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Abstract

For a strong digraph D, the restricted arc-connectivity X' (D) is defined
as the minimum cardinality over all restricted arc-cuts S satisfying that
D—S has a non-trivial strong component D; such that D — V(D;) contains
an arc. In this paper, we prove that a strong oriented black graph D with
diam(D) < 2l — 2 is XN-optimal if §(D) > 2 and D is super-X if §(D) > 3,
where [y is a parameter related with path lengths of D.
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1. INTRODUCTION

The digraphs considered here have neither loops nor multiple arcs. Let D = (V, A)
denote a digraph with finite set of vertices V= V(D) and set of arcs A = A(D).
For any arc uv € A(D), the vertex w is its tail and the vertex v is its head,
and we say that u is adjacent to v and that v is adjacent from w. The sets
Nt(u) ={v:uv e A(D)} and N~ (u) = {v: vu € A(D)} are respectively called
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the out-neighborhood and in-neighborhood of the vertex u. Their cardinalities
are the out-degree of u, d(u) = |[NT(u)|, and the in-degree of u, d~(u) =
IN~(u)|. The minimum out-degree of D is 67 (D) = min{d*(u) : u € V(D)}
and the minimum in-degree of D is ~ (D) = min{d (u) : u € V(D)}. The
minimum degree of D is §(D) = min{d"(D),6 (D)}. A digraph is symmetric
(respectively, asymmetric), if the existence of an arc uwv € A(D) implies that
vu € A(D) (respectively, vu ¢ A(D)). The set of symmetric arcs of D is denoted
by Sym(D). If F C V(D), then DI[F] is the subdigraph induced by F. For any
pair of vertices u,v € V(D), uugus - - - u,—1v represents a u — v path with all its
vertices different, where u; € V(D) for 2 <i <r —1. A u — u path is a cycle.
The girth of D, represented by g(D) or simply ¢ for unambiguity, is the length
of a shortest cycle of D.

A digraph D is said to be strongly connected (or, just, strong) if for any pair
of vertices u,v € V (D), there exists a u — v path. A digraph with one vertex
is strong. When a digraph D is not strong, each maximally strong subdigraph
of D is called a strong component. The distance from u to v is denoted by
d(u,v) that is the number of arcs of a shortest u — v path. The parameter
diam(D) = max{d(u,v) : u,v € V(D)} stands for the diameter of D. The
distance from u to F' C V(D) is d(u, F') = min{d(u, f)) : f € F'}. The distance
from F to u, d(F,u), is defined analogously. For any integer k > 1, let N, (F) =
{ue V(D) :d(F,u) =k} and N (F) = {u € V(D) : d(u, F) = k}. Observe that
N*(u) = Ni (u), N~ (u) = Nj (u), N*(F) = N} (F) and N~(F) = Ny (F).

For a pair F', F’ of nonempty vertex sets of a digraph D, we define [F, F'] =
{uv € A(D) : w € Fyo € F'}. If F/ = V(D)\F, we write w'(F) instead of
[F, F']. For brevity, we denote F' = V(D)\F. Given a proper subset F' C V(D)
of vertices of D such that w™(F) is a restricted arc-cut of D, one can denote by
X C F and X C F the set of tails and the set of heads of w™(F), respectively.
This means that w™ (F) = [F, F] = [X, X].

We recall here that in the line digraph L(D) of a digraph D, each vertex
represents an arc of D. Thus, V(L(D)) = {uv : uwv € A(D)} and a vertex uv is
adjacent to a vertex wz if and only if v = w. From the definition it follows that
§(L(D)) = §(D). For any integer k > 1, the k-iterated line digraph, L*(D),
is defined recursively by L*¥(D) = L(L*71(D)). A vertex u of L¥(D) can be
represented as a sequence ugujug - - - u, of vertices of D such that u;u; 1 € A(D),
0<i<k—1,and u is adjacent to another vertex v of L¥(D) if and only if v =
ujug - - - ugug41. According to Aigne [1], it is well known that the diameter of any
strong digraph different from a directed cycle satisfies diam(L* (D)) = diam(D) +
k. For more information on line digraphs see, for instance, [8, 15, 17, 18].

A processor interconnection network or a communications network is conve-
niently modeled by a graph or a digraph, in which the vertex set corresponds
to processors or switching elements, and the edge set or the arc set corresponds
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to communication links. In order to estimate more precisely the reliability of
networks, Esfahanian and Hakimi [7] introduced the concept of restricted edge-
connectivity. A set of edges S in a connected graph G is called a restricted edge
cut if G — S is disconnected and contains no isolated vertex. If such an edge cut
exists, then the restricted edge connectivity of G, denoted by X (G), is the mini-
mum number of edges over all restricted edge cuts of G. A connected graph G is
called X -connected if N'(G) exists. Esfahanian and Hakimi [7] obtained that each
connected graph G with at least 4 vertices except a star K1 ,_1 is A'-connected.
Later, Volkmann [19] extended the notion of restricted edge-connectivity to di-
graphs as follows.

Definition 1 [19]. Let D be a strong digraph. An arc-set S of D is a restricted arc-
cut if D — S has a non-trivial strong component D; such that D —V(D;) contains
an arc. The restricted arc-connectivity N'(D) is defined as the minimum cardi-
nality over all restricted arc-cuts S. A strong digraph D is called X -connected if
XN (D) exists. A restricted arc-cut S is called a X -cut if |S| = N (D).

Volkmann [19] proved that each strong digraph D of order n > 4 and girth
g = 2,3 not belonging to some families of digraphs is X'-connected and satisfies
A(D) < N(D) < &(D), where £(D) is defined as follows. If Cy = ujus - --uguq
is a shortest cycle of D, then £(Cy) = min{X%?_ d*(w;) — ¢, %7_;d™ (u;) — g} and
£(D) = min{&(Cy) : Cy is a shortest cycle of D}. Wang and Lin [20] introduced
the notion of arc-degree which turns to be a better bound for X' (D). For any arc
uv € A(D), the arc-degree of uv is defined as

€' (w) = min {|w* ({u, v})], lw™ ({u, v})], lw* () Uw™ (©)], lw™ (u) U™ (v)[}.

The minimum arc-degree of D is £'(D) = min{¢'(uv) : uv € A(D)}. One can
compute the arc-degree of an arc uv € A(D) in terms of the out-degrees and
in-degrees of the vertices u and v. If uv ¢ Sym(D), then & (uv) = min{d™* (u) +
dt(v)—1,d" (u)+d (v) = 1,d"(u)+d~(v) —1,d" (u) +d* (v)}. If uv € Sym(D),
then &' (uv) = min{d* (u)+d*(v)—2,d” (u)+d~ (v)=2,d* (u)+d~ (v)—1,d (u)+
d*(v) —1}. Wang and Lin [20] claimed that a strong digraph D with 6T (D) >3
or (D) > 3 is N-connected and satisfies N (D) < £(D). It is clear from the
definitions that &'(D) < £(D) for every strong digraph D with minimum degree
at least 3. Balbuena et al. [3] deduced the following result about A-connected
digraphs.

Theorem 2 [3]. Let D be a strong digraph with order n > 4 and minimum degree
d > 2. Then D is N -connected and X' (D) < (D).

Meierling et al. [16] characterized all \'-connected tournaments, multipartite
tournaments, local tournaments and in-tournaments. Chen et al. [5] proved that
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the Cartesian product digraph of two strong digraphs is \'-connected. They also
gave the upper and lower bounds for its restricted arc-connectivity. Lin et al.
[14] presented a sufficient condition for the former upper bound to be attained
and gave an example to show the result is best possible. Gonzéalez-Moreno and
Hernandez Ortiz [9] showed that a family of strong digraphs with girth four
is M-connected. Moreover, the values of the restricted arc-connectivity of some
special digraphs, for example, unidirectional hypercube [13], unidirectional folded
hypercube [13] and unidirectional star graph [21], were investigated.

Wang and Lin [20] called a strong digraph A-optimal if its restricted arc-
connectivity is equal to its minimum arc-degree.

Definition 3 [20]. A digraph D is X -optimal if N'(D) = ¢'(D).

Balbuena et al. [4] showed that a generalized p-cycle D is N-optimal if
diam(D) < 2] + p — 2, where [ is the semigirth of D and p > 3, and showed that
the k-iterated line digraph of it is N'-optimal if diam(D) < 2l+p—2+k for p > 3.
Chen et al. [6] studied the restricted arc-connectivity of bipartite digraphs and
gave sufficient conditions for a bipartite digraph to be N-optimal. Balbuena et
al. [2] gave a sufficient condition for a s-geodetic strong digraph to be X-optimal:
a strong s-geodetic digraph D with 67 (D) > 3 or § (D) > 3 is N-optimal if
diam(D) < 2s — 1. Furthermore, in the same publication, we can see that the
h-iterated line digraph of an s-geodetic digraph is N'-optimal for certain iteration
h. Griiter et al. [10] characterized all strong tournaments T with X (7)) < &(T)
and they proved that all tournaments with minimum degree §(7) > (n+ 1)/4
are X-optimal. In addition, Griiter et al. [11] showed that X (T) < &¢(T) and T
is N-optimal if 6(T") > (n + 3)/8 for all strong bipartite tournaments T except
for a family.

Given an arc wv € A(D), define Q,, = {wm({u,v}),w™ ({u,v}),wt(u) U
w™(v),w (u)Uw™ (v)}. Note that for every arc uv € A(D) of a strong digraph D,
the elements of €2, are arc-cuts, but they are not necessarily restricted arc-cuts.
Balbuena et al. [3] introduced the definition of super restricted arc-connected
digraphs.

Definition 4 [3]. A )-connected digraph D is said to be super-\" if for every
N-cut S there exists an arc uv € A(D) such that S € Q.

Clearly, if D is super-), then N (D) = ¢(D), but the converse is not true.
The following result is useful in studying super-\" digraphs.

Theorem 5 [3|. Let D be a X -connected digraph and let S be a N-cut of D.
If D is not super-X, then there exists a subset of vertices F C V(D) such that
S =wt(F) = [F,F] and both the induced subdigraphs D[F] and D[F] contain an
arc.
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Balbuena et al. [3] provided a sufficient condition for an s-geodetic digraph to
be super-\ and showed that the h-iterated line digraph of an s-geodetic digraph
is super-)\’ for a particular h. Lin et al. [12] presented some minimum degree
conditions for oriented graphs to be super-\ and gave examples to show the
conditions are sharp.

Investigations on the restricted edge-connectivity of graphs were made by
many researchers. However, related results on restricted arc-connectivity have
received little attention. This paper shows sufficient conditions for a digraph
to be N-optimal or super-)\ based on a parameter related with path lengths of
digraphs in Section 2.

2. MAIN RESULTS

2.1. M -optimal oriented graphs

In this subsection we characterize X'-optimal oriented graphs in terms of their
diameter and a parameter [y defined as follows.

Definition 6 [4]. For a given digraph D, let ly = l2(D), 1 < lp < diam(D), be
the greatest integer such that for any (not necessarily different) x,y € V (D),

(a) if d(x,y) < la, the shortest  — y path is unique;
(b) if d(z,y) < la —t, there is no x — y path of length d(z,y) + ¢ for 1 <t < 2.

Observe that [y is well defined in oriented graphs, that is in digraphs with
girth at least 3. The parameter /5 satisfies an equality as follows.

Lemma 7 [4]. Let D be a strong oriented graph other than a directed cycle. Then
I>(L5(D)) = 1y(D) + k.

Lemma 8. Let D be an oriented graph and wv € A(D). If Iz > 2, then N, (u) N
Nt () =0 and NF (NT(u) —v) "N} (v) =0 for alli =1,2,...,1o—1; if I > 3,
then N;t(u) N N;7 (Nt (v)) = 0 and N;"(N*(u) —v) N N (Nt (v)) = 0 for all
i=1,2,... .1y —2.

Proof. Assume by contradiction that N;"(u) N N;F(v) # 0. Let x € N;"(u) N
N (v), then d(u,z) = i and there is a u — z path of length i + 1, which is a
contradiction to the definition of I3 as i < lo — 1. Analogously, if there is a vertex
z € N;"(NT(u) —v) N N;"(v), then d(u,z) = i + 1 and there are two disjoint
shortest u — x paths of length ¢ + 1, contradicting again to the definition of Io
as i < lg — 1. The other two equalities can be proved similarly. [ |

Theorem 9. Let D be a strong oriented graph with minimum degree § > 2. Then
D is XN -optimal if diam(D) < 2l3(D) — 2.
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Proof. Note that the condition § > 2 implies that D has order at least 5. Hence,
by Theorem 2, D is N-connected and X(D) < (D). Assume by contradiction
that D is not M-optimal, therefore, (D) < &(D). Let S be a XN-cut of D, by
Theorem 5, there exists a subset of vertices FF C V(D) such that S = w™(F) =
[F,F] = [X,X] and both the induced subdigraphs D[F] and D[F] contain an
arc. Define p = max{d(v,X) : v € V(F)} and @ = max{d(X,v) : v € V(F)}.
Also, let the vertices of F and F be respectively partitioned into subsets Fj,
0 <4< u,and Fj, 0 < j < @, according to their distance to X or from X,
that is, F; = {v € V(F) : d(v,X) = i} and F; = {v € V(F) : d(X,v) = j}.
The distance from a vertex in F), to one in fp is at least 4+ + 1, so that
w+m+ 1 < diam(D). Since diam(D) < 2l — 2, one of them, p or [, is at most
la — 2. Without loss of generality, suppose p < . Then p < ls — 2.
If £ =0, then Iy > 2 and F = X. Let wv € A(D|[X]), see Figure 1.

X X
AN )
A,
u
Ay
— —

Figure 1.

Define A, = N*(v) N X and 4, = (N*(u) —v) N X. From Lemma 8, it
follows that N (u) N N*(v) = () and therefore A,, A, and {u,v} are pairwise
disjoint. Hence,

XN(D) = |[X, X]| = |[{u, v}, X]| + [[Av, X]| + [[Au, X]]
> |[{w, v}, X+ [Ao] + [Au| = INF(0) + [N T (u) — o]
= o ({w,v})] = €' (uwv) > €'(D),
which contradicts the hypothesis.
Assume that 1 < p < lo — 2. We consider the following two cases.
Case 1. There exists an arc uv in D[F| such that d(u, X) = d(v, X) = p.

Subcase 1.1. p > 2, which implies ly > 4, see Figure 2. Define A, = N*(v)N
F,, B, =Nt(v)NF,_1, B, =NT(u)NF,_; and A, = (NT(u) —v) N F,. By
Lemma &8, one can show that A,, B, B, and A, are pairwise disjoint. Set A; =
NF(A,)NX, Ay = NI (B,)NX, A3 =N |(B,) N X and Ay = N;f (4,) N X.
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We will now show that Aj, As, A3 and Ay are pairwise disjoint. It is clear by
Lemma 8 that As N A3 =0, AoNAy =0, AyN A3 =0 and Ay N Ay = (. If there
is a vertex x € A; N Ag, then d(u,x) = p+ 1 and there is a w — = path of length
1+ 2, which contradicts the definition of I3 as p < ls — 2. Analogously, it can be
deduced that Az N Ay = 0. We claim that |A1]| > |A,|, |A2| = |Byl, |As| = |Bul
and |A4| > |Ay|. In fact, if [A;| < |Ay|, then there exists a vertex x € A; such
that there are two distinct shortest u — z paths of length u + 2, contradicting
again to the definition of lo. The other three inequalities can be proved similarly.
Consequently,

N(D) = |[X, X]| > [X] > [A1] + |Az]| + [As] + | A4
> Ao + [Bo| + [Bul + [Au] = [NT(v)| + [N () — v|
= lw({u,v})| = €' (wv) > £'(D).

F, Foqp e X
( A, \/\/\/\/\/ A
k @’\/\/\/
L A, \/\/\/‘\/‘\/ )
Figure 2.
F X X
s N
(1O
(8,)
u N
_WrOog—C¢

Figure 3.

Subcase 1.2. p = 1, which implies Iy > 3, see Figure 3. Define 4, = N (v)N
F,B,=N*t(v)nX, B, =Nt(u)NnX and A, = (N (u)—v)NFy. Similarly as in
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the proof of Subcase 1.1, one can show that N*(A4,)NX, B,, B, and NT(A,)NX
are pairwise disjoint, [NT(A,) N X| > |4,| and |[NT(A,) N X| > |Ay|. Thus,

N(D) = |[X, X]|
> |[N*(Av) N X, X]| + |[By, X]| + |[Bu, X]| + [N (Au) N X, X]|
> [N (Ay) N X| +|By| + |Bu| + INT(Ay) N X]|
> [Ay| + |Bo| + [Bu| + [Au| = [NF(0)| + [N T (u) — v
= [w ({u,v})] = € (uv) > €' (D).

Case 2. There is no arc uv in D[F] such that d(u, X) = d(v, X) =

Subcase 2.1. p > 2, which implies lo > 4, see Figure 4. Define A, = (N1 (u)—
U)ﬂFufl,AU—N—’—( )ﬂFufl,BU—N—’—( )OFM,C:N+(BU) _1. Asly > 4,1t
is clear that N*(u), A, and C are pairwise disjoint. Since the mduced subdigraph
D[F,] contains no arc, we have |C| > §|B,| > 2|B,|. Set Ay = N, (u) N X,
Ay = ;hl(Av) NX and Az = N;il(C) N X. Similar arguments as in Subcase
1.1 show that A;, A2 and As are pairwise disjoint. As u < lo — 2, it follows that
451> [C], 1421 > o] and 41| = IV () 01 X] = [N (4) 0 X] £ N, (0)1
X| = [Ny (Au) N X+ [N (N (0) 0 Fumo) N X] > A + IN*(0) 1 Fyal.
Thereby,

X(D) = |[IX,X]| > |X] > 41| + | o] + |4
[Aul + [N (0) 0 Bz + 1 Au| + 1€
[Au| + INT(0) N Fuea| + | Ao| + 2| B, |
= INT(u) = v+ [NT(0v)] + |By]
= ot (fu o})| + Bl > € (wv) + [Bu| > €(D).

>
>

P=o
DD
N \@’\/\/\//

Figure 4.
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R X X
4 N )
io
u v
:
C
- J N J
Figure 5.

Subcase 2.2. p = 1, which implies lo > 3, see Figure 5. Consider the sets
Ay=(Nt(u) —v)NX, A, =N*T(v)NnX, B,=N*t(v)nF;,C=N"(B,)NX.
As Iy > 3, one can show that N (u), A,, and C are pairwise disjoint. Since the
induced subdigraph D[F}]| contains no arc, we have |C| > 6|B,| > 2|B,|. Hence,

N(D) = [[X, X]| > [N (u), X]| + [[Ay, X]| + |[C, X]|
= |[Au, X]| + [[v, X]| + [[Av, X]| + [[C, X]]
2 |Au| + o, X + [ Ao + [C] > [Au] + [[v, X]| + [Au] + 2| Bo|
= INT(u) = v+ [NT(0)| + [Bo| = [w" ({u, v})] + [ By]
> ¢(w) +[By| > £'(D).

All cases lead to contradictions. []

For tournaments, oriented bipartite graphs and k-iterated line digraphs, the
following corollaries follow from Lemma 7 and Theorem 9.

Corollary 10. Let D be a strong tournament or oriented bipartite graph with
minimum degree 6 > 2. Then D is X -optimal if diam(D) < 2l3(D) — 2.

Corollary 11. Let D be a strong oriented graph with minimum degree § > 2.
Then L*(D) is N-optimal if k > diam(D) — 2I3(D) + 2.
2.2. Super-) oriented graphs

In this subsection we characterize super-\' oriented graphs in terms of their di-
ameter and the parameter [o.

Theorem 12. Let D be a strong oriented graph with minimum degree § > 3.
Then D is super-\' if diam(D) < 2l3(D) — 2.
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Proof. Theorem 9 shows that D is X-optimal, thus, N (D) = ¢(D). Suppose
that D is not super-A". Let S be a N-cut of D such that S ¢ U,,c(p) Quv- By
Theorem 5, there exists a subset of vertices F' C V(D) such that S = w*(F) =
[F,F] = [X,X] and both the induced subdigraphs D[F] and D[F] contain an
arc. We use the same notation as in the proof of Theorem 9. Now in this proof
we have p+ @+ 1 < 2lp — 2. Without loss of generality, suppose u < . Then
1% < lg — 2.

If w =0, then I3 > 2 and F = X, see Figure 1. As shown in the proof of
Theorem 9, we have

¢'(D) = N(D) = [[X, X]| > [[{u, v}, X]| + [[Av, X]| + [[Au, X]|
> [{u, v}, X[+ [Ao] + [Au] = [NT (0)] + [N T (u) = v|
= lw"({u,v})] = &' (uv) > (D),

which implies M (D) = ¢(D) and all the inequalities are equalities, yielding in
particular |A,| = |[4y, X]|, |Au| = |[Au, X]|. This implies |[z, X]| = 1 for all
z€ A, UA,. If A,UA, =0, then F = {u,v} and S = w™(F) = w({u,v}),
a contradiction. Thus A, U A, # (. Let ug € A, U A,. Since |[ug, X|| = 1 and
d > 3, we have [Nt (ug) N X| > 2. Let vg,20 € NT(ug) N X, we consider now
the arc ugvg. As above, we have |[2/, X]| = 1 for all 2/ € A,, U A,, such that
Ayy = (NT(up) —v9) N X and A,, = Nt (vg) N X. It implies the existence of
some tg € NT(29) N X. As Iy > 2, we have tg ¢ Ay, U Ay, U {ug,vp}. Clearly,

Augs Avys {u0,v0} and {to} are pairwise disjoint. Thus,

(D) =N (D) = [[X, X]|

[{uo, vo}, X]| + [[Avy, X]| + [[Aug, X]| + [[t0, X]|
[[{uo, vo}, X + [Aug | + | Aug| + | [to, X]]

= [N (vo)| + [N (uo) — vol + [[to, X]|

> [wF ({uo, vo})| = €' (uovo) = €'(D),

Z
Z

a contradiction.

Assume that 1 < p < lo — 2. We distinguish the following two cases.
Case 1. There exists an arc uv in D[F| such that d(u, X) = d(v, X) = p.
Subcase 1.1. p > 2, which implies lo > 4, see Figure 2. As mentioned in the
proof of Subcase 1.1 of Theorem 9, we deduce that
(D) = N(D) = |[X,X]| > |X] > |A1] + |Az| + | As] + |A4]
> |Avl + [Bo| + |Bu| + [Au| = INF(0)] + INF () = v]
= w({u,v})] = €' (uwv) = £'(D),
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which implies (D) = &(D) and all the inequalities are equalities, which yields
in particular |As| = |By| and X = A; U Ay U A3 U Ay. Since |Az| = |By| and
§ > 3, there exists a vertex v’ € B,, such that N*(u') N (F, U F,_1) # 0. Let
ze NT(u)N(F,UF,_1), it can be obtained that z ¢ A, U B, U B, UA, U{u,v}
for the fact that lo > 4. Therefore there exists a vertex z € N;(Z’X)(z) N X with
uw—1<d(z,z) < p. If x € Ay, then we find a shortest u — x path of length
w—+1or u+ 2 and there is also a u — x path of length u + 2, contradicting the
definition of Iy as p < lo — 2. Similar contradictions will arise when x € As or
x € Agor x € Ay.

Subcase 1.2. = 1, which implies ls > 3, see Figure 3. It is recalled from the
proof of Subcase 1.2 of Theorem 9 that

¢(D)=N(D) =X, X]|
> [[NT(Ay) N X, X]| + |[Buo, X]| + [[Bu, X]| + [N (Au) N X, X]|
> |[NT(Ay) N X| + |By| + |Bu| + INT(A,) N X]|
> |Ay| + [By| + |Bu| + |Au] = IN* ()| 4 [N (u) — v
= |w*({u, v})| = ' (uv) = (D),

which implies N (D) = ¢(D) and all the inequalities are equalities, deducing in
particular |B,| = |[By, X]| and X = (NT(4,) N X)U B, U B, U (NT(4,) N X).
Since ¢ > 3, there exists a vertex u’ € B, such that N*(u') N (Fy U X) # (. Let
ze NT(W)N(FLUX). Then z ¢ A,UB,UB,UA,U(NT(A,)NX)U(NT(A,)N
X) U {u,v} for the fact that Iy > 3. Thus z € F} with d(z, X) = 1. Therefore
there exists a vertex x € NT(2) N X. If z € N*(A4,) N X, then there are two
disjoint © — x paths of length 3, contradicting the definition of Iy as ls > 3. It
will lead to similar contradictions when = € B, or x € B, or x € N*(4,) N X.

Case 2. There is no arc wv in D[F] such that d(u, X) = d(v, X) = p.

Subcase 2.1. p > 2, which implies lo > 4, see Figure 4. As the induced
subdigraph D[F}] contains no arc, |C| > 6|B,| > 3|B,|. It is easily obtained
from the proof of Subcase 2.1 of Theorem 9 that

¢ (D) = N(D) = [[X, X]| > | X]| > |A1] 4 |Az| + |43

[Au| + INT(0) N Fua| 4 |4y + |C]

[Aul + [N (v) N Fua| + [Ay] + 3| By |

= |NF(u) = v[ + [NT(0)| + 2|B,| = |wF ({u,v})| + 2| B, |
> & (uv) + 2|By| = €' (D) + 2|B,|.

2
>

This is a contradiction unless B, = (), which yields in this case C' = (), and
all the inequalities are equalities. Therefore, |A;| = |A,| + |[N*(v) N F,_9| and
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X = A1 UAy. As § > 3, there exists a vertex z € NT(A4,)N(F,UFE,_1). Observe
that z ¢ A, UA, U{u,v} asly > 4. Thus there exists a vertex = € N;E&X)(z) NnX
with p — 1 < d(z,z) < p. If z € Ay, then d(u,z) = p and there is a u — x path
of length p+ 1 or p + 2, contradicting the definition of ls as p < lo — 2. One can

get a similar contradiction if x € As.

Subcase 2.2. p = 1, which implies lo > 3, see Figure 5. As the induced
subdigraph D[Fi] contains no arc, |C| > 6|B,| > 3|B,|. The proof of Subcase 2.2
of Theorem 9 shows that

(D) =N(D) = |[X, X]| > |[N" (), X]| +[[Av, X]| +|[C, X]]
= [[Au, X]| + [[v, X]| + |[Av, X]| + [C, X]| > |Aul + [[v, X]| + [Au| +|C]
> |Aul + o, X]| + [Au| + 3]By| = [NT (u) — v| + [N (v)] + 2| B, |

= |wT({u,v})| + 2|By| = &' (wv) + 2|By| = &' (D) + 2|B,|.

This is a contradiction unless B, = 0, inferring that in this case C = (), and all
the inequalities are equalities. Therefore |A,| = |[Ay, X]| and X = NT(u) U A,.
As § > 3, there exists a vertex z € N1T(A,) N (FL U X). Tt is seen that z ¢
Ay U A, U{u,v} as lp > 3. Thus z € F} with d(z,X) = 1, and there exists a
vertex t € NT(2) N X. If x € N*(u), then d(u,z) = 1 and there is a u — x
path of length 3, contradicting the definition of Iy as lo > 3. There will be a
contradiction when z € A,. [ ]

For tournaments, oriented bipartite graphs and k-iterated line digraphs, the
following corollaries are obtained from Lemma 7 and Theorem 12.

Corollary 13. Let D be a strong tournament or oriented bipartite graph with
minimum degree § > 3. Then D is super-\' if diam(D) < 2l3(D) — 2.

Corollary 14. Let D be a strong oriented graph with minimum degree 6 > 3.
Then L*(D) is super-\' if k > diam(D) — 2l3(D) + 2.
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