Discussiones Mathematicae Graph Theory xx (xxxx) 1–9 https://doi.org/10.7151/dmgt.2572

ON TWO CONJECTURES REGARDING THE NEIGHBOR-LOCATING CHROMATIC NUMBER

Ali Ghanbari¹

Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran Babolsar, Iran

e-mail: ali.ghanbari239@gmail.com

AND

Doost Ali Mojdeh²

Department of Mathematics Faculty of Mathematical Sciences University of Mazandaran Babolsar, Iran

e-mail: damojdeh@umz.ac.ir

Abstract

In the paper (Discussiones Mathematicae Graph Theory 43 (2023) 659–675) has been posed two conjectures on neighbor-locating coloring of graphs. In this paper, we disprove one of them by presenting a family of counterexamples and prove the another one.

Keywords: coloring, neighbor-locating coloring, conjectures. 2020 Mathematics Subject Classification: 05C15, 05C76.

1. INTRODUCTION

Let G = (V, E) be a simple, finite, connected and undirected graph, with the set of vertices V = V(G) and the set of edges E = E(G). The open neighborhood of a vertex v in G, denoted by $N_G(v) = N(v)$, is the set of vertices adjacent to

¹ORCID: 0009-0005-5875-4838.

²Corresponding author, ORCID: 0000-0001-9373-3390.

v and the closed neighborhood of v is $N[v] = N(v) \cup \{v\}$. The minimum and the maximum degree of G is the smallest and largest number of neighbors of a vertex in G and denoted by $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. A tree Tis a connected graph with no cycle. A vertex of degree 1 is called a leaf or an end-vertex and a support vertex is a vertex adjacent to a leaf. We use P_n and C_n for the path and cycle graphs of order n, and the notations [n] and ℓ show the set $\{1, 2, \ldots, n\}$ and the number of leaves in G, respectively. For the terminologies and notation not herein, see [11].

A proper k-coloring of a graph G, $(k \in \mathbb{N})$, is a function f defined from V(G) to a set of colors [k] in which every two adjacent vertices have different colors. Minimum k for coloring of G is called the chromatic number of G denoted by $\chi(G) = k$, and the set of color classes is denoted by $\pi = \{S_1, \ldots, S_k\}$ where S_i is the class of vertices with color i. The color-degree of a vertex v is defined to be the number of different colors of π comprising some vertex of N(v). For a connected graph G and two vertices x, y in G, the distance between x and y is denoted by d(x, y). For a vertex $v \in V(G)$ and a set of vertices $S \subseteq V(G)$, we use $d(v, S) = \min\{d(v, w) : w \in S\}$ for the distance between v and S.

A k-coloring $\pi = \{S_1, S_2, \ldots, S_k\}$ is called a metric locating (ML-coloring or L-coloring) if for every $i \in \{1, 2, \ldots, k\}$ and for any two different vertices $u, v \in S_i$, there exists $j \in \{1, 2, \ldots, k\}$ in which $d(u, S_j) \neq d(v, S_j)$. Minimum k for ML-coloring of a graph G, is called metric-locating chromatic number (ML-chromatic number) of G and is denoted by $\chi_L(G) = k$, [3, 5, 6]. Recently, Korivand *et al.* worked on the edge-locating coloring of a graph, which is not without pleasure to see this concept in [9].

A k-neighbor-locating coloring of a graph G is a partition of V(G) to $\pi = \{S_1, S_2, \ldots, S_k\}$ in which for any pair of distinct vertices $u_1, u_2 \in S_i$, the set of colors of the neighborhood of u_1 is different from the set of colors of the neighborhood of u_2 . Minimum k for a neighbor-locating coloring (an NL-coloring) of a graph G is called the neighbor-locating chromatic number (NL-chromatic number) of G and is denoted by $\chi_{NL}(G) = k$. This concept was defined for the first time, under the name of adjacency locating coloring (L₂-coloring) of G by Behtoei and Anbarloei in [4] and worked on. Also, its chromatic number was named L₂-chromatic number of G and denoted by $\chi_{L_2(G)}$ of G. For more information on this area, see [1, 2, 3, 4, 7, 8, 10].

Alcón *et al.* [2] have been posed two conjectures as follows.

Conjecture 1 ([2] Conjecture 14). Let G be a graph of diameter d. Then $\chi_{NL}(G) \ge \chi_{NL}(P_{d+1})$.

Conjecture 2 ([2] Conjecture 13). Let $k \ge 2$. If T is a tree with $\chi_{NL}(T) = k$, then $\Delta(T) \le (k-1)^2$, and this bound is tight for every integer $k \ge 2$.

The paper is organized as follows. In the next section, we shall see the prelimi-

nary results. We disprove Conjecture 1 by presenting a family of counterexamples in Section 3, and we prove Conjecture 2 in Section 4.

2. Preliminary Results

In this section, we state some preliminary results related to NL-coloring of graphs, which are necessary to prove the results of the sections 3 and 4.

Remark 1 ([2] Remark 1). Let G be a graph of order n and maximum degree Δ . Let $\Pi = \{S_1, \ldots, S_k\}$ be a k-NL-coloring of G. There exist at most $\binom{k-1}{j}$ vertices in S_i of color-degree j, for every $1 \leq i \leq k$, where $1 \leq j \leq k - 1$ and consequently, $|S_i| \leq \sum_{j=1}^{\Delta} \binom{k-1}{j}$. For $\chi_{NL}(G) = k \geq 3$ and $1 \leq j \leq \Delta$, there are at most $a_j(k) = k\binom{k-1}{j}$ vertices of color-degree j in G. We denote by $\ell(k)$ the maximum number of vertices of color-degree 1 or 2, that is $(\ell(k) = a_1(k) + a_2(k))$. Therefore,

$$a_1(k) = k(k-1)$$
 $a_2(k) = \frac{k(k-1)(k-2)}{2}$ $\ell(k) = k\binom{k}{2} = \frac{k^3 - k^2}{2}.$

From Remark 1, if $\chi_{NL}(G) = k \ge 2$, then the number of leaves (vertices of degree 1) is at most k(k-1).

Theorem 3 ([1] Theorem 1). Let G be a non-trivial graph of order n and maximum degree Δ . Let $\chi_{NL}(G) = k$. If G has no isolated vertices and $\Delta \leq k - 1$, then

$$n \le k \sum_{j=1}^{\Delta} \binom{k-1}{j}.$$

Theorem 4 ([4] Theorem 3.6). For a positive integer $n \ge 2$, $\chi_{NL}(P_n) = \chi_{L_2(P_n)} = m$, where $m = \min\{k : k \in \mathbb{N}, n \le \frac{1}{2}(k^3 - k^2)\}$. More precisely, there exist an adjacency locating m-coloring f_n of the path $P_n = v_1v_2\cdots v_n$ with the color set $\{1, 2, \ldots, m\}$, and two specified colors (say "1" and "2") such that f_n satisfies the following properties.

(a) $f_n(v_{n-1}) = 2$ and $f_n(v_n) = 1$.

(b) If
$$n \ge 9$$
, then $f_n(v_{n-2}) = m$.

(c) If $n \ge 9$ and $n \ne \frac{1}{2}(m^3 - m^2) - 1$, then $f_n(v_1) = 2$ and $f_n(v_2) = 1$.

3. Conjecture 1

In this section, we discuss on Conjecture 1. We show that for any $k \ge 4$ there is a graph G of diameter d and a path P_{d+1} , so that $\chi_{NL}(G) = k$ and $\chi_{NL}(P_{d+1}) = k + 1$. First, let us see the following example. **Example 1.** Consider the path $P_{\ell(4)+1}$ with the *NL*-chromatic number 5 so that the vertices of $P_{\ell(4)}$ can be *NL*-colored with colors 1, 2, 3, 4 and the vertex $v_{\ell(4)+1=25}$ is assigned with color 5. The graph *G* has diameter 24 and $\chi_{NL}(G) = 4$, (see Figure 1).

Figure 1. Graph G with diam(G) = 24 and $\chi_{NL}(G) = 4 < 5 = \chi_{NL}(P_{25})$.

Next, we generalize Example 1 for any integer $k \ge 4$.

Theorem 5. Let $k \ge 4$ be an integer. There exist a graph G with diameter $d = \ell(k)$ for which $\chi_{NL}(G) = k$ and $\chi_{NL}(P_{\ell(k)+1}) = k + 1$.

Proof. Assume that $d = \ell(k)$ and consider the path P_{d+1} . From Theorem 4, $\chi_{NL}(P_{d+1}) = k + 1$ and $\chi_{NL}(P_d) = k$. Without loss of generality, for NL-coloring of P_d , we can use k colors, and for NL-coloring of P_{d+1} we can use k + 1 colors, for which, we assign color k + 1 to v_{d+1} only.

Now, according to Example 1, we construct a graph G with diameter d and $\chi_{NL}(G) = k$. Add two vertices u, w to P_{d+1} and make adjacent to v_d, v_{d+1} for which u and w are adjacent too. We fix the colors of the vertices v_1, \ldots, v_d , such as the colors in P_d , we assign three distinct colors from [k] to the vertices u, w, v_{d+1} in which four colors assigned to v_d, u, w, v_{d+1} are distinct in [k]. Since any vertex v_i for $1 \le i \le d-1$ has color degree at most 2 and each of four vertices v_d, u, w, v_{d+1} in G has color degree 3 so that any two of them have distinct color neighbors. Therefore, G and P_{d+1} have same diameter d with $\chi_{NL}(G) = k$ and $\chi_{NL}(P_{d+1}) = k + 1$.

Remark 2. For $k \geq 5$ one can construct other family of graphs G so that $\operatorname{diam}(G) = d$ and $\chi_{NL}(G) < \chi_{NL}(P_{d+1})$. See the following.

Example 2. Consider the path $P_{\ell(k)+5}$ where $k \geq 5$. Assume without loss of generality that the vertices $v_{\ell(k)-1}$ and $v_{\ell(k)}$ take colors 1 and 2, respectively, in an *NL*-coloring of path $P_{\ell(k)}$. If we assign the vertices $v_{\ell(k)+1}$, $v_{\ell(k)+2}$, $v_{\ell(k)+3}$,

 $v_{\ell(k)+4}$ and $v_{\ell(k)+5}$ the colors k+1, 4, 1, k+1, 4, respectively, then it is easy to see that this coloring is an *NL*-coloring of $P_{\ell(k)+5}$.

Now we create a graph G from $P_{\ell(k)+5}$ as follows. Add three vertices u, v, w to $P_{\ell(k)+5}$, so that we make adjacent u to $v_{\ell(k)}$, $v_{\ell(k)+1}$, $v_{\ell(k)+2}$, and v, w to $v_{\ell(k)+3}$, $v_{\ell(k)+4}$, $v_{\ell(k)+5}$. By the construction we assign color 5 to u, color 3 to $v_{\ell(k)+1}$, color 2 to v, color 5 to w and color 3 to $v_{\ell(k)+4}$. These assignments exist an NL-coloring for G with k colors. Therefore, G and $P_{\ell(k)+5}$ have the same diameter $\ell(k) + 4$ but $\chi_{NL}(G) = k < k + 1 = \chi_{NL}(P_{\ell(k)+5})$.

 $P_{\ell(k)+5}$ with $\chi_{NL}(P_{\ell(k)+5}) = k+1$

Figure 2. Graph G is obtained from $P_{\ell(k)+5}$, where diam $(G) = \ell(k) + 4$ and $\chi_{NL}(G) = k < k + 1$.

As it can be seen, we have disproved Conjecture 1, but our examples show that $\chi_{NL}(G) = k = \chi_{NL}(P_{d+1}) - 1$ while the diam(G) = d.

We imagine that for $k \ge 15$, we can find a graph G with $diam(G) = \ell(k)$ and $\chi_{NL}(G) \le k - 1$ where $\chi_{NL}(P_{\ell(k)+1}) = k + 1$, and there may be exist a similar method for showing it. However, we pose the following question for the future research.

Question. Does there exist a graph G such that $\operatorname{diam}(G) = d$ and $\chi_{NL}(G) = k < \chi_{NL}(P_{d+1}) - 1$ for each $k \ge 4$?

Remark 3. We should remind that there is a family of graphs G whose diameter is d but $\chi_{NL}(G) \geq \chi_{NL}(P_{d+1})$. For example, consider the broom graph, (see Figure 3.)

Let $\ell(k-1) + 1 \leq d \leq \ell(k) - 1$. Then $\chi_{NL}(P_{d+1}) = k$. Let G the broom graph, (see Figure 3). Then it is easy to see that G has diameter d and $\chi_{NL}(G) \geq n + k = n + \chi_{NL}(P_{d+1})$.

$$G \quad \underbrace{v_1 \quad v_2 \quad v_3 \quad v_4}_{\chi_L(G) \ge n+k, \quad \chi_{NL}(P_d) = k} \cdots \underbrace{v_{d-3} \quad v_{d-2} \quad v_{d-1} \quad v_d}_{u_1 \quad \dots \quad v_{k+1}}$$

Figure 3. Graph G with $\chi_{NL}(G) > \chi_{NL}(P_d)$.

4. Conjecture 2

In this section, we prove Conjecture 2. We state this conjecture as a theorem.

Theorem 6 (Conjecture 2). Let $k \ge 2$. If T is a tree with $\chi_{NL}(T) = k$, then $\Delta(T) \le (k-1)^2$, and this bound is tight for every integer $k \ge 2$.

Proof. The tightness has been shown by Alcon *et al.* in [2]. We show that $\Delta(T) \leq (k-1)^2$ by proving a sequence of results.

Lemma 7. Let T be a tree and $\chi_{NL}(T) = k$. Let v be a vertex of maximum degree $\Delta(T)$. If $\Delta(T) \geq (k-1)^2 + 1$, then the number of vertices of degree 1 or 2 in N(v) is at least and at most

$$(k-1)^2 - (k-3)$$
 and $(k-1)^2$,

respectively.

Proof. Let T be a tree with $\chi_{NL}(T) = k$ and $\Delta(T) \ge (k-1)^2 + 1$.

First, we show the at least. Assume to the contrary, it is at most $(k-1)^2 - (k-3) - 1 = (k-1)^2 - (k-2)$. Then the number of vertices of degree at least 3 in N(v) is at least $k-1 = (k-1)^2 + 1 - ((k-1)^2 - (k-2))$. Since finally, at least two leaves are issued from each of the neighbors of degree at least 3 in N(v), and since the sum of vertices of degrees of at least 3 and the vertices of degrees 2 or 1 is constant, so if the number of vertices of degree 2 or 1 decreases, then the number of vertices of degrees 3 increases, and the number of leaves on the tree will increase. Therefore, the number of leaves in T is at least $(k-1)^2 - (k-2) + 2(k-1) = k(k-1) + 1$, that is a contradiction.

Second, we show the at most. Let the color of vertex v be 1 in NL-coloring of T. Then the number of vertices of color $i \in [k] \setminus \{1\}$ of degrees 1 or 2 in N(v)is at most k-1 (although the vertex of degree 1 in N(v) with color i is not more than 1). If the vertex u of degree 2 in N(v) is assigned with color i, and the vertex in $N(u) \setminus \{v\}$ is w, then whenever there does not exist a vertex of degree 1 of color i in N(v), the colors of (v, u, w) are $(1, i, 1), (1, i, 2), \ldots, (1, i, i-1),$ $(1, i, i+1), \ldots, (1, i, k)$ in NL-coloring of T. On the other hand, since the color i changes in $[k] \setminus \{1\}$, we deduce that the color of a vertex of degree 1 or 2 adjacent to vertex v is at most $(k-1)^2$.

Lemma 8. Let T be a tree and the data in Lemma 7 holds for T. If r is the number of vertices of degree 1 in N(v), then $r \leq k - 1$ and these r vertices take r different colors.

Proof. Since the given r vertices are leaves and adjacent to the vertex v, in any NL-coloring of T, their colors should be different. On the other hand, since $\chi_{NL}(T) = k$, there exist k - 1 colors other than color 1. Thus $r \leq k - 1$.

Lemma 9. Let T be a tree and the data in Lemma 7 holds for T. Assume that u is a vertex of degree 2 in N(v) with color i. If w is a vertex in $N(u) \setminus \{v\}$, and no vertex of degree 1 in N(v) take the color i, then the vertex w can be NL-colored with the color in $[k] \setminus \{i\}$ and if the vertex of degree 1 in N(v) is assigned with the color i, then the vertex w can be NL-colored with the color i, then the vertex w can be NL-colored with the color in $[k] \setminus \{i\}$.

Proof. If no vertex of degree 1 in N(v) take the color *i*, then the number of vertices *u* of degree 2 in N(v) with color *i* is at most k-1. On the other hand, if $w \in N(u) \setminus \{v\}$, and *u* is assigned with color *i*, then the color of *w* is one of the colors in $[k] \setminus \{i\}$. If the vertex of degree 1 in N(v) is assigned with the color *i*, the proof is clear from the part 1. Therefore, the result is observed.

Lemma 10. Let T be a tree and the data in Lemma 7 holds for T. Then, the number of vertices of degree $n \ge 3$ in N(v) is at least 1 and at most k - 2, and moreover, these vertices can be assigned with same color in an NL-coloring of T.

Proof. From Lemma 7, the number of vertices of degree $n \ge 3$ is at least 1 and at most k-2.

Now, let x_1, x_2, \ldots, x_s for $(k-1)^2 - (k-3) \le s \le (k-1)^2$ be the vertices of degree at most 2 in N(v) and let y_1, y_2, \ldots, y_t for $1 \le t \le (k-2)$ be the vertices of degree $n \ge 3$ in N(v). Without loss of generality and with the pattern used in Lemma 7, we can use colors $2, 3, \ldots, k-1$ for vertices x_i s, and then we can use color k for vertices of y_j s in an NL-coloring.

Observation 11. Let z, u, x be three successive vertices in T where u is of degree 2 and adjacent to z and x. If z, u, x are assigned with colors j, i, j, respectively, then there does not exist the leaf and its support with colors i and j, respectively, in any NL-coloring of T.

Observation 12. Let T be a tree and the data in Lemma 7 holds for T. Then the number of leaves in T is $\ell \ge (k-1)^2 + 2$. **Proof.** Since the number of vertices of degree $r \leq 2$ in N(v) is at most $(k-1)^2$, and the number of vertices of degree $n \geq 3$ in N(v) is at least 1. Therefore, $\ell \geq (k-1)^2 + 2$ in T.

Theorem 13. Let T be a tree and the data in Lemma 7 holds for T. Then, in any NL-coloring of T, the support vertices and their leaves cannot be NL-colorable with k colors.

Proof. Suppose from Lemma 8, there exist $0 \le r \le k-1$ leaves in N(v) and without loss of generality, whose be assigned with colors $2, 3, \ldots, r+1$. Thereby, we have at least $(k-1)^2 - (k-3) - r$ vertices of degree 2 in N(v). This result and Observation 12 imply that, for the vertices u and $w \in \{N(u) \setminus \{v\}\}$, the triple (v, u, w) can be NL-colored as follows.

$$[(1, r+2, 1), (1, r+3, 1), \dots, (1, k, 1); (1, i, 2), (1, i, 3), \dots, (1, i, i-1), (1, i, i+1), (1, i, k); (1, k, 2)], \text{ where } i \in [k-1] \setminus \{1\}.$$

On the other hand, from Observation 12, the number of leaves $\ell \ge (k-1)^2+2$. Now, from Observation 11 and the colors assigned to the leaves in N(v) and (v, u, w), we have at most $(r \le k - 1)$ leaves in N(v), and in addition for any color *i*, there exist at most k-2 leaves with color *i* which can be neighbor to any vertex with color in $[k] \setminus \{1, i\}$. Since $2 \le i \le k$, the number of leaves ℓ of *T* is at most $k-1+(k-2)(k-1)=(k-1)^2$, that is a contradiction.

Now, the proof of $\Delta(T) \leq (k-1)^2$ is deduced from Lemmas 7–10, Observations 11–12 and Theorem 13.

Acknowledgements

Thanks are due to the anonymous referees for meticulous reading of the paper and useful comments and suggestions that helped to improve its results.

References

- [1] L. Alcón, M. Gutierrez, C. Hernando, M. Mora and I.M. Pelayo, Neighbor-locating colorings in graphs, Theoret. Comput. Sci. 806 (2020) 144–155. https://doi.org/10.1016/j.tcs.2019.01.039
- [2] L. Alcón, M. Gutierrez, C. Hernando, M. Mora and I.M. Pelayo, *The neighbor-locating-chromatic number of trees and unicyclic graphs*, Discuss. Math. Graph Theory 43 (2023) 659–675. https://doi.org/10.7151/dmgt.2392
- [3] A. Behtoei and M. Anbarloei, A bound for the locating chromatic numbers of trees, Trans. Comb. 4 (2015) 31–41. https://doi.org/10.22108/toc.2015.6024

- [4] A. Behtoei and M. Anbarloei, The locating chromatic number of the join of graphs, Bull. Iranian Math. Soc. 40 (2014) 1491–1504.
- [5] A. Behtoei and B. Omoomi, On the locating chromatic number of the Cartesian product of graphs, Ars Combin. 126 (2016) 221–235.
- [6] G. Chartrand, D. Erwin, M.A. Henning, P.J. Slater and P. Zhang, *The locating-chromatic number of a graph*, Bull. Inst. Combin. Appl. 36 (2002) 89–101.
- [7] A. Ghanbari and D.A. Mojdeh, Neighbor locating coloring on graphs: Three products, J. Combin. Math. Combin. Comput. 122 (2024) 73–89. https://doi.org/10.61091/jcmcc122-06
- [8] C. Hernando, M. Mora, I.M. Pelayo, L. Alcón and M. Gutierrez, Neighbor-locating coloring: graph operations and extremal cardinalities, Electron. Notes Discrete Math. 68 (2018) 131–136. https://doi.org/10.1016/j.endm.2018.06.023
- M. Korivand, D.A. Mojdeh, E.T. Baskoro and A. Erfanian, *Edge-locating coloring of graphs*, Electron. J. Graph Theory Appl. (EJGTA) **12** (2024) 55–73. https://doi.org/10.5614/ejgta.2024.12.1.6
- [10] D.A. Mojdeh, On the conjectures of neighbor locating coloring of graphs, Theoret. Comput. Sci. 922 (2022) 300-307. https://doi.org/10.1016/j.tcs.2022.04.031
- [11] D.B. West, Introduction to Graph Theory (Second Edition) (Prentice Hall, USA, 2001).

Received 6 July 2024 Revised 17 November 2024 Accepted 17 November 2024 Available online 6 November 2024

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/