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Abstract

Let G be a connected graph and f be a mapping from V (G) to S, where
S is a set of k colors for some positive integer k. The color code of a vertex
v of G with respect to f , denoted by codeG(v|f), is the ordered (k + 1)-
tuple (x0, x1, . . . , xk) where x0 is the color assigned to v and where xi is
the number of vertices adjacent to v of color i for 1 ≤ i ≤ k, that is, xi =
|{uv ∈ E(G) : f(u) = i}| for 1 ≤ i ≤ k. The mapping f is a recognizable
coloring if codeG(u|f) ̸= codeG(v|f) for every two distinct vertices u and v
of G. The minimum number of colors needed for a recognizable coloring of
G is the recognition number of G denoted by rn(G). Our goal in this article
is to give the exact value of the recognition number of the corona product
G ◦ H of two graphs G and H for the cases H = Kn and n ≥ |V (G)|, or
G = Km and H = Kn with m > n. In addition, we obtain the exact value
of the recognition number of the edge corona product G ⋄ H of G and H
for the case that G is a non-trivial graph with minimum degree at least 2
and H = Kn where n ≥ |E(G)|. Moreover, an algorithm for computing
the recognition number of graphs is presented. As an application of our
algorithm, we compute the recognition number of some fullerene graphs.
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1. Introduction

All graphs considered in this paper are assumed to be simple and connected.
In modeling real world problems using graph theory, we sometimes come across
problems that correspond to distinguishing vertices of graphs. Harary and Plan-
tholt [3] introduced the point-distinguishing edge coloring (also called a vertex-
distinguishing edge coloring in the literature) of graph which is defined as assign-
ing colors to the edges of the graph so that the sets of colors used on the edges
incident on two different vertices are unequal.

In addition to vertex-distinguishing edge colorings, vertex-distinguishing ver-
tex colorings have been studied. For this purpose, for a graph G and a mapping
f : V (G) → {1, . . . , k} where k is a positive integer, the color code of a vertex
v of G with respect to f , denoted by codeG(v|f), is the ordered (k + 1)-tuple
(x0, x1, . . . , xk) where x0 is the color assigned to v and where xi is the number of
vertices adjacent to v of color i for 1 ≤ i ≤ k, that is, xi = |{uv ∈ E(G) : f(u) =
i}| for 1 ≤ i ≤ k. A coloring f of the vertices of G is an irregular coloring if
distinct vertices of G have distinct color codes. Formally, an irregular coloring
f of G assigns colors to the vertices of G in such a way that (i) f(u) ̸= f(v) for
each uv ∈ E(G) and (ii) distinct vertices have distinct color codes, see [7].

Every irregular coloring of a graph G is a proper coloring of G. If we remove
this requirement from an irregular coloring, that is, if we remove condition (i) from
the definition of an irregular coloring, then the resulting coloring is a recognizable
coloring of G. The minimum number of colors in a recognizable coloring on G
is the recognition number of G denoted by rn(G). The concept of recognizable
colorings was first introduced and studied in 2008 by Chartrand et al. in [1].
They proved that for each pair k, n of integers with 2 ≤ k ≤ n, there exists a
connected graph of order n with recognition number k. They also established
characterizations of connected graphs of order n with recognition numbers n or
n − 1. Moreover, they presented a conjecture about the recognition number of
cycles and trees, which was proved in 2012 by Dorfling and Dorfling in [2].

In the current work, for two non-trivial graphs G and H, we study the recog-
nition number rn(G ◦H) in the corona product G ◦H and we study rn(G ⋄H)
in the edge corona product G ⋄H. We give the exact value of rn(G ◦H) for the
cases H = Kn where n ≥ |V (G)|, and G = Km and H = Kn where m > n. In
addition, we obtain the exact value of rn(G ⋄ Kn) for the case that the G has
minimum degree at least 2. Moreover, we present an algorithm for computing
the recognition number of graphs in general. As an application of our algorithm,
we compute the recognition number of some fullerene graphs.

1.1. Notation

For graph theory notation and terminology, we generally follow [4]. Specifically,
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let G be a graph with vertex set V (G) and edge set E(G), and of order |V (G)| and
size |E(G)|. Two adjacent vertices in G are neighbors. The open neighborhood
of a vertex v in G is NG(v) = {u ∈ V : uv ∈ E} and the closed neighborhood of
v is NG[v] = {v} ∪ NG(v). We denote the degree of v in G by degG(v), and so
degG(v) = |NG(v)|. The minimum degree among the vertices of G is denoted by
δ(G). For k ≥ 1 an integer, we let [k] denote the set {1, . . . , k}.

2. Recognizable Coloring of Corona Products

Let G and H be two graphs with V (G) = {g1, . . . , gm}, and let H1, . . . ,Hm be m
vertex disjoint copies of H. The corona product G◦H of G and H is obtained by
taking one copy of G and the m copies of H and joining by an edge the vertex gi
of G to every vertex in the ith copy Hi of H for i ∈ [m], see [6] for more details.

Lemma 2.1. Let G be a graph of order m and let H = Kn. If f is a recognizable
coloring of G ◦H, then f(u) ̸= f(v) for every two distinct vertices u and v in the
ith copy of H for all i ∈ [m].

Proof. Let f be a recognizable coloring on G ◦ H where G has order m and
H = Kn. Suppose, to the contrary, that there exist two distinct vertices u and
v in the ith copy of H such that f(u) = f(v) for some i ∈ [m]. Since H is
a complete graph, we note that NG◦H [u] = NG◦H [v]. Thus since f(u) = f(v),
we infer that codeG◦H(u|f) = codeG◦H(v|f), contradicting the fact that f is a
recognizable coloring on G ◦H.

Theorem 2.2. Let G and H be two graphs of order m and n, respectively. If
1 < m ≤ n, then rn(G ◦H) ≤ n.

Proof. To show that rn(G ◦ H) ≤ n, we present a recognizable coloring f on
G ◦ H using n colors. Let f be the coloring that assigns color i to vertex gi
for all i ∈ [m] and assigns to the n vertices from each copy of H a color from
the set [n] in such a way that the vertices from each copy of H receive different
colors. We prove that the resulting coloring f is a recognizable coloring of G◦H.
Consider two distinct vertices u and v of G ◦H. Note that if u and v are both
in the copy of G, then we have nothing to prove because f(u) ̸= f(v). If u is
in the copy of G and v is in a copy of H, then degG◦H(u) > degG◦H(v), and so
codeG◦H(u|f) ̸= codeG◦H(v|f). If u and v are in the same copy of H, then since
f(u) ̸= f(v), once again we infer that codeG◦H(u|f) ̸= codeG◦H(v|f). Hence we
may assume that u and v are in the ith and jth copies of H, respectively, where
1 ≤ i < j ≤ m. In this case, the entry xi in the color code codeG◦H(u|f) is greater
than xi in the color code codeG◦H(v|f), and so codeG◦H(u|f) ̸= codeG◦H(v|f).
Hence, f is a recognizable coloring of G ◦H, and so rn(G ◦H) ≤ n.
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By the fact that K1◦Kn is isomorphic to Kn+1, we have rn(K1◦Kn) = n+1.
The next result shows the bound presented in Theorem 2.2 is sharp.

Corollary 2.3. If G is a graph of order m, then rn(G◦Kn) = n where 1 < m ≤ n.

Proof. Let G be a graph of order m where 1 < m ≤ n. If f is a recognizable
coloring of G ◦ Kn, then by Lemma 2.1 the n vertices in every copy of Kn in
G ◦Kn are assigned different colors, implying that rn(G ◦Kn) ≥ n. On the other
hand, by Theorem 2.2 rn(G ◦Kn) ≤ n which completes the proof.

K4+g1

K4+g2

K4+g3

Figure 1. A recognizable coloring of K3 ◦K4 using four colors.

By Corollary 2.3, rn(K3 ◦K4) = 4. A recognizable coloring of K3 ◦K4 using
four colors is depicted in Figure 1.

Theorem 2.4. rn(Km ◦Kn) = min{t : m ≤
(

t
n+1

)
+ n

(
t
n

)
} where m > n.

Proof. Let G = Km and let H = Kn where m > n. Let H1, . . . ,Hm be the m
vertex disjoint copies of H in G ◦H where the ith copy Hi is associated with the
ith vertex gi of G for i ∈ [m], that is, the vertex gi of G is adjacent in G ◦H to
every vertex in the ith copy Hi of H for i ∈ [m]. Set

k = min

{
t : m ≤

(
t

n+ 1

)
+ n

(
t

n

)}
.

Based on Lemma 2.1, each recognizable coloring of G ◦ H satisfies at least
one of the following cases for each i ∈ [m].

Case 1. The vertices of V (Hi) ∪ {gi} are colored with n+ 1 different colors.



Recognizable Coloring of Graphs 5

Case 2. The vertices of V (Hi) ∪ {gi} are colored with n different colors. (In
this case, the color of vertex gi is the same as the color of one of the vertices of
V (Hi).)

In the first case, there are
(

k
n+1

)
ways,

{
c1, . . . , c( k

n+1)

}
, of choosing n + 1

colors from k possible colors for coloring the vertices of V (Hi) ∪ {gi}. As an
illustration, consider the graph K6◦K4 shown in Figure 2. In this example, k = 5

and so
{
c1, . . . , c( 5

4+1)

}
= {c1} = {{1, 2, 3, 4, 5}}. As depicted in this figure, the

vertices from V (H1) ∪ {g1} are colored with the colors of c1 = {{1, 2, 3, 4, 5}}.
In the second case, there are

(
k
n

)
ways of choosing n colors from k possible

colors for coloring the vertices of V (Hi). Moreover there are
(
n
1

)
ways to select

a color from the n selected colors of vertices in V (Hi) to color the vertex gi.

Therefore, there are n
(
k
n

)
possible choices

{
c( k

n+1)+1
, . . . , c( k

n+1)+n(kn)

}
for coloring

vertices of V (Hi)∪{gi} in the second case. As an illustration, consider the graph
K6 ◦K4 shown in Figure 2 with k = 5. In this example, we have

{c2, . . . , c21} =
{
{{1, 1, 2, 3, 4}}, {{2, 1, 2, 3, 4}}, {{3, 1, 2, 3, 4}}, {{4, 1, 2, 3, 4}},

{{1, 1, 2, 3, 5}}, {{2, 1, 2, 3, 5}}, {{3, 1, 2, 3, 5}}, {{5, 1, 2, 3, 5}},
{{1, 1, 2, 4, 5}}, {{2, 1, 2, 4, 5}}, {{4, 1, 2, 4, 5}}, {{5, 1, 2, 4, 5}},
{{1, 1, 3, 4, 5}}, {{3, 1, 3, 4, 5}}, {{4, 1, 3, 4, 5}}, {{5, 1, 3, 4, 5}},

{{2, 2, 3, 4, 5}}, {{3, 2, 3, 4, 5}}, {{4, 2, 3, 4, 5}}, {{5, 2, 3, 4, 5}}
}
.

As shown in this figure, in the example in Figure 2 the vertices of V (H2) ∪
{g2}, V (H3) ∪ {g3}, V (H4) ∪ {g4}, and V (H5) ∪ {g5} are colored by the col-
ors of c2 = {{1, 1, 2, 3, 4}}, c3 = {{2, 1, 2, 3, 4}}, c4 = {{3, 1, 2, 3, 4}}, c5 =
{{4, 1, 2, 3, 4}}, and c6 = {{1, 1, 2, 3, 5}}, respectively.

Therefore, m must be less than or equal to
(

t
n+1

)
+ n

(
t
n

)
which concludes

that m ≤ k and consequently rn(Km ◦Kn) ≥ k = min{t : m ≤
(

t
n+1

)
+ n

(
t
n

)
}.

In the rest of the proof, we show that rn(Km ◦Kn) ≤ min{t : m ≤
(

t
n+1

)
+

n
(
t
n

)
}. To do this, we will prove that an one-to-one mapping f from {V (H1) ∪

{g1}, . . . , V (Hm) ∪ {gm}} to
{
c1, . . . , c( k

n+1)+n(kn)

}
is a recognizable coloring of

G◦H. Let u and v be two vertices of G◦H. If f(u) ̸= f(v), then it is immediate
that codeG◦H(u|f) ̸= codeG◦H(v|f). Hence we may assume that f(u) = f(v).
We note that in our method f plays the role of a one-to-one mapping from

{V (H1)∪ {g1}, . . . , V (Hm)∪ {gm}} to
{
c1, . . . , c( k

n+1)+n(kn)

}
. Let G′ be the copy

of G in G ◦H.
Suppose that u ∈ V (G′) and v ∈ V (Hi) for some i ∈ [m]. In this case,

degG◦H(u) = n +m − 1 and degG◦H(n) = n. Hence since m > n, we infer that
codeG◦H(u|f) ̸= codeG◦H(v|f).
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Suppose that u ∈ V (G′) and v ∈ V (G′). Thus, u = gi and v = gj for some i
and j where 1 ≤ i < j ≤ m. In this case, NG◦H [gi] ∩ V (G′) = NG◦H [gj ] ∩ V (G′)
(and recall that by assumption f(gi) = f(gj)). Since the vertices of V (Hi)∪{gi}
and V (Hj) ∪ {gj} are colored by different color cases of c1, . . . , ck, we infer that
codeG◦H(u|f) ̸= codeG◦H(v|f).

Suppose that u ∈ V (Hi) and v ∈ V (Hj) for some i and j where 1 ≤ i < j ≤
m. Since the vertices of V (Hi) ∪ {gi} and V (Hj) ∪ {gj} are colored by different
color cases of c1, . . . , ck, we once again infer that codeG◦H(u|f) ̸= codeG◦H(v|f).

Hence we have shown that if f(u) = f(v), then in all cases codeG◦H(u|f) ̸=
codeG◦H(v|f). Therefore, f is a recognizable coloring ofKm◦Kn, which completes
the proof.

Figure 2. A recognizable coloring of K6 ◦K4.

Theorem 2.5. Let H be a graph and ρ = max
{
m, dH1 , . . . , dH∆H

}
where m > 1

and dHi = |{u ∈ V (H) : degH(u) = i}| for i ∈ [∆H ]. Then rn(Km ◦H) ≤ ρ.

Proof. Let H be a graph and V (Km) = {g1, . . . , gm}. Set Vi = {u ∈ V (H) :
degH(u) = i} for i ∈ [∆H ]. Suppose that Vi =

{
hi1 , . . . , hidi

}
for i ∈ [∆H ]. We
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define f as

f(u) =

{
i, ifu = gi,

j, ifu corresponds tohij .

Now we show that f is a recognizable coloring of Km ◦ H. Consider two
vertices u and v in Km ◦H. Note that we have nothing to prove for cases that
u and v are both in G or in the same copy of H because f(u) ̸= f(v) in these
cases. In addition, since degKm◦H(u) > degKm◦H(v) where u is in Kn and v
is in a copy of H we conclude that codeKm◦H(u|f) ̸= codeKm◦H(v|f) for this
case. Hence we may assume that u and v are in the ith and tth copies of H,
respectively, where 1 ≤ i < t ≤ m. If degKm◦H(u) ̸= degKm◦H(v), clearly
codeG◦H(u|f) ̸= codeG◦H(v|f). Hence, suppose that degKm◦H(u) = degKm◦H(v).
In this case, the entry xi in the color code codeG◦H(u|f) is greater than xi in the
color code codeG◦H(v|f), and so codeG◦H(u|f) ̸= codeG◦H(v|f). Hence, f is a
recognizable coloring of G ◦H, and so rn(G ◦H) ≤ ρ.

3. Recognizable Coloring of Edge Corona Products

LetG be a graph of sizem. LetG andH be two graphs with E(G) = {e1, . . . , em},
and let H1, . . . ,Hm be m vertex disjoint copies of H. The edge corona product
G ⋄H of G and H is obtained from one copy of G and m copies of H as follows:
for each edge ei = gig

′
i of G we join gi and g′i to every vertex in the ith copy Hi

of H associated with the edge ei for i ∈ [m]. The ith copy Hi of H corresponding
to the edge ei of G we also denote by Hei for i ∈ [m], see [6, 5] for more details.

Lemma 3.1. Let G be a graph of size m and let H = Kn. If f is a recognizable
coloring of G ⋄H, then f(u) ̸= f(v) for every two distinct vertices u and v in the
ith copy of H for all i ∈ [m].

Proof. Let f be a recognizable coloring on G ⋄ H where G has size m and
H = Kn. Suppose, to the contrary, that there exist two distinct vertices u and
v in the ith copy of H such that f(u) = f(v) for some i ∈ [m]. Since H is
a complete graph, we note that NG⋄H [u] = NG⋄H [v]. Thus since f(u) = f(v),
we infer that codeG⋄H(u|f) = codeG⋄H(v|f), contradicting the fact that f is a
recognizable coloring on G ⋄H.

Theorem 3.2. If G is a connected graph of order p and size m where m ≥ p,
then rn(G ⋄Kn) = n where n ≥ m.

Proof. Let G be a connected graph of order p and size m where m ≥ p and let
H = Kn where n ≥ m. We consider the edge corona product G ⋄ H of G and
H. Let V (G) = {g1, g2, . . . , gp} and E(G) = {e1, . . . , em}, and so p = |V (G)|
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and m = |E(G)|. By supposition, m ≥ p. Let V (H) = {h1, h2, . . . , hn}. We
adopt our notation defined immediately before the statement of Lemma 3.1. In
particular, H1, . . . ,Hm denote the vertex disjoint copies of H where the ith copy
Hi, also denoted by Hei , of H is associated with the edge ei for i ∈ [m]. We let
V (Hi) = {h1i , h2i , . . . , hni} where the vertex hji in Hi corresponds to the vertex
hj in H for all j ∈ [n]. By Lemma 3.1, we infer that rn(G ⋄H) ≥ n.

To show that rn(G ⋄H) ≤ n, we present a recognizable coloring f on G ⋄H
using n colors. Since δ(G) ≥ 2, we note that m = |E(G)| ≥ |V (G)|. Thus,
p = |V (G)| ≤ |E(G)| = m ≤ n = |V (H)|. Let f : V (G ⋄H)→ [n] be the coloring
that assigns color i to vertex gi for all i ∈ [p]. We note that since n colors are
used and since n ≥ p, we can indeed color the vertices of G with distinct colors.
Next we color the vertex hji that belongs to the ith copy Hi of H with the color j
for all i and j where i ∈ [m] and j ∈ [n]. We note that the n vertices in each
copy Hi of H in G ⋄H each receive a distinct color from the available n colors.

Let u and v be two vertices of G ⋄H. If f(u) ̸= f(v), then it is immediate
that codeG⋄H(u|f) ̸= codeG⋄H(v|f). If one of u and v belongs to G and the other
to a copy of H in G ⋄ H, then once again we immediate have codeG⋄H(u|f) ̸=
codeG⋄H(v|f). Hence we may assume that f(u) = f(v) and that u and v belong
to the different copies of H in G⋄H. Suppose that u belongs to Hi and v belongs
to Hr in G ⋄ H for some i and r where 1 ≤ i < r ≤ m. Since f(u) = f(v), we
infer that u = hji and v = hri for some j ∈ [n]. Thus, u is the vertex in the ith
copy of H corresponding to the vertex hj of H and v is the vertex in the rth copy
of H corresponding to the vertex hj of H.

Recall that Hi is the copy of H associated with the ith edge ei of G and
Hr is the copy of H associated with the rth edge er of G. Let ei = gig

′
i and let

er = grg
′
r. Since {gi, g′i} ̸= {gr, g′r}, we may assume renaming the ends of the

edges ei and er if necessary, that gi ̸= gr. Recall that the vertex gi is colored
with color i and the vertex gr with color r. Thus, xi is 2 in the color code
codeG⋄H(u|f) while xi is 1 in the color code codeG⋄H(v|f), and xr is 1 in the
color code codeG⋄H(u|f) while xr is 2 in the color code codeG⋄H(v|f). Thus,
codeG⋄H(u|f) ̸= codeG⋄H(v|f). Hence we have shown that if f(u) = f(v), then
in all cases codeG⋄H(u|f) ̸= codeG⋄H(v|f). Therefore, f is a recognizable coloring
of G ⋄H, which completes the proof.

Using a similar technique applied in the proof of Theorem 2.4 we obtain the
next result about rn(G ⋄H).

Proposition 3.3. rn(G⋄Kn) ≥ min
{
t : m ≤

(
t

n+2

)
+(n+1)

(
t

n+1

)
+ n(n+1)

2

(
t
n

)}
.

Proof. Let H = Kn and |E(G)| = m. Let H1, . . . ,Hm be the m vertex disjoint
copies ofH in G⋄H where the ith copyHi is associated with the ith edge ei = gig

′
i

of G for i ∈ [m], that is, end vertices of ei of G is adjacent in G ⋄ H to every
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vertex in the ith copy Hi of H for i ∈ [m]. Set

k = min

{
t : m ≤

(
t

n+ 2

)
+

(
t

n+ 1

)(
n+ 1

1

)
+

(
t

n

)(
n

1

)
+

(
t

n

)(
n

2

)}
= min

{
t : m ≤

(
t

n+ 2

)
+ (n+ 1)

(
t

n+ 1

)
+

n(n+ 1)

2

(
t

n

)}
.

According to Lemma 3.1, each recognizable coloring of G⋄H satisfies at least
one of the following cases for each i ∈ [m].

Case 1. The vertices of V (Hi)∪{gi, g′i} are colored with n+2 different colors.

Case 2. The vertices of V (Hi)∪{gi, g′i} are colored with n+1 different colors.
(In this case, the color of one of the vertices gi and gi, say g′i, is the same as the
color of one of the vertices of V (Hi) ∪ {gi}.)

Case 3. The vertices of V (Hi) ∪ {gi, g′i} are colored with n different colors.
(In this case, the color of vertices gi and g′i are the same as the color of one of
the vertices of V (Hi).)

In the first case, there are
(

t
n+2

)
ways,

{
c1, . . . , c( t

n+2)

}
, of choosing n + 2

colors from t possible colors for coloring the vertices of V (Hi) ∪ {gi, g′i}.
In the second case, there are

(
t

n+1

)
ways of choosing n + 1 colors from t

possible colors for coloring the vertices of V (Hi) ∪ {gi}. Moreover there are(
n+1
1

)
ways to select a color from the n+ 1 selected colors of vertices in V (Hi) ∪

{gi} to color the vertex g′i. Therefore, there are (n + 1)
(

t
n+1

)
possible choices{

c( t
n+2)+1, . . . , c( t

n+2)+(n+1)( t
n+1)

}
for coloring vertices of V (Hi) ∪ {gi, g′i} in the

second case.
In the third case, there are

(
t
n

)
ways of choosing n colors from t possible

colors for coloring the vertices of V (Hi). In addition, there are 1
2n(n + 1) ways

to select colors from the n selected colors of vertices in V (Hi) to color vertices gi
and g′i. Therefore, there are 1

2n(n+ 1)
(
t
n

)
possible choices{

c( t
n+2)+(n+1)( t

n+1)+1, . . . , c( t
n+2)+(n+1)( t

n+1)+
n(n+1)

2 ( t
n)

}
for coloring vertices of V (Hi) ∪ {gi, g′i} in the third case.

Therefore, m must be less than or equal to
(

t
n+2

)
+(n+1)

(
t

n+1

)
+ n(n+1)

2

(
t
n

)
.

We therefore infer that m ≤ k and consequently

rn(G ⋄Kn) ≥ min

{
t : m ≤

(
t

n+ 2

)
+ (n+ 1)

(
t

n+ 1

)
+

n(n+ 1)

2

(
t

n

)}
,

as desired.
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4. Finding a Recognizable Coloring of a Graph Using a Local
Search Algorithm

In this section, we intend to present a local search algorithm for finding a recog-
nizable coloring of a graph. This Local Search Algorithm (LSA) aims to find a
recognizable coloring for a graph by iteratively improving an initial solution.

In Algorithm 1, Maxit is the maximum number of iterations chosen as a
stopping criterion. C is a data structure that includes the following two fields.

• Value (C.value): This field represents the current coloring of the graph. It
is an array or list of integers, where each integer denotes the color assigned
to a specific vertex of the graph.

• Cost (C.cost): This field is a numerical value that evaluates the quality of
the current coloring, specifically measuring the number of conflicts in the
coloring.

These two fields are considered for Sn, the neighbor solution of C and Nsol,
the best neighbor solution, correspondingly.

After generating an arbitrary coloring and the corresponding map f , we
create a coding matrix. The ith row of this matrix is codeG(vi|f). The sub-
algorithm 2 compares every two row of coding matrix and return the number
of vertices for which codeG(u|f) = codeG(v|f). The algorithm continues by
generating neighboring solutions. If for a specific k, a neighbor solution is found
such that the code for every two vertices is different, we have a recognizable
coloring. Otherwise, it can try the algorithm for another value of k. In section 5,
where we explain some applications of Algorithm 1, we assert the methodology
for determining the parameter k for some graphs.

The details of the steps of this algorithm are as follows.

4.1. Explanation of the Main Algorithm (LSA)

Initialization

The algorithm begins by generating a random coloring for the graph vertices and
stored in C.value. Then it calculates the initial number of conflicts (C.cost) using
the sub-algorithm (CA). If no conflicts are detected in this initial coloring, it is
immediately returned as the solution.

Local search loop

If conflicts exist, the algorithm enters a local search loop. In each iteration, a
set of neighboring configurations (each differing from the current coloring in only
one vertex’s color) is generated. For each neighbor configuration, the algorithm
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evaluates the number of conflicts and updates the current solution if a neighboring
solution with fewer conflicts is found.

Updating best solutions

The best neighboring solution is compared to the current coloring. If it results
in fewer conflicts, it is added to a list of potential solutions (BestL). If a conflict-
free neighbor is found, it is also added to this list as an optimal solution. If
not, the algorithm sets the current coloring to the best neighboring solution and
increments the iteration count.

Termination

The process continues until either a conflict-free coloring is found, the maximum
number of iterations (Maxit) is reached, or no further improvement can be made.
Finally, the algorithm returns the best solution from the list BestL, which contains
the configuration with the lowest number of conflicts.

4.2. Explanation of the Conflict Calculation Algorithm (CA)

Coding Matrix

It generates a coding matrix (CM). The ith row of this matrix is codeG(vi|f).

Conflict counting

The algorithm then compares each pair of rows in the matrix CM. If two rows
are identical (indicating that two vertices have the same code), this is counted as
a conflict.

Return

After processing all pairs, the algorithm returns the total count of conflicts for
the current coloring configuration.

4.3. Performance considerations

The algorithm’s effectiveness may vary based on the type of graph. For graphs
with a high number of vertices and complex connectivity, it may take more itera-
tions to find a low-conflict coloring or might not reach a conflict-free configuration
within the set limit.
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Algorithm 1 Local Search Algorithm to find a recognizable coloring (LSA)

Require: Graph G, the number of colors (k), the number of iterations, Maxit.
Ensure: a recognizable coloring for G.
1: Generate an empty list BestL. //List to store potential solutions.
2: Generate an arbitrary vertex coloring, C.value, for G.
3: Call sub-algorithm 2 for C.value (C.cost← CA(C.value, n(G), k).
4: if C.cost = 0 then
5: Return C. //Return conflict-free coloring.
6: else
7: Let count← 1. //count is the iteration counter.
8: while count <= Maxit or C.cost ̸= 0 do
9: Generate neighborhood set NC of C.value, where the value of each ele-

ment in this set differs from C.value in the color of only one vertex.
10: gbest ← C.cost.
11: Nsol← C.
12: while NC ̸= ∅ do
13: Select an element, Sn.value of NC and Call CA for it (Sn.cost ←

CA(Sn.value, n(G), k)).
14: if Sn.cost < gbest then
15: Nsol← Sn and gbest ← Sn.cost.
16: end if
17: NC ← NC − {Sn.value}.
18: end while
19: if C.cost <= Nsol.cost then
20: Add C to the BestL.
21: else
22: if Nsol.cost = 0 then
23: Add Nsol to the BestL.
24: else
25: let C ← Nsol, count← count+ 1 and go to the line 8.
26: end if
27: end if
28: end while
29: end if
30: Return the best solution in BestL. //Return element in BestL with the

fewest conflicts.

5. Experimental Results

A fullerene graph is a planar 3-connected cubic graph whose faces are pentagons
and hexagons. In this section, our aim is to determine the recognition number
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Algorithm 2 Calculating the number of conflicts in a coloring (CA)

Require: An arbitrary coloring, C.value, the number of graph’s vertices (n), the
number of colors (k).

Ensure: The number of conflicts for C.value, (conf).
1: Generate the coding matrix CM, which is a n × (k + 1) matrix that each of

its rows denotes the code of a vertex.
2: Let conf ← 0.
3: Compare the rows of matrix CM pairwise, and if they are equal let conf ←

conf + 1.
4: Return conf .

of some fullerene graphs and explain the application of the algorithm presented
in the previous section. For this purpose, we have implemented Algorithm 1,
which is coded in Python 3.11.5 64-bit (CPU Intel(R) Core(TM) i5-4300M CPU
@ 2.60GHz 2.60 GHz). Descriptions of the sample graphs are provided in Sections
5.1 to 5.3, and Table 1 presents the recognition number obtained by the algorithm
(LSArn), the bound obtained from Theorem 5.1 (rnb), the number of iterations
required for the algorithm to reach the result (NIter), and the CPU time. For
all graphs, the maximum number of iterations was set to 500 (Maxit = 500), and
the iterations reported in the table indicate the iteration at which the number of
conflicts reached zero (conf = 0) and the algorithm terminated. It is clear that
the number of vertices in the graph, and consequently the number of neighbor-
hoods that need to be examined, as well as the number of colors, are factors that
affect the number of algorithm iterations and CPU time.

Before reporting the obtained results, we recall the following theorem.

Theorem 5.1 [1]. If c is a k-coloring of the vertices of a graph G, then the number
of different possible color codes of the vertices of degree r in G is k

(
r+k−1

r

)
.

By replacing r = 3 in Theorem 5.1, we have the below relation for a fullerene
graph G

n(G) ⩽
k4 + 3k3 + 2k2

6
.(5.1)

Therefore, to find the recognizable coloring of the desired fullerene graph using
Algorithm 1, it suffices to find the minimum value of k that satisfies Theorem
5.1, as input to the algorithm.

5.1. Recognizable coloring for dodecahedral graph

Given Theorem 5.1, and considering the degree of vertices in the dodecahedral
graph Γ, which are all of degree 3, the number of distinct codes with 2 colors
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(k = 2) is not more than 8. In other words, if the number of vertices in the graph
exceeds 8, it is not possible to color it with only 2 colors. Therefore, rn(Γ) ⩾ 3.

Figure 3. Dodecahedral graph.

A recognizable coloring with 3 colors for this graph is obtained by Algorithm
1 and can be observed in Figure 3.

5.2. Recognizable coloring for (BN)16

According to Theorem 5.1, for a graph with vertices of degree 3 and k = 3 colors,
it is possible to construct 30 distinct codes. This implies that if the number of
vertices exceeds 30, it is not possible to have a recognizable coloring for the graph
with 3 colors. Since the number of vertices in (BN)16 is 32, then rn((BN)16) ⩾ 4.
A recognizable coloring with 4 colors for this graph can be observed in Figure 4.

Figure 4. (BN)16 graph.

5.3. More examples of fullerene graphs

A fullerene graph is a 3-regular graph, for which we can find the smallest value
of k satisfying Theorem 5.1 and use it as the input for Algorithm 1. Figure 5
represents the results obtained from Algorithm 1 for some fullerene graphs.
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Graph name LSArn rnb NIter CPUtime(sec)

dodecahedral 3 3 255 2.40

(BN)16 4 4 73 1.80

(12, 2)−Generalizedpeterson 4 3 15 0.24

26− fullerene 4 3 49 0.90

(3, 6)− fullerene 4 3 41 0.96

Truncatedicosahedral 6 4 22 2.08

70− fullerene 6 4 185 22.45

Table 1. The performance of LSA for sample graphs.

Figure 5. (a) (12,2)-Generalized Peterson graph (b) 26-fullerene graph (c) (3,6)-fullerene
(F )6k (d) Truncated icosahedral graph (e) 70-fullerene graph 4085.

In general, for determining the parameter k as an input to Algorithm 1, it
is clear that for each graph G, 2 ⩽ k ⩽ nmax, where if ni denotes the number of
vertices with degree i then nmax = max{ni : 1 ⩽ i ⩽ △(G)}. In the worst-case,
we can try the algorithm for various values of 2 ⩽ k ⩽ nmax.

6. Conclusion

In this paper, following the definition of recognizable coloring, we attempt to
specifically articulate this type of coloring for corona product graphs. Addition-
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ally, a local search algorithm is presented for finding recognizable coloring of any
graph G. As an application of the proposed algorithm, recognizable coloring of
some fullerene graphs is achieved using this algorithm.
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