, |F | ≥ 2. By Lemma 5(ii), we have κ(G⟨S⟩−V (F̄ )) ≥ k+1
and (G⟨S⟩ − V (F̄ ), ⟨S⟩) ∈ Kb

k+

(⌈
m+1
2

⌉)
. By Theorem 7, we get a path Pm

such that G⟨S⟩ − V (F̄ ∪ Pm) remains k-connected. Then by Lemma 9 we have
κ(G− Pm) ≥ k.

Lemma 11. Let G = G[X,Y ] be a bipartite graph with κ(G) = k and δ(G) ≥
k +

⌈
m+1
2

⌉
, where k and m are two positive integers. Assume S is a minimum

vertex cut of G and F is a fragment of G to S. If there exists a tree T 3
m−3 of

order at most m in G− (S ∪ V (F )) such that κ(G⟨S⟩ − V (F ∪ T 3
m−3)) ≥ k, then

κ(G− V (T 3
m−3)) ≥ k.

Proof. If k = 1, then we have the trivial result since G⟨S⟩ = G. We consider
the case of k ≥ 2 in the following. For a contradiction, we assume that κ(G −
V (T 3

m−3)) < k. Let GT 3
m−3

= G− V (T 3
m−3).

SinceG is a bipartite graph and T 3
m−3 is a tree, each vertex of V (G−T 3

m−3) has

at most
⌈
m+1
2

⌉
neighbors in V (T 3

m−3). Since δ
(
GT 3

m−3

)
≥ k and

∣∣∣V (
GT 3

m−3

)∣∣∣ ≥
2k, GT 3

m−3
is not a complete graph. Let S1 be a vertex cut of GT 3

m−3
with |S1| =

k− 1 and let F1 be a semifragment of GT 3
m−3

to S1. Let F̄G
T3
m−3

= GT 3
m−3

− (S ∪
V (F )) and F̄1 = GT 3

m−3
− (S1 ∪ V (F1)).

If F̄G
T3
m−3

= ∅, then, when |V (T 3
m−3)| = 1, we have dG(v) ≤ |S| = k for

the only vertex v ∈ V (T 3
m−3), a contradiction. When |V (T 3

m−3)| ≥ 2, for any
xy ∈ E(T 3

m−3) we have 2
(
k +

⌈
m+1
2

⌉)
≤ dG(x)+dG(y) ≤ |S|+|V (T 3

m−3)| ≤ k+m,
a contradiction. Hence, F̄G

T3
m−3

̸= ∅. Furthermore, S is also a vertex cut of

GT 3
m−3

and F is a semifragment of GT 3
m−3

to S. Since F is a fragment of G to

S, G⟨S⟩[S ∪ F ] is k-connected by Lemma 5, that is, GT 3
m−3

⟨S⟩ − V

(
F̄G

T3
m−3

)
is

k-connected. Also, GT 3
m−3

⟨S⟩ − V (F ) = G⟨S⟩ − V (F ∪ T 3
m−3) is k-connected by

preassumptions of Lemma 11.

Now we apply Lemma 6 in the remaining of the proof. If V (F1) ⊆ S, then
for any v ∈ V (F1), we have∣∣∣∣NG

T3
m−3

(v) ∩ V (F1)

∣∣∣∣ ≥ dG
T3
m−3

(v)− | NG
T3
m−3

(v) ∩ S1 |≥ k − (k − 1) ≥ 1.
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So δ (F1) ≥ 1 and for any uv ∈ E (F1), we have 2k ≤ dG
T3
m−3

(u) + dG
T3
m−3

(v) ≤
|S|+|S1| ≤ 2k−1, a contradiction. Thus, F1∩F ̸= ∅ or F1∩F̄G

T3
m−3

̸= ∅. Without

loss of generality, suppose F1 ∩ F ̸= ∅. Applying Lemma 6 to the semifragments
F and F1, the complementary semifragments F̄G

T3
m−3

and F̄1 in GT 3
m−3

, we have

F̄1 ∩ F̄G
T3
m−3

= ∅. Hence V
(
F̄1

)
⊆ S ∪ V (F ). We consider the following two

cases.

Case 1. V (F )∩ V
(
F̄1

)
= ∅. Since V

(
F̄1

)
⊆ S ∪ V (F ), we have V

(
F̄1

)
⊆ S.

For any v ∈ V
(
F̄1

)
, we have∣∣∣∣NG

T3
m−3

(v) ∩ V
(
F̄1

) ∣∣∣∣ ≥ dG
T3
m−3

(v)−
∣∣∣∣NG

T3
m−3

(v) ∩ S1

∣∣∣∣ ≥ k − (k − 1) ≥ 1.

So δ
(
F̄1

)
≥ 1, and thus, for any uv ∈ E

(
F̄1

)
, we have 2k ≤ dG

T3
m−3

(u) +

dG
T3
m−3

(v) ≤ |S|+ |S1| ≤ 2k − 1 by δ
(
GT 3

m−3

)
≥ k, a contradiction.

Case 2. V (F ) ∩ V
(
F̄1

)
̸= ∅. By Lemma 6, it follows that F1 ∩ F̄G

T3
m−3

= ∅.

Since F̄1∩F̄G
T3
m−3

= ∅, we have V
(
F̄G

T3
m−3

)
⊆ S1, that is,

∣∣∣∣V (
F̄G

T3
m−3

)∣∣∣∣ ≤ k−1.

Suppose δ

(
F̄G

T3
m−3

)
≥ 1. Then for any uv ∈ E

(
F̄G

T3
m−3

)
we have 2k ≤

dG
T3
m−3

(u)+ dG
T3
m−3

(v) ≤ |S|+ |S1| ≤ 2k− 1, a contradiction. So δ

(
F̄G

T3
m−3

)
=

0. For any v ∈ V

(
F̄G

T3
m−3

)
, we have k +

⌈
m+1
2

⌉
≤ dG(v) ≤ |NG(v) ∩ S| +∣∣NG(v) ∩ V (T 3

m−3)
∣∣ ≤ k+

⌈
m+1
2

⌉
, hence NG(v)∩S = S and

∣∣NG(v) ∩ V (T 3
m−3)

∣∣ =⌈
m+1
2

⌉
. Without loss of generality, assume NG(v) ∩ V (T 3

m−3) = V (T 3
m−3) ∩ X.

This shows S ⊆ X and NG(V (T 3
m−3) ∩X) ∩ S = ∅. For any x ∈ V (T 3

m−3) ∩X,
we obtain

k +

⌈
m+ 1

2

⌉
≤ dG(x) =

∣∣∣∣NG(x) ∩ V

(
F̄G

T3
m−3

)∣∣∣∣+ ∣∣NG(x) ∩ V (T 3
m−3)

∣∣
≤

∣∣∣∣NG(x) ∩ V

(
F̄G

T3
m−3

)∣∣∣∣+ ⌈m
2

⌉
.

Hence

∣∣∣∣NG(x) ∩ V

(
F̄G

T3
m−3

)∣∣∣∣ ≥ k. Furthermore,

∣∣∣∣V (
F̄G

T3
m−3

)∣∣∣∣ ≥ k, which

contradicts the fact that

∣∣∣∣V (
F̄G

T3
m−3

)∣∣∣∣ ≤ k − 1.
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Lemma 12. Let (G,C) ∈ Kb
k

(⌈
m+1
2

⌉)
and κ(G) = k, where k and m are two

positive integers. Assume S is a minimum vertex cut of G and F is a fragment
of G to S such that C ⊆ G[S ∪F ]. If there exists a tree T 3

m−3 ⊆ G−S ∪V (F ) of
order at most m such that κ(G⟨S⟩−V (F∪T 3

m−3)) ≥ k, then κ(G−V (T 3
m−3)) ≥ k.

Proof. Since every pair of adjacent vertices in G−V (C) have no common neigh-
bors in G, we have |V (G)| ≥ 2k + m + 1. Let X and Y be bipartition of
G − V (C). If k = 1, then we have trivial result since G⟨S⟩ = G. We assume
k ≥ 2 in the following. Suppose, to the contrary, that κ(G− V (T 3

m−3)) < k. Let
GT 3

m−3
= G− V (T 3

m−3).

Since
∣∣∣V (

GT 3
m−3

)∣∣∣ ≥ 2k + 1 and δG
T3
m−3

(
GT 3

m−3
− V (C)

)
≥ k, we have

GT 3
m−3

is not a complete graph. In addition, since C is a complete graph, we

can choose a vertex cut S1 of GT 3
m−3

with |S1| = k − 1 and a semifragment

F1 of GT 3
m−3

to S1 such that V (F1) ∩ V (C) ̸= ∅. By C ⊆ G[S ∪ F ], we have

V (C) ⊆ (F ∩ F1) ∪ S (F, F1). Let F̄G
T3
m−3

= GT 3
m−3

− (S ∪ V (F )) and F̄1 =

GT 3
m−3

− (S1 ∪ V (F1)).

If F̄G
T3
m−3

= ∅, then, when |V (T 3
m−3)| = 1, we have dG(v) ≤ |S| = k for

the only vertex v ∈ V (T 3
m−3), which contradicts the condition of the minimum

degree. When |V (T 3
m−3)| ≥ 2, for any xy ∈ E(T 3

m−3), we have 2
(
k +

⌈
m+1
2

⌉)
≤

dG(x) + dG(y) ≤ |S| + |V (T 3
m−3)| ≤ k + m, a contradiction. So we have that

F̄G
T3
m−3

̸= ∅. And then, S is a vertex cut of GT 3
m−3

and F is also a semifragment

of GT 3
m−3

to S.

Since F is a fragment ofG to S, we haveG⟨S⟩[F∪S] is k-connected by Lemma

5, that is, GT 3
m−3

⟨S⟩ − V

(
F̄G

T3
m−3

)
is k-connected. And GT 3

m−3
⟨S⟩ − V (F ) =

G⟨S⟩ − V (F ∪ T 3
m−3) is k-connected by preassumptions of Lemma 12. So we can

use Lemma 6 in the following proof.
If F ∩ F1 = ∅, then V (C) ⊆ S (F, F1) by V (C) ⊆ (F ∩ F1) ∪ S (F, F1), and

|S (F, F1)| ≥ |V (C)| = k. If F ∩ F1 ̸= ∅, then |S (F, F1)| ≥ k by Lemma 6(i).
Thus, by Lemma 6(ii), we have F̄G

T3
m−3

∩ F̄1 = ∅ and F̄G
T3
m−3

⊆ S1 ∪ F1. Let us

consider the following two cases.

Case 1. V

(
F̄G

T3
m−3

)
∩V (F1) = ∅. Since V

(
F̄G

T3
m−3

)
∩V (F1) = ∅, we have

V

(
F̄G

T3
m−3

)
⊆ S1. Hence,

∣∣∣∣V (
F̄G

T3
m−3

)∣∣∣∣ ≤ k− 1. If δ

(
F̄G

T3
m−3

)
≥ 1, then, for

any uv ∈ E

(
F̄G

T3
m−3

)
, we have 2k ≤ dG

T3
m−3

(u)+dG
T3
m−3

(v) ≤ |S|+|S1| ≤ 2k−1,

a contradiction. Therefore, δ

(
F̄G

T3
m−3

)
= 0. For any v ∈ V

(
F̄G

T3
m−3

)
, we have
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NG(v) = S ∪ (V (T 3
m−3) ∩ X) or NG(v) = S ∪ (V (T 3

m−3) ∩ Y ) by k +
⌈
m+1
2

⌉
≤

dG(v) ≤ |S| +
⌈ |V (T 3

m−3)|+1

2

⌉
= k +

⌈
m+1
2

⌉
. If |V (T 3

m−3)| = 1, then for the

only vertex u ∈ V (T 3
m−3), by vu ∈ E(G − C), we have NG(u) ∩ S = ∅ and

dG(u) ≤
∣∣∣∣V (

F̄G
T3
m−3

)∣∣∣∣ ≤ k − 1, a contradiction. If |V (T 3
m−3)| ≥ 2, then we

have 2
(
k +

⌈
m+1
2

⌉)
≤ dG(x) + dG(y) ≤ |S| + |V (T 3

m−3)| +
∣∣∣∣V (

F̄G
T3
m−3

)∣∣∣∣ ≤

k +m+

∣∣∣∣V (
F̄G

T3
m−3

)∣∣∣∣ ≤ 2k +m− 1 for any xy ∈ V (T 3
m−3), a contradiction.

Case 2. V

(
F̄G

T3
m−3

)
∩ V (F1) ̸= ∅. We have

∣∣∣∣S (
F̄G

T3
m−3

∪ F1

)∣∣∣∣ ≥ k and

F ∩ F̄1 = ∅ by Lemma 6. Thus V
(
F̄1

)
⊆ S by F̄G

T3
m−3

∩ F̄1 = ∅. For any v ∈

V
(
F̄1

)
, we have

∣∣∣∣NG
T3
m−3

(v) ∩ V
(
F̄1

)∣∣∣∣ ≥ dG
T3
m−3

(v) −
∣∣∣∣NG

T3
m−3

(v) ∩ V (S1)

∣∣∣∣ ≥

k − (k − 1) ≥ 1. Then δ
(
F̄1

)
≥ 1. However, for any uv ∈ E

(
F̄1

)
, we have

2k ≤ dG
T3
m−3

(u) + dG
T3
m−3

(v) ≤ |S|+ |S1| ≤ 2k − 1, a contradiction.

3. k-Connected Bipartite Graphs

In this section, our main theorem is Theorem 17. In order to prove it, we need
first to prove the following Theorem 13.

Theorem 13. For m > 5 and every (G,C) ∈ Kb
k+

(⌈
m+1
2

⌉)
, there is a tree

T 3
m−3 ⊆ G− V (C) such that κ(G− V (T 3

m−3)) ≥ k.

Proof. We prove the theorem by induction on the order of the graph at the
same time for all m. By the definition of Kb

k+

(⌈
m+1
2

⌉)
, we have that V (G) ≥

2
(
k +

⌈
m+1
2

⌉)
. The smallest graph G is isomorphic to Kk+⌈m+1

2 ⌉,k+⌈m+1
2 ⌉⟨S⟩

for some S ⊆ V
(
Kk+⌈m+1

2 ⌉,k+⌈m+1
2 ⌉

)
with |S| = k. For any tree T 3

m−3 ⊆

G
[
V (Kk+⌈m+1

2 ⌉,k+⌈m+1
2 ⌉) \ S

]
with order m, we have Kk+⌈m+1

2 ⌉,k+⌈m+1
2 ⌉⟨S⟩ −

V (T 3
m−3)

∼= Kk+1,k⟨S⟩ if m is odd, and Kk+⌈m+1
2 ⌉,k+⌈m+1

2 ⌉⟨S⟩ − V (T 3
m−3)

∼=
Kk+2,k⟨S⟩ if m is even, and thus, it follows that

κ
(
Kk+⌈m+1

2 ⌉,k+⌈m+1
2 ⌉⟨S⟩ − V (T 3

m−3)
)
≥ k.

Now assume that G is a graph with smallest order such that (G,C) ∈
Kb

k+

(⌈
m+1
2

⌉)
is a counterexample to Theorem 13 for k, m and C. We first

prove the following claim.
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Claim 14. For every (G,C) ∈ Kb
k+

(⌈
m+1
2

⌉)
, there is a subgraph T 3

1 in G − C
such that κ(G− V (T 3

1 )) ≥ k.

Proof. If G is (k + 4)-connected graph, then, clearly, there is a subgraph T 3
1 in

G such that κ
(
G− V (T 3

1 )
)
≥ k since δ(G) ≥ k +

⌈
m+1
2

⌉
≥ k + 4. Suppose that

κ(G) = k+3. Let G′ = G⟨C ′⟩ where C ′ = C∪{s1, s2} and s1, s2 ∈ V (G−C) and
s2 is adjacent to one vertex of C in G. Since κ(G) = k+3 and for each (G,C) ∈
Kb

k+

(⌈
m+1
2

⌉)
it follows that δG(G− C) ≥ k +

⌈
m+1
2

⌉
= (k + 2) +

⌈
(m−4)+1

2

⌉
, we

have δG′(G′ − C ′) ≥ (k + 2) +
⌈
(m−4)+1

2

⌉
and (G′, C ′) ∈ Kb

(k+2)+

(⌈
(m−4)+1

2

⌉)
.

Thus, by Theorem 7, there is a path P on m − 4 vertices starting from x0 such
that κ (G′ − V (P [x0, xm−5])) ≥ k+2, where x0 is adjacent to at least one vertex
of {s1, s2}. Without loss of generality, let x0s1 ∈ E(G). Since for each vertex
xi ∈ P [x0, xm−5] we have

|NG(xi) ∩ (G′ − V (P [x0, xm−5])| ≥ k +

⌈
m+ 1

2

⌉
−
⌈
|P [x0, xm−5]| − 1

2

⌉

= k +

⌈
m+ 1

2

⌉
−
⌈
m− 5

2

⌉
> k + 2.

It follows that κ (G′ − {x0, x1}) ≥ k + 2. Owing to dG′−P [x0,xm−5](x0) > k +
2, we can choose two neighbors s1, y1 of x0 in G′ − P [x0, xm−5] such that the
subgraph T 3

1 on the vertex set {s1, y1, x0, x1} satisfies κ (G′ − {s1, y1, x0, x1}) ≥ k.
Clearly, dG′−{s1,y1,x0,x1}(s2) ≥ dG−{s1,y1,x0,x1}(s2) ≥ k + 1. We then claim that
κ (G− {s1, y1, x0, x1}) ≥ k. Indeed, we can suppose κ (G− {s1, y1, x0, x1}) <
k. If s2 is in an (k − 1)-vertex cut of G, then κ (G′ − {s1, y1, x0, x1}) < k, a
contradiction. Thus, there is (k − 1)-vertex cut to separate s2 and C in G. But,
since there exists at least an edge between s2 and C by our setting in G, it follows
that there is at least an k vertex cut in G. So κ (G− {s1, y1, x0, x1}) ≥ k.

If κ(G) = k + 2, then for each (G,C) ∈ Kb
k+

(⌈
m+1
2

⌉)
it follows that δG(G−

C) ≥ k +
⌈
m+1
2

⌉
= (k + 1) +

⌈
(m−2)+1

2

⌉
. Let G′ = G⟨C ′⟩ where C ′ = C ∪ {s1}

and s1 ∈ V (G − C) and s1 is adjacent to at least one vertex of C in C. We

have δG′(G′ − C ′) ≥ (k + 1) +
⌈
(m−2)+1

2

⌉
and (G′, C ′) ∈ Kb

(k+1)+

(⌈
(m−2)+1

2

⌉)
.

By Theorem 7, there is a path P on m − 2 vertices starting from x0 such that
κ(G′ − V (P [x0, xm−3])) ≥ k + 1. For each vertex xi ∈ P [x0, xm−3] we have that

|NG(xi) ∩ (G′ − V (P [x0, xm−3])| ≥ k +

⌈
m+ 1

2

⌉
−
⌈
|P [x0, xm−3]| − 1

2

⌉

≥ k +

⌈
m+ 1

2

⌉
−
⌈
m− 3

2

⌉
= k + 2.
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And thus, κ(G′ − {x0, x1, x2}) ≥ k + 1. Furthermore, we can choose arbitrarily
one neighbor, say y1, of x1 in G′−P [x0, xm−3] such that the subgraph T 3

1 on the
vertex set {y1, x0, x1, x2} satisfies κ(G′ − {y1, x0, x1, x2}) ≥ k. Clearly, we also
have κ (G− {y1, x0, x1, x2}) ≥ k.

In the following, we will use Lemma 10 to prove the case of κ(G) = k + 1.
Since for each (G,C) ∈ Kb

k+

(⌈
m+1
2

⌉)
it follows that δG(G − C) ≥ k +

⌈
m+1
2

⌉
=

(k + 1) +
⌈
(m−2)+1

2

⌉
. Let G′ = G⟨C ′⟩ where C ′ = C ∪ {s1} and s1 ∈ V (G − C)

and s1 is adjacent to at least one vertex of C in G. And then, we have (G′, C ′) ∈
Kb

(k+1)

(⌈
(m−2)+1

2

⌉)
. Thus, by Lemma 10, every (G′, C ′) ∈ Kb

(k+1)

(⌈
(m−2)+1

2

⌉)
contains a path P ⊆ G′ − V (C) of order m− 2, such that κ(G′ − V (P )) ≥ k + 1
holds. Let P = x0x1 · · ·xm−3. For each vertex xi ∈ P [x0, xm−3] we have that
|NG(xi) ∩ (G′ − V (P [x0, xm−3])| ≥ k +

⌈
m+1
2

⌉
−

⌈
m−3
2

⌉
= k + 2. And thus,

κ(G′ − {x0, x1, x2}) ≥ k + 1. Since |NG(x1) ∩ (G′ − C ′ − V (P [x0, xm−3]))| > 3,
there is a neighbor s of x1. Consequently, κ(G′ − {s, x0, x1, x2}) ≥ k. Similarly,
we again have κ(G−{s, x0, x1, x2}) ≥ k. This completes the proof of Claim 14.

Subject to above assumption and by Claim 14, we suppose that T 3
w is maximal

on vertices, with root p0 and legs s1, s2, satisfying two conditions.

(i) 4 ≤ |T 3
w| = 3 + w < m;

(ii) κ(G− V (T 3
w)) ≥ k.

We denote T 3
w − {s1, s2} by P [p0, pw] = p0p1 · · · pw. Simply, we set H =

G− T 3
w.

Claim 15. κ(H) = k.

Proof. We assume that κ(H) > k. Since

|NG(pw) ∩ (H − C)| ≥
(
k +

⌈
m+ 1

2

⌉)
− k −

⌈
m− 2

2

⌉
≥ 1,

it follows that there exists a vertex s ∈ H −C such that pws ∈ E(G). Note that
T 3
w∪{pws} is a tree rooted at p0 of order 4+w ≤ m, which contradicts the choice

of T 3
w. This completes the proof of Claim 15.

Since |V (H)| ≥ 2k + 2 and by Claim 15, H is not a complete graph. An
end E is contained in H with E ∩ C = ∅. Set S := NH(E). Then |S| = k.
Furthermore, let Ē = H − S − E.

Claim 16. |E| ≥ 2.

Proof. If |E| = 1, then k +
⌈
m+1
2

⌉
≤ dG(z) ≤ |NG(z) ∩ S| + |NG(z) ∩ V (P )| ≤

k +
⌈
m−1
2

⌉
for the unique vertex z ∈ E, a contradiction.
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By Claim 16 and Lemma 5, it follows that H⟨S⟩ − Ē is (k + 1)-connected.
From Claim 15, we know κ(G) > k = κ(H). And thus, NG(T

3
w) ∩ E ̸= ∅.

Otherwise, S is also a vertex set of G, which contradicts κ(G) > k. Let y be one
of the farthest vertices to p0 on T 3

w with NG(y)∩E ̸= ∅. Let q ∈ NG(y)∩E. We
consider the following two cases.

Case 1. y ∈ {p0, p1, p2, . . . , pw}. Let P̄ = P (y, pw]. Consider the graph
G− (T 3

w − P̄ ) := H ∪ P̄ . For any x ∈ V (P̄ ), we have |NG(x)∩H| ≥ k+
⌈
m+1
2

⌉
−

|NG(x) ∩ V (P )| ≥ k +
⌈
m+1
2

⌉
−
⌈
m−2
2

⌉
≥ k + 1, and then it follows that

κ
(
G− (T 3

w − P̄ )
)
= κ(H ∪ P̄ )) ≥ k.

As y is the farthest vertex to p0 on T 3
w, we have NG(P̄ ) ∩ E = ∅. Virtually, S is

also a minimum vertex cut of H ∪ P̄ , and E is an end of H ∪ P̄ . From Lemma 5,
(H ∪ P̄ )⟨S⟩(E ∪ S) = (H ∪ P̄ )⟨S⟩ − Ē is (k + 1)-connected.

If both m and |V (P̄ )| are odd, it follows that C ⊆ H ∪ P̄ − E and

δ(H∪P̄ )(H ∪ P̄ − C) ≥ k +

⌈
m+ 1

2

⌉
−
⌈
3 + w − |P̄ |

2

⌉
≥ k +

⌈
m+ 1

2

⌉
−
⌈
m− 1− |P̄ |

2

⌉
≥ k +

⌈
|P̄ |+ 1

2

⌉
.

Hence, we have that

(H ∪ P̄ , C) ∈ Kb
k

(⌈
|P̄ |+ 1

2

⌉)
and

((H ∪ P̄ )⟨S⟩[E ∪ S],K(S)) ∈ Kb
k+

(⌈
|P̄ |+ 1

2

⌉)
.

By the choice of G and |S ∪ V (E)| < |V (G)|, there exists a path Q ⊆ E of order
|P̄ | starting from q such that (H ∪ P̄ )⟨S⟩[E ∪ S] − V (Q) is k-connected, that
is, κ

(
(H ∪ P̄ )⟨S⟩[E ∪ S]− V (Q)

)
≥ k. Consider the complementary fragment

ĒH∪P̄ = H ∪ P̄ − S − E in H ∪ P̄ . By Lemma 12, we have κ
(
(H ∪ P̄ )−Q

)
≥

k. Let q, q′ be the end-vertices of Q and P1 = (P \ P̄ ) ∪ Q ∪ {q, q′}. Then
κ(G − V (P1)) ≥ k and |V (P1)| = |V (P )|. Let E′ = E − V (Q) and GP1 =
G− V (P1). Since |NG(q

′)∩ V (E′)| = dG(q
′)− |NG(q

′)∩ V (P1)| − |NG(q
′)∩ S| ≥

k+
⌈
m+1
2

⌉
−
⌈
m−2
2

⌉
− k ≥ 1, it follows that V (E′) ̸= ∅. Consequently, S is also a

minimum vertex cut of GP1 and E′ is a fragment of GP1 to S. And then we have
|{s1, s2} ∪ V (P1)| = |{s1, s2} ∪ V (P )| and |V (E)| > |V (E′)|, which contradicts
the choice of the smallest fragment E.
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If at least one of the integers m and |P̄ | is even, then

δ(H∪P̄ )(H ∪ P̄ − C) ≥ k +

⌈
m+ 1

2

⌉
−
⌈
3 + w − |P̄ |

2

⌉
≥ k +

⌈
m+ 1

2

⌉
−
⌈
m− 1− |P̄ |

2

⌉
≥ k +

⌈
|P̄ |+ 2

2

⌉
.

We have
(
H ∪ P̄ , C

)
∈ Kb

k

(
|P̄ |+2

2

)
. Since κ

(
(H ∪ P̄ )⟨S⟩[S ∪ E]

)
≥ k + 1 by

Lemma 5, we have
(
(H ∪ P̄ )⟨S⟩[S ∪ E],K(S)

)
∈ Kb

k

(
|P̄ |+2

2

)
. Since |S∪V (E)| <

|V (G)|, there is a path Q of order |P̄ | + 1 in E starting from q such that (H ∪
P̄ )⟨S⟩[S∪E]−V (Q) is k-connected. that is, κ

(
(H ∪ P̄ )⟨S⟩ − V (ĒH∪P̄ ∪Q)

)
≥ k.

By Lemma 12, we have κ
(
(H ∪ P̄ )− V (Q)

)
≥ k. Then there is a tree T 3

w+1 :=
(T 3

w \ P̄ ) ∪ yq ∪ Q rooted at p0 has order |T 3
w+1| ≤ m and G − V (T 3

w+1) =
(H ∪ P̄ )− V (Q) is k-connected, a contradiction.

Case 2. y ∈ {s1, s2}. Let P̄ = P (p1, pw] and then there is a tree T 3
w+1 :=

(T 3
w − P̄ ) ∪ yp ∪ Q with order w + 1 ≤ m according to the same way as above

case. Consequently, we find out a larger tree T 3
w+1. This completes the proof of

Theorem 13.

Based on Theorem 13, we prove the following main theorem.

Theorem 17. For m ̸= 4 or 5 every k-connected bipartite graph G with δ(G) ≥
k +

⌈
m+1
2

⌉
contains a tree T 3

m−3 such that

κ(G− V (T 3
m−3)) ≥ k.

Proof. If m ≤ 3, then our Theorem 17 is the main theorem of [16]. In the
following, we consider the case of m ≥ 6. If κ(G) = k, then let E be an
end to S in G and let Ē = G − S ∪ V (E). If |E| = 1, then k +

⌈
m+1
2

⌉
≤

dG(z) ≤ |NG(z) ∩ S| + |NG(z) ∩ V (P )| ≤ k +
⌈
m−1
2

⌉
for the unique vertex

z ∈ E, a contradiction. And then we have |E| ≥ 2. By Lemma 5, κ(G⟨S⟩ −
V (Ē)) ≥ k + 1. Furthermore, (G⟨S⟩ − V (Ē),K(S)) ∈ Kb

k+

(
m+1
2

)
. By Theo-

rem 13, we have κ
(
G⟨S⟩ − V (Ē ∪ T 3

m−3)
)
≥ k. By Lemma 11, it follows that

κ
(
G− V (Ē ∪ T 3

m−3)
)
≥ k. If κ(G) ≥ k + 1, we first prove a claim.

Claim 18. For every (k + 1)-connected graph G with δ(G) ≥ k +
⌈
m+1
2

⌉
, there

is a subgraph T 3
1 in G such that κ(G− V (T 3

1 )) ≥ k.

Proof. If G is (k + 4)-connected graph, then, clearly, there is a subgraph T 3
1 in

G such that κ
(
G− V (T 3

1 )
)
≥ k since δ(G) ≥ k +

⌈
m+1
2

⌉
≥ k + 4. Suppose that
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κ(G) = k+ 3. Since it follows that δ(G) ≥ k+
⌈
m+1
2

⌉
= (k+ 2) +

⌈
(m−4)+1

2

⌉
, by

Theorem 8, there is a path P onm−4 vertices such that κ (G− V (P [x0, xm−5])) ≥
k + 2. Since for each vertex xi ∈ P [x0, xm−5] we have

|NG(xi) ∩ (G− V (P [x0, xm−5])| ≥ k +

⌈
m+ 1

2

⌉
−
⌈
|P [x0, xm−5]| − 1

2

⌉
= k +

⌈
m+ 1

2

⌉
−
⌈
m− 5

2

⌉
> k + 2.

It follows that κ (G− {x0, x1}) ≥ k + 2. Owing to dG−P [x0,xm−5](x0) > k + 2, we
can choose arbitrarily two neighbors s1, s2 of x0 in G−P [x0, xm−5] such that the
subgraph T 3

1 on the vertex set {s1, s2, x0, x1} satisfies

κ (G− {s1, s2, x0, x1}) ≥ k.

If κ(G) = k+2, then it follows that δ(G) ≥ k+
⌈
m+1
2

⌉
= (k+1)+

⌈
(m−2)+1

2

⌉
. By

Theorem 8, there is a path P on m−2 vertices such that κ(G−V (P [x0, xm−3])) ≥
k + 1. For each vertex xi ∈ P [x0, xm−3] we have that

|NG(xi) ∩ (G− V (P [x0, xm−3])| ≥ k +

⌈
m+ 1

2

⌉
−
⌈
|P [x0, xm−3]| − 1

2

⌉
≥ k +

⌈
m+ 1

2

⌉
−
⌈
m− 3

2

⌉
= k + 2.

And thus, κ(G − {x0, x1, x2}) ≥ k + 1. Furthermore, we can choose arbitrarily
one neighbor, say s1, of x1 in G− P [x0, xm−3] such that the subgraph T 3

1 on the
vertex set {s1, x0, x1, x2} satisfies κ(G− {s1, x0, x1, x2}) ≥ k.

Suppose that κ(G) = k+1. Since δ(G) ≥ k+
⌈
m+1
2

⌉
= (k+1)+

⌈
(m−2)+1

2

⌉
.

Thus, by Theorem 8, G contains a path P ⊆ G of order m− 2, such that κ(G−
V (P )) ≥ k+1 holds. Let P = x0x1 · · ·xm−3. For each vertex xi ∈ P [x0, xm−3] we
have that |NG(xi)∩(G−V (P [x0, xm−3])| ≥ k+

⌈
m+1
2

⌉
−
⌈
m−3
2

⌉
= k+2. And thus,

κ(G−{x0, x1, x2}) ≥ k+1. Since |NG(x1)∩ (G−C−V (P [x0, xm−3]))| > 3, there
is a neighbor s of x1. Consequently, κ(G − {s, x0, x1, x2}) ≥ k. This completes
the proof of Claim 18.

Similar to the proof of Theorem 13, we again find a maximal tree T 3
w with

root p0 and legs s1, s2 satisfying the following conditions.

(i) 4 ≤ |T 3
w| = 3 + w < m;

(ii) κ(G− V (T 3
w)) ≥ k.
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Let S be a minimum vertex cut of G− V
(
T 3
w

)
and E be an end of G− V

(
T 3
w

)
.

and thus we again have that κ
(
G− V

(
T 3
w

))
= k. Let H = G− T 3

w. We denote
T 3
w − {s1, s2} by P [p0, pw] = p0p1 · · · pw.

Clearly, H is not a complete graph. An end E is contained in H with E∩C =
∅. Set S := NH(E). Then |S| = k. Furthermore, let Ē = H − S −E. If |E| = 1,
then k +

⌈
m+1
2

⌉
≤ dG(z) ≤ |NG(z) ∩ S| + |NG(z) ∩ V (P )| ≤ k +

⌈
m−1
2

⌉
for the

unique vertex z ∈ E, a contradiction. And then we have |E| ≥ 2. By Lemma 5,
it follows that H⟨S⟩ − Ē is (k + 1)-connected. We know κ(G) > k = κ(H). And
thus, NG(T

3
w) ∩ E ̸= ∅. Otherwise, S is also a vertex set of G, which contradicts

κ(G) > k. Let y be one of the farthest vertices to p0 on T 3
w with NG(y) ∩E ̸= ∅.

Let q ∈ NG(y) ∩ E. We consider the following two cases.

Case 1. y ∈ {p0, p1, p2, . . . , pw}. Let P̄ = P (y, pw]. Consider the graph
G− (T 3

w − P̄ ) := H ∪ P̄ . For any x ∈ V (P̄ ), we have |NG(x)∩H| ≥ k+
⌈
m+1
2

⌉
−

|NG(x) ∩ V (P )| ≥ k +
⌈
m+1
2

⌉
−
⌈
m−2
2

⌉
≥ k + 1, and then it follows that

κ(G− (T 3
w − P̄ )) = κ(H ∪ P̄ )) ≥ k.

As y is the farthest vertex to p0 on T 3
w, we have NG(P̄ ) ∩ E = ∅. Virtually, S is

also a minimum vertex cut of H ∪ P̄ , and E is an end of H ∪ P̄ . From Lemma 5,
(H ∪ P̄ )⟨S⟩(E ∪ S) = (H ∪ P̄ )⟨S⟩ − Ē is (k + 1)-connected.

If both m and |V (P̄ )| are odd, it follows that C ⊆ H ∪ P̄ − E and

δ(H∪P̄ )(H ∪ P̄ − C) ≥ k +

⌈
m+ 1

2

⌉
−
⌈
3 + w − |P̄ |

2

⌉
≥ k +

⌈
m+ 1

2

⌉
−
⌈
m− 1− |P̄ |

2

⌉
≥ k +

⌈
|P̄ |+ 1

2

⌉
.

Hence, it follows

(H ∪ P̄ , C) ∈ Kb
k

(⌈
|P̄ |+ 1

2

⌉)
and

((H ∪ P̄ )⟨S⟩[E ∪ S], ⟨S⟩) ∈ Kb
k+

(⌈
|P̄ |+ 1

2

⌉)
.

By the choice of G and |S ∪ V (E)| < |V (G)|, there exists a path Q ⊆ E of order
|P̄ | starting from q such that (H ∪ P̄ )⟨S⟩[E ∪ S] − V (Q) is k-connected, that
is, κ

(
(H ∪ P̄ )⟨S⟩[E ∪ S]− V (Q)

)
≥ k. Consider the complementary fragment

ĒH∪P̄ = H ∪ P̄ − S − E in H ∪ P̄ . By Lemma 12, we have κ
(
(H ∪ P̄ )−Q

)
≥

k. Let q, q′ be the end-vertices of Q and P1 = (P \ P̄ ) ∪ Q ∪ {q, q′}. Then
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κ(G − V (P1)) ≥ k and |V (P1)| = |V (P )|. Let E′ = E − V (Q) and GP1 =
G− V (P1). Since |NG(q

′)∩ V (E′)| = dG(q
′)− |NG(q

′)∩ V (P1)| − |NG(q
′)∩ S| ≥

k+
⌈
m+1
2

⌉
−
⌈
m−2
2

⌉
− k ≥ 1, it follows that V (E′) ̸= ∅. Consequently, S is also a

minimum vertex cut of GP1 and E′ is a fragment of GP1 to S. And then we have
|{s1, s2} ∪ V (P1)| = |{s1, s2} ∪ V (P )| and |V (E)| > |V (E′)|, which contradicts
the choice of the smallest fragment E.

If at least one of the integers m and |P̄ | is even, then

δ(H∪P̄ )(H ∪ P̄ − C) ≥ k +

⌈
m+ 1

2

⌉
−
⌈
3 + w − |P̄ |

2

⌉
≥ k +

⌈
m+ 1

2

⌉
−
⌈
m− 1− |P̄ |

2

⌉
≥ k +

⌈
|P̄ |+ 2

2

⌉
.

We have
(
H ∪ P̄ , C

)
∈ Kb

k

(
|P̄ |+2

2

)
. Since κ

(
(H ∪ P̄ )⟨S⟩[S ∪ E]

)
≥ k + 1 by

Lemma 5, we have
(
(H ∪ P̄ )⟨S⟩[S ∪ E],K(S)

)
∈ Kb

k

(
|P̄ |+2

2

)
. Since |S∪V (E)| <

|V (G)|, there is a path Q of order |P̄ | + 1 in E starting from q such that (H ∪
P̄ )⟨S⟩[S∪E]−V (Q) is k-connected. that is, κ

(
(H ∪ P̄ )⟨S⟩ − V (ĒH∪P̄ ∪Q)

)
≥ k.

By Lemma 12, we have

κ
(
(H ∪ P̄ )− V (Q)

)
≥ k.

Then there is a tree T 3
w+1 := (T 3

w \ P̄ )∪yq∪Q rooted at p0 with order |T 3
w+1| ≤ m

and G− V (T 3
w+1) = (H ∪ P̄ )− V (Q) is k-connected, a contradiction.

Case 2. y ∈ {s1, s2}. Let P̄ = P (p1, pw] and then there is a tree T 3
w+1 :=

(T 3
w− P̄ )∪yp∪Q with order w+1 ≤ m according to the same way as above case.

Consequently, we find a larger tree T 3
w+1. This completes the proof of Theorem

17.

As you can see, our main theorem has the condition of m ̸= 4 or 5, because
the proof of Claim 14 cannot contain the condition. We have tried to over m = 4
or 5, but it is hard to construct T 3

1 for us. So we list this problem in this section.

Problem 19. For m = 4 or 5 every k-connected bipartite graph G with δ(G) ≥
k +

⌈
m+1
2

⌉
contains a tree T 3

m−3 such that

κ(G− V (T 3
m−3)) ≥ k.
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4. k-Connected Graphs

We define the set Fk(m) containing all pairs (G,C) satisfying the following con-
ditions.

• G is a k-connected graph with |G| ≥ k + 1;

• C ⊆ G is a complete subgraph with |C| = k and δG(G−V (C)) ≥
⌊
3k
2

⌋
+m−1;

• we denote by F+
k (m) all the pairs (G,C) ∈ Fk(m) with κ(G) ≥ k + 1.

Lemma 20 [11]. Let G be a k-connected graph and let S be a vertex cut of G
with |S| = k. Then the following holds.

(a) For every fragment F of G to S, G[S]− V (F ) is k-connected.

(b) Assume δ(G) ≥
⌊
3k
2

⌋
+m − 1 and let F be a fragment of G to S. If W ⊆

G − (S ∪ V (F )) has order at most m and κ(G[S] − V (F ∪W )) ≥ k holds,
then also κ(G− V (W )) ≥ k holds.

(c) Assume (G,C) ∈ Fk(m) and let F be a fragment of G to S with C ⊆ G(F ∪
S). If W ⊆ G−(S∪V (F )) has order at most m and κ(G[S]−V (F ∪W )) ≥ k
holds, then also κ(G− V (W )) ≥ k holds.

Lemma 21 [11]. For all (G,C) ∈ F+
k (m) and p0 ∈ G − V (C), there is a path

P ⊆ G − V (C) of length m − 1 starting from p0, such that κ(G − V (P )) ≥ k
holds.

The spiders are considered and defined now. For a tree, if there is at most
one vertex of degree at least 3, then this tree is called a spider (specially, a path
is also a spider). Each leg of a spider is a path from the vertex adjacent to the
root x0 to a vertex of degree 1; if there are z legs, then denote the spider by

T t1,t2,...,tz
m , where

∣∣∣T t1,t2,...,tz
m

∣∣∣ = m and ti denotes the order of the ith leg with

t1 + t2 + · · · + tz + 1 = m. If there are t legs of order one, then we abbreviate
T 1,1,...,1,m−t−1
m as T t;m−t−1

m .

Lemma 22. Let t ≥ 0 be an integer. For any (G,C) ∈ F+
k (m) and any s0 ∈

G − V (C) with at least a vertex of degree |G| − 1 in G − C, there is a spider
T t;m−t−1
m ⊆ G− V (C) of order m rooted at s0 such that

κ
(
G− V (T t;m−t−1

m )
)
≥ k.

Proof. We perform an induction on the order n of the graph G for the lemma.
Clearly, the order of the graph G must be no less than

⌊
3k
2

⌋
+m since δ(G−C) ≥⌊

3k
2

⌋
+m − 1. Then it holds for (G,C) ∈ F+

k (m) if G is a complete graph with

order at least
⌊
3k
2

⌋
+ m. So we just need to consider the case that G is not

complete and |G| ≥
⌊
3k
2

⌋
+m+ 1. Now assume that G is a graph with smallest
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order and with ∆(G) = |G| − 1 such that (G,C) ∈ F+
k (m) is a counterexample

to Lemma 22 for k, and some C ⊆ G, and m. Let d(s0) = |G| − 1 for a vertex
s0 ∈ V (G).

Subject to above assumption, we find out on the order m of tree T t;m−t−1
m

satisfying above assumption. From Lemma 21, there exists a path P ⊆ G−V (C)
of length m − 1 starting from s0 such that κ(G − V (P )) ≥ k holds. Let P =
{s0p1}∪P [p1, p]. Since |NG(u)∩ (G−P )| ≥

⌊
3k
2

⌋
+m− 1− (|P | − 1) ≥ k for any

vertex u ∈ V (P [p1, p]), then κ(G − s0p1) ≥ k, where s0p1 ∈ E(G) is a subpath
of P and also a spider T 1,0

2 or T 0,1
2 . Now suppose that a spider T t;j

t+j+1 with the
maximal order and root s0 and legs s1, s2, . . . , st satisfies the following conditions.

(i) 2 ≤
∣∣∣T t;j

t+j+1

∣∣∣ = t+ j + 1 < m;

(ii) κ(G− T t;j
t+j+1) ≥ k.

Note that s1, s2, . . . , st ∈ V (G) and s0si ∈ E(G), 1 ≤ i ≤ t, and T t;j
t+j+1 −

{si | 1 ≤ i ≤ t} is a path of order j + 1, say P = s0p1 ∪ P [p1, pj ] := p1p2 · · · pj .
Simply, we set H = G− T t;j

t+j+1.

Claim 23. κ(H) = k.

Proof. Assume, to the contrary, that κ(H) > k. Since

|NG(x) ∩ (H − C)| ≥ ⌊3k/2⌋+m− 1− k − (m− 2) = ⌊k/2⌋+ 1

for x ∈ {s0, pj}, it follows that there exists a vertex s ∈ H − C such that xs ∈
E(G). Note that T t;j

t+j+1∪xs is a spider rooted at s0 of order t+j+2 ≤ m, which

contradicts the choice of T t;j
t+j+1. Complete the proof of Claim 23.

Since H is not a complete graph, it follows that |V (H)| ≥ k + 2. An end E
is contained in H with E ∩C = ∅. Set S := NH(E). Then |S| = k. Furthermore,
let Ē = H − S − E.

Claim 24. |E| ≥ 2.

Proof. Assume, to the contrary, that |E| = 1. It satisfies k = dH(z) ≥
⌊
3k
2

⌋
+m−

1−
∣∣∣T t;j

t+j+1

∣∣∣ ≥ ⌊
3k
2

⌋
for each z ∈ E, which means k = 1 and

∣∣∣T t;j
t+j+1

∣∣∣ = m−1. We

get V
(
T t;m−t−2
m−1

)
⊆ NG(z) because of δ(G) ≥

⌊
3k
2

⌋
+m− 1. Then

∣∣∣T t;m−t−1
m

∣∣∣ :=∣∣∣T t;m−t−2
m−1 ∪ zx

∣∣∣ = m for x ∈ {s0, pm−t−2} and G − T t;m−t−1
m = H − z is 1-

connected. And also,
∣∣∣T t+1;m−t−2

m

∣∣∣ := ∣∣∣T t;m−t−2
m−1 ∪ zx

∣∣∣ = m and G−T t+1;m−t−2
m =

H − z is 1-connected, which contradicts the fact that T t;j
a is a maximal spider.

Complete the proof of Claim 24.
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From Claim 24, we have |E| ≥ 2. Then the graph H[S] − Ē is (k + 1)-
connected from Lemma 5. From above assumption, we know κ(G) > k = κ(H),
thusNG(T

t;j
t+j+1)∩E ̸= ∅. Otherwise, S is also a vertex cut ofG, which contradicts

κ(G) > k. Let y be one of the farthest vertices to s0 on T t;j
t+j+1 withNG(y)∩E ̸= ∅.

Suppose that q is one vertex in NG(y)∩E. We distinguish the following two cases
to show this lemma. We will construct two lager spiders T t;j+1

t+j+2 and T t+1;j
t+j+2 such

that G− T t;j+1
t+j+2 and G− T t+1;j

t+j+2 remains k-connected, respectively.

Claim 25. There is a lager spider T t;j+1
t+j+2 such that G − T t;j+1

t+j+2 remains k-
connected.

Proof. Suppose that y ∈ {p1, p2, . . . , pj , s0}. Let P̄ = P [pj , y). Consider the

graph G−
(
T t;j
t+j+1 − P̄

)
:= H ∪ P̄ . Since |NG(x)∩H| ≥

⌊
3k
2

⌋
+m−1− (t+ j) ≥⌊

3k
2

⌋
+ 1 ≥ k for any x ∈ V (P̄ ), it follows that

κ
(
G− (T t;j

t+j+1 − P̄ )
)
= κ(H ∪ P̄ )) ≥ k.

As y is the farthest vertex to s0 on T t;j
t+j+1, we have NG(P̄ )∩E = ∅. Naturally, S

is also a minimum vertex cut of H ∪ P̄ , and E is an end of H ∪ P̄ . From Lemma
5, (H ∪ P̄ )⟨S⟩[E ∪ S] = H⟨S⟩ − Ē is (k + 1)-connected. Furthermore, it follows
that C ⊆ H ∪ P̄ − E and

δ(H∪P̄ )(H ∪ P̄ − C) ≥
⌊
3k

2

⌋
+m− 1− (t+ j + 1− |P̄ |) ≥

⌊
3k

2

⌋
+ |P̄ |.

Hence, (H ∪ P̄ , C) ∈ Fk(|P̄ | + 1) and (H ∪ P̄ ⟨S⟩[E ∪ S], ⟨S⟩) ∈ F+
k (|P̄ | + 1).

From Lemma 21, there exists a path Q ⊆ E of order |P̄ | + 1 starting from
q such that (H ∪ P̄ )⟨S⟩[E ∪ S] − Q is k-connected. Now for (H ∪ P̄ , C) ∈
Fk(|P̄ | + 1) by Lemma 20(c), then κ((H ∪ P̄ )⟨S⟩[E ∪ S] − Q) ≥ k. The spider

T t;j+1
t+j+2 :=

(
T t;j
t+j+1 \ P̄

)
∪ yq ∪ Q rooted at s0 has order

∣∣∣T t;j
t+j+1

∣∣∣ + 1 ≤ m and

G− V
(
T t;j+1
t+j+2

)
= H −Q is k-connected, a contradiction.

Suppose that y ∈ {s1, s2, . . . , st}. Let P̄ = P [pj , p1) and then there is a

spider T t;j+1
t+j+2 :=

(
T t;j
t+j+1 − P̄

)
∪ yp ∪ Q with order t + j + 2 ≤ m according to

the same way as in the above case.

Claim 26. There is a larger spider T t+1;j
t+j+2 such that G − T t+1;j

t+j+2 remains k-
connected.

Proof. Since dG(s0) = |G| − 1, we have N(s0) ∩ E ̸= ∅. Furthermore, from
Lemma 21, there exists a vertex q ⊆ E such that H⟨S⟩[E ∪S]− q is k-connected.

Hence, G− V
(
T t+1;j
t+j+2

)
= H − q is k-connected, a contradiction.
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By Claim 25 and Claim 26, we completed the proof.

Theorem 27. Every k-connected graph G with δ(G) ≥
⌊
3k
2

⌋
+m−1 and ∆(G) =

|G| − 1 for positive integers k,m, t, contains a spider T t;m−t−1
m such that

κ
(
G− V (T t;m−t−1

m )
)
≥ k.

Proof. Clearly, for the complete graph with order at least
⌊
3k
2

⌋
+m the theorem

holds. If κ(G) = k, clearly we have |E| ≥ 2 based on the analysis of Lemma 22.
Since G⟨S⟩ − Ē is (k + 1)-connected by Lemma 5 and δG(E) ≥

⌊
3k
2

⌋
+ m − 1,

it follows that (G⟨S⟩ − Ē, ⟨S⟩) ∈ K+
k (m). By Lemma 22, there exists a tree

T 3
m−3 ⊆ E rooted in p0 such that G⟨S⟩ − Ē − T 3

m−3 remains k-connected. From
Lemma 20(b), we have κ(G− V (T 3

m−3)) ≥ k.
Assume that κ(G) ≥ k + 1. Using Theorem 2, there exists a path P ⊆ G of

length m − 1 starting from s0, where the degree of s0 is |G| − 1 in G, such that
κ(G − V (P )) ≥ k holds. Let P = {s0p1} ∪ P [p1, p]. Since |NG(u) ∩ (G − P )| ≥⌊
3k
2

⌋
+m−1− (|P |−1) ≥ k for any vertex u ∈ V (P [p1, p]), then κ(G−s0p1) ≥ k,

where s0p1 ∈ E(G) is a subpath of P and also a spider T 1,0
2 . We again find a

maximal spider T t;j
t+j+1 with root s0 and legs s1, s2, . . . , st satisfying the conditions:

(i) 2 ≤ |T t;j
t+j+1| = t + j + 1 < m; (ii) κ(G − T t;j

t+j+1) ≥ k. Then in the following
proof we prove exactly in the same way and symbols as in the proof of Lemma
22. Naturally, we can show

κ(H) = k and |E| ≥ 2.

Since H := G−T t;j
t+j+1 is not a complete graph, it follows that |V (H)| ≥ k+2.

An end E is contained in H with E ∩ C = ∅. Set S := NH(E). Then |S| = k.
Furthermore, let Ē = H −S−E. Then the graph H⟨S⟩− Ē is (k+1)-connected
from Lemma 5. From above assumption, we know κ(G) > k = κ(H), thus

NG

(
T t;j
t+j+1

)
∩ E ̸= ∅. Let y be one of farthest vertices to s0 on T t;j

t+j+1 with

NG(y) ∩ E ̸= ∅. Set q ∈ NG(y) ∩ E.

Claim 28. There is a lager spider T t;j+1
t+j+2 such that G − T t;j+1

t+j+2 remains k-
connected.

Proof. Suppose that y ∈ {p1, p2, . . . , pj , s0}. Let P̄ = P [pj , y). Consider the

graph G−
(
T t;j
t+j+1 − P̄

)
:= H ∪ P̄ . Since |NG(x)∩H| ≥

⌊
3k
2

⌋
+m−1− (t+ j) ≥⌊

3k
2

⌋
+ 1 ≥ k for any x ∈ V (P̄ ), it follows that

κ(G− (T t;j
t+j+1 − P̄ )) = κ(H ∪ P̄ )) ≥ k.

As y is the farthest vertex to s0 on T t;j
t+j+1, we have NG(P̄ )∩E = ∅. Naturally, S

is also a minimum vertex cut of H ∪ P̄ , and E is an end of H ∪ P̄ . From Lemma
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5, (H ∪ P̄ )⟨S⟩[E ∪ S] = H⟨S⟩ − Ē is (k + 1)-connected. Furthermore, it follows
that C ⊆ H ∪ P̄ − E and

δ(H∪P̄ )(H ∪ P̄ − C) ≥
⌊
3k

2

⌋
+m− 1− (t+ j + 1− |P̄ |) ≥

⌊
3k

2

⌋
+ |P̄ |.

Hence, (H ∪ P̄ , C) ∈ Fk(|P̄ | + 1) and (H ∪ P̄ ⟨S⟩[E ∪ S], ⟨S⟩) ∈ F+
k (|P̄ | + 1).

From Lemma 21, there exists a path Q ⊆ E of order |P̄ | + 1 starting from
q such that (H ∪ P̄ )⟨S⟩[E ∪ S] − Q is k-connected. Now for (H ∪ P̄ , C) ∈
Fk(|P̄ | + 1) by Lemma 20(c), then κ((H ∪ P̄ )⟨S⟩[E ∪ S] − Q) ≥ k. The spider

T t;j+1
t+j+2 :=

(
T t;j
t+j+1 \ P̄

)
∪ yq ∪ Q rooted at s0 has order

∣∣∣T t;j
t+j+1

∣∣∣ + 1 ≤ m and

G − V
(
T t;j+1
t+j+2

)
= H − Q is k-connected, a contradiction. We can again prove

it holds for y ∈ {s1, s2, . . . , st} by the above way, where P̄ = P [pj , y). This
completes the proof of Claim 28.

Claim 29. There is a lager spider T t+1;j
t+j+2 such that G − T t+1;j

t+j+2 remains k-
connected.

Proof. Since dG(s0) = |G| − 1, it follows that N(s0) ∩ E ̸= ∅. Let N(s0) ∩
E = {q}. Furthermore, from Lemma 21, there exists a vertex q ⊆ E such that

H⟨S⟩[E ∪S]− q is k-connected. Hence, G− V
(
T t+1;j
t+j+2

)
= H − q is k-connected,

a contradiction.

By Claims 28 and 29, we completed the proof.
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