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Abstract

In the paper (Discussiones Mathematicae Graph Theory 43 (2023) 659–
675) has been posed two conjectures on neighbor-locating coloring of graphs.
In this paper, we disprove one of them by presenting a family of counterex-
amples and prove the another one.
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1. Introduction

Let G = (V,E) be a simple, finite, connected and undirected graph, with the set
of vertices V = V (G) and the set of edges E = E(G). The open neighborhood
of a vertex v in G, denoted by NG(v) = N(v), is the set of vertices adjacent to
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v and the closed neighborhood of v is N [v] = N(v) ∪ {v}. The minimum and
the maximum degree of G is the smallest and largest number of neighbors of a
vertex in G and denoted by δ = δ(G) and ∆ = ∆(G), respectively. A tree T
is a connected graph with no cycle. A vertex of degree 1 is called a leaf or an
end-vertex and a support vertex is a vertex adjacent to a leaf. We use Pn and Cn

for the path and cycle graphs of order n, and the notations [n] and ℓ show the set
{1, 2, . . . , n} and the number of leaves in G, respectively. For the terminologies
and notation not herein, see [11].

A proper k-coloring of a graph G, (k ∈ N), is a function f defined from V (G)
to a set of colors [k] in which every two adjacent vertices have different colors.
Minimum k for coloring of G is called the chromatic number of G denoted by
χ(G) = k, and the set of color classes is denoted by π = {S1, . . . , Sk} where Si

is the class of vertices with color i. The color-degree of a vertex v is defined to
be the number of different colors of π comprising some vertex of N(v). For a
connected graph G and two vertices x, y in G, the distance between x and y is
denoted by d(x, y). For a vertex v ∈ V (G) and a set of vertices S ⊆ V (G), we
use d(v, S) = min{d(v, w) : w ∈ S} for the distance between v and S.

A k-coloring π = {S1, S2, . . . , Sk} is called a metric locating (ML-coloring or
L-coloring) if for every i ∈ {1, 2, . . . , k} and for any two different vertices u, v ∈ Si,
there exists j ∈ {1, 2, . . . , k} in which d(u, Sj) ̸= d(v, Sj). Minimum k for ML-
coloring of a graph G, is called metric-locating chromatic number (ML-chromatic
number) of G and is denoted by χL(G) = k, [3, 5, 6]. Recently, Korivand et al.
worked on the edge-locating coloring of a graph, which is not without pleasure
to see this concept in [9].

A k-neighbor-locating coloring of a graph G is a partition of V (G) to π =
{S1, S2, . . . , Sk} in which for any pair of distinct vertices u1, u2 ∈ Si, the set of
colors of the neighborhood of u1 is different from the set of colors of the neigh-
borhood of u2. Minimum k for a neighbor-locating coloring (an NL-coloring)
of a graph G is called the neighbor-locating chromatic number (NL-chromatic
number) of G and is denoted by χNL(G) = k. This concept was defined for
the first time, under the name of adjacency locating coloring (L2-coloring) of
G by Behtoei and Anbarloei in [4] and worked on. Also, its chromatic number
was named L2-chromatic number of G and denoted by χL2(G) of G. For more
information on this area, see [1, 2, 3, 4, 7, 8, 10].

Alcón et al. [2] have been posed two conjectures as follows.

Conjecture 1 ([2] Conjecture 14). Let G be a graph of diameter d. Then χNL(G)
≥ χNL(Pd+1).

Conjecture 2 ([2] Conjecture 13). Let k ≥ 2. If T is a tree with χNL(T ) = k,
then ∆(T ) ≤ (k − 1)2, and this bound is tight for every integer k ≥ 2.

The paper is organized as follows. In the next section, we shall see the prelimi-
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nary results. We disprove Conjecture 1 by presenting a family of counterexamples
in Section 3, and we prove Conjecture 2 in Section 4.

2. Preliminary Results

In this section, we state some preliminary results related toNL-coloring of graphs,
which are necessary to prove the results of the sections 3 and 4.

Remark 1 ([2] Remark 1). Let G be a graph of order n and maximum degree
∆. Let Π = {S1, . . . , Sk} be a k-NL-coloring of G. There exist at most

(
k−1
j

)
vertices in Si of color-degree j, for every 1 ≤ i ≤ k, where 1 ≤ j ≤ k − 1 and
consequently, |Si| ≤

∑∆
j=1

(
k−1
j

)
. For χNL(G) = k ≥ 3 and 1 ≤ j ≤ ∆, there are

at most aj(k) = k
(
k−1
j

)
vertices of color-degree j in G. We denote by ℓ(k) the

maximum number of vertices of color-degree 1 or 2, that is (ℓ(k) = a1(k)+a2(k)).
Therefore,

a1(k) = k(k − 1) a2(k) =
k(k − 1)(k − 2)

2
ℓ(k) = k

(
k

2

)
=

k3 − k2

2
.

From Remark 1, if χNL(G) = k ≥ 2, then the number of leaves (vertices of
degree 1) is at most k(k − 1).

Theorem 3 ([1] Theorem 1). Let G be a non-trivial graph of order n and max-
imum degree ∆. Let χNL(G) = k. If G has no isolated vertices and ∆ ≤ k − 1,
then

n ≤ k

∆∑
j=1

(
k − 1

j

)
.

Theorem 4 ([4] Theorem 3.6). For a positive integer n ≥ 2, χNL(Pn) = χL2(Pn) =

m, where m = min{k : k ∈ N, n ≤ 1
2(k

3 − k2)}. More precisely, there exist an
adjacency locating m-coloring fn of the path Pn = v1v2 · · · vn with the color set
{1, 2, . . . ,m}, and two specified colors (say “1” and “2”) such that fn satisfies the
following properties.

(a) fn(vn−1) = 2 and fn(vn) = 1.

(b) If n ≥ 9, then fn(vn−2) = m.

(c) If n ≥ 9 and n ̸= 1
2(m

3 −m2)− 1, then fn(v1) = 2 and fn(v2) = 1.

3. Conjecture 1

In this section, we discuss on Conjecture 1. We show that for any k ≥ 4 there is
a graph G of diameter d and a path Pd+1, so that χNL(G) = k and χNL(Pd+1) =
k + 1. First, let us see the following example.
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Example 1. Consider the path Pℓ(4)+1 with the NL-chromatic number 5 so
that the vertices of Pℓ(4) can be NL-colored with colors 1, 2, 3, 4 and the vertex
vℓ(4)+1=25 is assigned with color 5. The graph G has diameter 24 and χNL(G) = 4,
(see Figure 1).

v1

v2 v24

v25

1 2 4 1 2 3 4 2 4 2 3 2 3 1 4 1 4 3 4 3 1 3 1 2 5

Pℓ(4)+1 = P25 with χNL(P25) = 5

v1 v2 v24 v25
u

w

1 2 4 1 2 3 4 2 4 2 3 2 3 1 4 1 4 3 4 3 1 3 1 2
3

4

1G with diameter 24 and χNL(G) = 4

Figure 1. Graph G with diam(G) = 24 and χNL(G) = 4 < 5 = χNL(P25).

Next, we generalize Example 1 for any integer k ≥ 4.

Theorem 5. Let k ≥ 4 be an integer. There exist a graph G with diameter
d = ℓ(k) for which χNL(G) = k and χNL(Pℓ(k)+1) = k + 1.

Proof. Assume that d = ℓ(k) and consider the path Pd+1. From Theorem 4,
χNL(Pd+1) = k + 1 and χNL(Pd) = k. Without loss of generality, for NL-
coloring of Pd, we can use k colors, and for NL-coloring of Pd+1 we can use k+1
colors, for which, we assign color k + 1 to vd+1 only.

Now, according to Example 1, we construct a graph G with diameter d and
χNL(G) = k. Add two vertices u,w to Pd+1 and make adjacent to vd, vd+1 for
which u and w are adjacent too. We fix the colors of the vertices v1, . . . , vd,
such as the colors in Pd, we assign three distinct colors from [k] to the vertices
u,w, vd+1 in which four colors assigned to vd, u, w, vd+1 are distinct in [k]. Since
any vertex vi for 1 ≤ i ≤ d−1 has color degree at most 2 and each of four vertices
vd, u, w, vd+1 in G has color degree 3 so that any two of them have distinct color
neighbors. Therefore, G and Pd+1 have same diameter d with χNL(G) = k and
χNL(Pd+1) = k + 1.

Remark 2. For k ≥ 5 one can construct other family of graphs G so that
diam(G) = d and χNL(G) < χNL(Pd+1). See the following.

Example 2. Consider the path Pℓ(k)+5 where k ≥ 5. Assume without loss of
generality that the vertices vℓ(k)−1 and vℓ(k) take colors 1 and 2, respectively, in
an NL-coloring of path Pℓ(k). If we assign the vertices vℓ(k)+1, vℓ(k)+2, vℓ(k)+3,
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vℓ(k)+4 and vℓ(k)+5 the colors k + 1, 4, 1, k + 1, 4, respectively, then it is easy to
see that this coloring is an NL-coloring of Pℓ(k)+5.

Now we create a graph G from Pℓ(k)+5 as follows. Add three vertices u, v, w
to Pℓ(k)+5, so that we make adjacent u to vℓ(k), vℓ(k)+1, vℓ(k)+2, and v, w to
vℓ(k)+3, vℓ(k)+4, vℓ(k)+5. By the construction we assign color 5 to u, color 3 to
vℓ(k)+1, color 2 to v, color 5 to w and color 3 to vℓ(k)+4. These assignments exist
an NL-coloring for G with k colors. Therefore, G and Pℓ(k)+5 have the same
diameter ℓ(k) + 4 but χNL(G) = k < k + 1 = χNL(Pℓ(k)+5).

...

vℓ(k)−1 vℓ(k)+5

1 2 k + 1 4 1 k + 1 4

Pℓ(k)+5 with χNL(Pℓ(k)+5) = k + 1

...

u v

w

vℓ(k)−1 vℓ(k)+5

1 2 3 4 1 3 4

5 2

5

Figure 2. Graph G is obtained from Pℓ(k)+5, where diam(G) = ℓ(k) + 4 and χNL(G) =
k < k + 1.

As it can be seen, we have disproved Conjecture 1, but our examples show
that χNL(G) = k = χNL(Pd+1)− 1 while the diam(G) = d.

We imagine that for k ≥ 15, we can find a graph G with diam(G) = ℓ(k) and
χNL(G) ≤ k − 1 where χNL(Pℓ(k)+1) = k + 1, and there may be exist a similar
method for showing it. However, we pose the following question for the future
research.

Question. Does there exist a graph G such that diam(G) = d and χNL(G) =
k < χNL(Pd+1)− 1 for each k ≥ 4?

Remark 3. We should remind that there is a family of graphs G whose diameter
is d but χNL(G) ≥ χNL(Pd+1). For example, consider the broom graph, (see
Figure 3.)

Let ℓ(k − 1) + 1 ≤ d ≤ ℓ(k) − 1. Then χNL(Pd+1) = k. Let G the broom
graph, (see Figure 3). Then it is easy to see that G has diameter d and χNL(G) ≥
n+ k = n+ χNL(Pd+1).
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. . .
v1 v2 v3 v4

vk+1

vdvd−1vd−2vd−3

u1 uk

vn+k

...

...G

χL(G) ≥ n+ k, χNL(Pd) = k

Figure 3. Graph G with χNL(G) > χNL(Pd).

4. Conjecture 2

In this section, we prove Conjecture 2. We state this conjecture as a theorem.

Theorem 6 (Conjecture 2). Let k ≥ 2. If T is a tree with χNL(T ) = k, then
∆(T ) ≤ (k − 1)2, and this bound is tight for every integer k ≥ 2.

Proof. The tightness has been shown by Alcon et al. in [2]. We show that
∆(T ) ≤ (k − 1)2 by proving a sequence of results.

Lemma 7. Let T be a tree and χNL(T ) = k. Let v be a vertex of maximum
degree ∆(T ). If ∆(T ) ≥ (k − 1)2 + 1, then the number of vertices of degree 1 or
2 in N(v) is at least and at most

(k − 1)2 − (k − 3) and (k − 1)2,

respectively.

Proof. Let T be a tree with χNL(T ) = k and ∆(T ) ≥ (k − 1)2 + 1.

First, we show the at least. Assume to the contrary, it is at most (k − 1)2 −
(k − 3) − 1 = (k − 1)2 − (k − 2). Then the number of vertices of degree at
least 3 in N(v) is at least k − 1 = (k − 1)2 + 1 − ((k − 1)2 − (k − 2)). Since
finally, at least two leaves are issued from each of the neighbors of degree at
least 3 in N(v), and since the sum of vertices of degrees of at least 3 and the
vertices of degrees 2 or 1 is constant, so if the number of vertices of degree 2 or 1
decreases, then the number of vertices of degrees 3 increases, and the number of
leaves on the tree will increase. Therefore, the number of leaves in T is at least
(k − 1)2 − (k − 2) + 2(k − 1) = k(k − 1) + 1, that is a contradiction.

Second, we show the at most. Let the color of vertex v be 1 in NL-coloring
of T . Then the number of vertices of color i ∈ [k] \ {1} of degrees 1 or 2 in N(v)
is at most k− 1 (although the vertex of degree 1 in N(v) with color i is not more
than 1). If the vertex u of degree 2 in N(v) is assigned with color i, and the
vertex in N(u) \ {v} is w, then whenever there does not exist a vertex of degree
1 of color i in N(v), the colors of (v, u, w) are (1, i, 1), (1, i, 2), . . . , (1, i, i − 1),
(1, i, i+1), . . . , (1, i, k) in NL-coloring of T . On the other hand, since the color i
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changes in [k] \ {1}, we deduce that the color of a vertex of degree 1 or 2 adjacent
to vertex v is at most (k − 1)2.

Lemma 8. Let T be a tree and the data in Lemma 7 holds for T . If r is the
number of vertices of degree 1 in N(v), then r ≤ k − 1 and these r vertices take
r different colors.

Proof. Since the given r vertices are leaves and adjacent to the vertex v, in
any NL-coloring of T , their colors should be different. On the other hand, since
χNL(T ) = k, there exist k − 1 colors other than color 1. Thus r ≤ k − 1.

Lemma 9. Let T be a tree and the data in Lemma 7 holds for T . Assume that u
is a vertex of degree 2 in N(v) with color i. If w is a vertex in N(u)\{v}, and no
vertex of degree 1 in N(v) take the color i, then the vertex w can be NL-colored
with the color in [k] \ {i} and if the vertex of degree 1 in N(v) is assigned with
the color i, then the vertex w can be NL-colored with the color in [k] \ {1, i}.

Proof. If no vertex of degree 1 in N(v) take the color i, then the number of
vertices u of degree 2 in N(v) with color i is at most k− 1. On the other hand, if
w ∈ N(u) \ {v}, and u is assigned with color i, then the color of w is one of the
colors in [k] \ {i}. If the vertex of degree 1 in N(v) is assigned with the color i,
the proof is clear from the part 1. Therefore, the result is observed.

Lemma 10. Let T be a tree and the data in Lemma 7 holds for T . Then, the
number of vertices of degree n ≥ 3 in N(v) is at least 1 and at most k − 2, and
moreover, these vertices can be assigned with same color in an NL-coloring of T .

Proof. From Lemma 7, the number of vertices of degree n ≥ 3 is at least 1 and
at most k − 2.

Now, let x1, x2, . . . , xs for (k− 1)2 − (k− 3) ≤ s ≤ (k− 1)2 be the vertices of
degree at most 2 in N(v) and let y1, y2, . . . , yt for 1 ≤ t ≤ (k − 2) be the vertices
of degree n ≥ 3 in N(v). Without loss of generality and with the pattern used in
Lemma 7, we can use colors 2, 3, . . . , k − 1 for vertices xis, and then we can use
color k for vertices of yjs in an NL-coloring.

Observation 11. Let z, u, x be three successive vertices in T where u is of degree
2 and adjacent to z and x. If z, u, x are assigned with colors j, i, j, respectively,
then there does not exist the leaf and its support with colors i and j, respectively,
in any NL-coloring of T .

Observation 12. Let T be a tree and the data in Lemma 7 holds for T . Then
the number of leaves in T is ℓ ≥ (k − 1)2 + 2.
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Proof. Since the number of vertices of degree r ≤ 2 in N(v) is at most (k− 1)2,
and the number of vertices of degree n ≥ 3 in N(v) is at least 1. Therefore,
ℓ ≥ (k − 1)2 + 2 in T .

Theorem 13. Let T be a tree and the data in Lemma 7 holds for T . Then, in any
NL-coloring of T , the support vertices and their leaves cannot be NL-colorable
with k colors.

Proof. Suppose from Lemma 8, there exist 0 ≤ r ≤ k − 1 leaves in N(v) and
without loss of generality, whose be assigned with colors 2, 3, . . . , r+1. Thereby,
we have at least (k−1)2−(k−3)−r vertices of degree 2 in N(v). This result and
Observation 12 imply that, for the vertices u and w ∈ {N(u) \ {v}}, the triple
(v, u, w) can be NL-colored as follows.

[(1, r + 2, 1), (1, r + 3, 1), . . . , (1, k, 1); (1, i, 2), (1, i, 3), . . . , (1, i, i− 1),

(1, i, i+ 1), (1, i, k); (1, k, 2)], where i ∈ [k − 1] \ {1}.

On the other hand, from Observation 12, the number of leaves ℓ ≥ (k−1)2+2.
Now, from Observation 11 and the colors assigned to the leaves in N(v) and
(v, u, w), we have at most (r ≤ k − 1) leaves in N(v), and in addition for any
color i, there exist at most k−2 leaves with color i which can be neighbor to any
vertex with color in [k] \ {1, i}. Since 2 ≤ i ≤ k, the number of leaves ℓ of T is at
most k − 1 + (k − 2)(k − 1) = (k − 1)2, that is a contradiction.

Now, the proof of ∆(T ) ≤ (k − 1)2 is deduced from Lemmas 7–10, Observa-
tions 11–12 and Theorem 13.
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