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Abstract

For a strong digraph D, the restricted arc-connectivity λ′(D) is defined
as the minimum cardinality over all restricted arc-cuts S satisfying that
D−S has a non-trivial strong component D1 such that D− V (D1) contains
an arc. In this paper, we prove that a strong oriented black graph D with
diam(D) ⩽ 2l2 − 2 is λ′-optimal if δ(D) ⩾ 2 and D is super-λ′ if δ(D) ⩾ 3,
where l2 is a parameter related with path lengths of D.
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1. Introduction

The digraphs considered here have neither loops nor multiple arcs. LetD = (V,A)
denote a digraph with finite set of vertices V = V (D) and set of arcs A = A(D).
For any arc uv ∈ A(D), the vertex u is its tail and the vertex v is its head,
and we say that u is adjacent to v and that v is adjacent from u. The sets
N+(u) = {v : uv ∈ A(D)} and N−(u) = {v : vu ∈ A(D)} are respectively called
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the out-neighborhood and in-neighborhood of the vertex u. Their cardinalities
are the out-degree of u, d+(u) = |N+(u)|, and the in-degree of u, d−(u) =
|N−(u)|. The minimum out-degree of D is δ+(D) = min{d+(u) : u ∈ V (D)}
and the minimum in-degree of D is δ−(D) = min{d−(u) : u ∈ V (D)}. The
minimum degree of D is δ(D) = min{δ+(D), δ−(D)}. A digraph is symmetric
(respectively, asymmetric), if the existence of an arc uv ∈ A(D) implies that
vu ∈ A(D) (respectively, vu /∈ A(D)). The set of symmetric arcs of D is denoted
by Sym(D). If F ⊂ V (D), then D[F ] is the subdigraph induced by F . For any
pair of vertices u, v ∈ V (D), uu2u3 · · ·ur−1v represents a u → v path with all its
vertices different, where ui ∈ V (D) for 2 ≤ i ≤ r − 1. A u → u path is a cycle.
The girth of D, represented by g(D) or simply g for unambiguity, is the length
of a shortest cycle of D.

A digraph D is said to be strongly connected (or, just, strong) if for any pair
of vertices u, v ∈ V (D), there exists a u → v path. A digraph with one vertex
is strong. When a digraph D is not strong, each maximally strong subdigraph
of D is called a strong component. The distance from u to v is denoted by
d(u, v) that is the number of arcs of a shortest u → v path. The parameter
diam(D) = max{d(u, v) : u, v ∈ V (D)} stands for the diameter of D. The
distance from u to F ⊂ V (D) is d(u, F ) = min{d(u, f)) : f ∈ F}. The distance
from F to u, d(F, u), is defined analogously. For any integer k ⩾ 1, let N+

k (F ) =
{u ∈ V (D) : d(F, u) = k} and N−

k (F ) = {u ∈ V (D) : d(u, F ) = k}. Observe that
N+(u) = N+

1 (u), N−(u) = N−
1 (u), N+(F ) = N+

1 (F ) and N−(F ) = N−
1 (F ).

For a pair F , F ′ of nonempty vertex sets of a digraph D, we define [F, F ′] =
{uv ∈ A(D) : u ∈ F, v ∈ F ′}. If F ′ = V (D)\F , we write ω+(F ) instead of
[F, F ′]. For brevity, we denote F = V (D)\F . Given a proper subset F ⊂ V (D)
of vertices of D such that ω+(F ) is a restricted arc-cut of D, one can denote by
X ⊆ F and X ⊆ F the set of tails and the set of heads of ω+(F ), respectively.
This means that ω+(F ) = [F, F ] = [X,X].

We recall here that in the line digraph L(D) of a digraph D, each vertex
represents an arc of D. Thus, V (L(D)) = {uv : uv ∈ A(D)} and a vertex uv is
adjacent to a vertex wz if and only if v = w. From the definition it follows that
δ(L(D)) = δ(D). For any integer k ⩾ 1, the k-iterated line digraph, Lk(D),
is defined recursively by Lk(D) = L(Lk−1(D)). A vertex u of Lk(D) can be
represented as a sequence u0u1u2 · · ·uk of vertices of D such that uiui+1 ∈ A(D),
0 ⩽ i ⩽ k − 1, and u is adjacent to another vertex v of Lk(D) if and only if v =
u1u2 · · ·ukuk+1. According to Aigne [1], it is well known that the diameter of any
strong digraph different from a directed cycle satisfies diam(Lk(D)) = diam(D)+
k. For more information on line digraphs see, for instance, [8, 15, 17, 18].

A processor interconnection network or a communications network is conve-
niently modeled by a graph or a digraph, in which the vertex set corresponds
to processors or switching elements, and the edge set or the arc set corresponds
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to communication links. In order to estimate more precisely the reliability of
networks, Esfahanian and Hakimi [7] introduced the concept of restricted edge-
connectivity. A set of edges S in a connected graph G is called a restricted edge
cut if G− S is disconnected and contains no isolated vertex. If such an edge cut
exists, then the restricted edge connectivity of G, denoted by λ′(G), is the mini-
mum number of edges over all restricted edge cuts of G. A connected graph G is
called λ′-connected if λ′(G) exists. Esfahanian and Hakimi [7] obtained that each
connected graph G with at least 4 vertices except a star K1,n−1 is λ′-connected.
Later, Volkmann [19] extended the notion of restricted edge-connectivity to di-
graphs as follows.

Definition 1 [19]. LetD be a strong digraph. An arc-set S of D is a restricted arc-
cut if D−S has a non-trivial strong component D1 such that D−V (D1) contains
an arc. The restricted arc-connectivity λ′(D) is defined as the minimum cardi-
nality over all restricted arc-cuts S. A strong digraph D is called λ′-connected if
λ′(D) exists. A restricted arc-cut S is called a λ′-cut if |S| = λ′(D).

Volkmann [19] proved that each strong digraph D of order n ⩾ 4 and girth
g = 2, 3 not belonging to some families of digraphs is λ′-connected and satisfies
λ(D) ⩽ λ′(D) ⩽ ξ(D), where ξ(D) is defined as follows. If Cg = u1u2 · · ·ugu1
is a shortest cycle of D, then ξ(Cg) = min{Σg

i=1d
+(ui)− g,Σg

i=1d
−(ui)− g} and

ξ(D) = min{ξ(Cg) : Cg is a shortest cycle of D}. Wang and Lin [20] introduced
the notion of arc-degree which turns to be a better bound for λ′(D). For any arc
uv ∈ A(D), the arc-degree of uv is defined as

ξ′(uv) = min
{
|ω+({u, v})|, |ω−({u, v})|, |ω+(u) ∪ ω−(v)|, |ω−(u) ∪ ω+(v)|

}
.

The minimum arc-degree of D is ξ′(D) = min{ξ′(uv) : uv ∈ A(D)}. One can
compute the arc-degree of an arc uv ∈ A(D) in terms of the out-degrees and
in-degrees of the vertices u and v. If uv /∈ Sym(D), then ξ′(uv) = min{d+(u) +
d+(v)−1, d−(u)+d−(v)−1, d+(u)+d−(v)−1, d−(u)+d+(v)}. If uv ∈ Sym(D),
then ξ′(uv) = min{d+(u)+d+(v)−2, d−(u)+d−(v)−2, d+(u)+d−(v)−1, d−(u)+
d+(v)− 1}. Wang and Lin [20] claimed that a strong digraph D with δ+(D) ≥ 3
or δ−(D) ≥ 3 is λ′-connected and satisfies λ′(D) ⩽ ξ(D). It is clear from the
definitions that ξ′(D) ⩽ ξ(D) for every strong digraph D with minimum degree
at least 3. Balbuena et al. [3] deduced the following result about λ′-connected
digraphs.

Theorem 2 [3]. Let D be a strong digraph with order n ⩾ 4 and minimum degree
δ ⩾ 2. Then D is λ′-connected and λ′(D) ⩽ ξ′(D).

Meierling et al. [16] characterized all λ′-connected tournaments, multipartite
tournaments, local tournaments and in-tournaments. Chen et al. [5] proved that
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the Cartesian product digraph of two strong digraphs is λ′-connected. They also
gave the upper and lower bounds for its restricted arc-connectivity. Lin et al.
[14] presented a sufficient condition for the former upper bound to be attained
and gave an example to show the result is best possible. González-Moreno and
Hernández Ortiz [9] showed that a family of strong digraphs with girth four
is λ′-connected. Moreover, the values of the restricted arc-connectivity of some
special digraphs, for example, unidirectional hypercube [13], unidirectional folded
hypercube [13] and unidirectional star graph [21], were investigated.

Wang and Lin [20] called a strong digraph λ′-optimal if its restricted arc-
connectivity is equal to its minimum arc-degree.

Definition 3 [20]. A digraph D is λ′-optimal if λ′(D) = ξ′(D).

Balbuena et al. [4] showed that a generalized p-cycle D is λ′-optimal if
diam(D) ≤ 2l + p− 2, where l is the semigirth of D and p ≥ 3, and showed that
the k-iterated line digraph of it is λ′-optimal if diam(D) ≤ 2l+p−2+k for p ≥ 3.
Chen et al. [6] studied the restricted arc-connectivity of bipartite digraphs and
gave sufficient conditions for a bipartite digraph to be λ′-optimal. Balbuena et
al. [2] gave a sufficient condition for a s-geodetic strong digraph to be λ′-optimal:
a strong s-geodetic digraph D with δ+(D) ≥ 3 or δ−(D) ≥ 3 is λ′-optimal if
diam(D) ≤ 2s − 1. Furthermore, in the same publication, we can see that the
h-iterated line digraph of an s-geodetic digraph is λ′-optimal for certain iteration
h. Grüter et al. [10] characterized all strong tournaments T with λ′(T ) ⩽ ξ′(T )
and they proved that all tournaments with minimum degree δ(T ) ≥ (n + 1)/4
are λ′-optimal. In addition, Grüter et al. [11] showed that λ′(T ) ⩽ ξ′(T ) and T
is λ′-optimal if δ(T ) ≥ (n + 3)/8 for all strong bipartite tournaments T except
for a family.

Given an arc uv ∈ A(D), define Ωuv = {ω+({u, v}), ω−({u, v}), ω+(u) ∪
ω−(v), ω−(u)∪ω+(v)}. Note that for every arc uv ∈ A(D) of a strong digraph D,
the elements of Ωuv are arc-cuts, but they are not necessarily restricted arc-cuts.
Balbuena et al. [3] introduced the definition of super restricted arc-connected
digraphs.

Definition 4 [3]. A λ′-connected digraph D is said to be super-λ′ if for every
λ′-cut S there exists an arc uv ∈ A(D) such that S ∈ Ωuv.

Clearly, if D is super-λ′, then λ′(D) = ξ′(D), but the converse is not true.
The following result is useful in studying super-λ′ digraphs.

Theorem 5 [3]. Let D be a λ′-connected digraph and let S be a λ′-cut of D.
If D is not super-λ′, then there exists a subset of vertices F ⊂ V (D) such that
S = ω+(F ) = [F, F ] and both the induced subdigraphs D[F ] and D[F ] contain an
arc.
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Balbuena et al. [3] provided a sufficient condition for an s-geodetic digraph to
be super-λ′ and showed that the h-iterated line digraph of an s-geodetic digraph
is super-λ′ for a particular h. Lin et al. [12] presented some minimum degree
conditions for oriented graphs to be super-λ′ and gave examples to show the
conditions are sharp.

Investigations on the restricted edge-connectivity of graphs were made by
many researchers. However, related results on restricted arc-connectivity have
received little attention. This paper shows sufficient conditions for a digraph
to be λ′-optimal or super-λ′ based on a parameter related with path lengths of
digraphs in Section 2.

2. Main Results

2.1. λ′-optimal oriented graphs

In this subsection we characterize λ′-optimal oriented graphs in terms of their
diameter and a parameter l2 defined as follows.

Definition 6 [4]. For a given digraph D, let l2 = l2(D), 1 ⩽ l2 ⩽ diam(D), be
the greatest integer such that for any (not necessarily different) x, y ∈ V (D),

(a) if d(x, y) ⩽ l2, the shortest x → y path is unique;

(b) if d(x, y) ⩽ l2 − t, there is no x → y path of length d(x, y) + t for 1 ⩽ t ⩽ 2.

Observe that l2 is well defined in oriented graphs, that is in digraphs with
girth at least 3. The parameter l2 satisfies an equality as follows.

Lemma 7 [4]. Let D be a strong oriented graph other than a directed cycle. Then
l2(L

k(D)) = l2(D) + k.

Lemma 8. Let D be an oriented graph and uv ∈ A(D). If l2 ⩾ 2, then N+
i (u)∩

N+
i (v) = ∅ and N+

i (N+(u)− v)∩N+
i (v) = ∅ for all i = 1, 2, . . . , l2 − 1; if l2 ⩾ 3,

then N+
i (u) ∩ N+

i (N+(v)) = ∅ and N+
i (N+(u) − v) ∩ N+

i (N+(v)) = ∅ for all
i = 1, 2, . . . , l2 − 2.

Proof. Assume by contradiction that N+
i (u) ∩ N+

i (v) ̸= ∅. Let x ∈ N+
i (u) ∩

N+
i (v), then d(u, x) = i and there is a u → x path of length i + 1, which is a

contradiction to the definition of l2 as i ⩽ l2− 1. Analogously, if there is a vertex
x ∈ N+

i (N+(u) − v) ∩ N+
i (v), then d(u, x) = i + 1 and there are two disjoint

shortest u → x paths of length i + 1, contradicting again to the definition of l2
as i ⩽ l2 − 1. The other two equalities can be proved similarly.

Theorem 9. Let D be a strong oriented graph with minimum degree δ ⩾ 2. Then
D is λ′-optimal if diam(D) ⩽ 2l2(D)− 2.
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Proof. Note that the condition δ ⩾ 2 implies that D has order at least 5. Hence,
by Theorem 2, D is λ′-connected and λ′(D) ⩽ ξ′(D). Assume by contradiction
that D is not λ′-optimal, therefore, λ′(D) < ξ′(D). Let S be a λ′-cut of D, by
Theorem 5, there exists a subset of vertices F ⊂ V (D) such that S = ω+(F ) =
[F, F ] = [X,X] and both the induced subdigraphs D[F ] and D[F ] contain an
arc. Define µ = max{d(v,X) : v ∈ V (F )} and µ = max{d(X, v) : v ∈ V (F )}.
Also, let the vertices of F and F be respectively partitioned into subsets Fi,
0 ⩽ i ⩽ µ, and F j , 0 ⩽ j ⩽ µ, according to their distance to X or from X,
that is, Fi = {v ∈ V (F ) : d(v,X) = i} and F j = {v ∈ V (F ) : d(X, v) = j}.
The distance from a vertex in Fµ to one in Fµ is at least µ + µ + 1, so that
µ+ µ+ 1 ⩽ diam(D). Since diam(D) ⩽ 2l2 − 2, one of them, µ or µ, is at most
l2 − 2. Without loss of generality, suppose µ ⩽ µ. Then µ ⩽ l2 − 2.

If µ = 0, then l2 ⩾ 2 and F = X. Let uv ∈ A(D[X]), see Figure 1.

Figure 1.

Define Av = N+(v) ∩ X and Au = (N+(u) − v) ∩ X. From Lemma 8, it
follows that N+(u) ∩ N+(v) = ∅ and therefore Av, Au and {u, v} are pairwise
disjoint. Hence,

λ′(D) = |[X,X]| ⩾ |[{u, v}, X]|+ |[Av, X]|+ |[Au, X]|

⩾ |[{u, v}, X]|+ |Av|+ |Au| = |N+(v)|+ |N+(u)− v|

= |ω+({u, v})| ⩾ ξ′(uv) ⩾ ξ′(D),

which contradicts the hypothesis.
Assume that 1 ⩽ µ ⩽ l2 − 2. We consider the following two cases.

Case 1. There exists an arc uv in D[F ] such that d(u,X) = d(v,X) = µ.

Subcase 1.1. µ ⩾ 2, which implies l2 ⩾ 4, see Figure 2. Define Av = N+(v)∩
Fµ, Bv = N+(v) ∩ Fµ−1, Bu = N+(u) ∩ Fµ−1 and Au = (N+(u) − v) ∩ Fµ. By
Lemma 8, one can show that Av, Bv, Bu and Au are pairwise disjoint. Set A1 =
N+

µ (Av) ∩X, A2 = N+
µ−1(Bv) ∩X, A3 = N+

µ−1(Bu) ∩X and A4 = N+
µ (Au) ∩X.
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We will now show that A1, A2, A3 and A4 are pairwise disjoint. It is clear by
Lemma 8 that A2 ∩A3 = ∅, A2 ∩A4 = ∅, A1 ∩A3 = ∅ and A1 ∩A4 = ∅. If there
is a vertex x ∈ A1 ∩A2, then d(u, x) = µ+1 and there is a u → x path of length
µ+2, which contradicts the definition of l2 as µ ⩽ l2 − 2. Analogously, it can be
deduced that A3 ∩ A4 = ∅. We claim that |A1| ⩾ |Av|, |A2| ⩾ |Bv|, |A3| ⩾ |Bu|
and |A4| ⩾ |Au|. In fact, if |A1| < |Av|, then there exists a vertex x ∈ A1 such
that there are two distinct shortest u → x paths of length µ + 2, contradicting
again to the definition of l2. The other three inequalities can be proved similarly.
Consequently,

λ′(D) = |[X,X]| ⩾ |X| ⩾ |A1|+ |A2|+ |A3|+ |A4|

⩾ |Av|+ |Bv|+ |Bu|+ |Au| = |N+(v)|+ |N+(u)− v|

= |ω+({u, v})| ⩾ ξ′(uv) ⩾ ξ′(D).

Figure 2.

Figure 3.

Subcase 1.2. µ = 1, which implies l2 ⩾ 3, see Figure 3. Define Av = N+(v)∩
F1, Bv = N+(v)∩X, Bu = N+(u)∩X and Au = (N+(u)−v)∩F1. Similarly as in
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the proof of Subcase 1.1, one can show that N+(Av)∩X, Bv, Bu and N+(Au)∩X
are pairwise disjoint, |N+(Av) ∩X| ⩾ |Av| and |N+(Au) ∩X| ⩾ |Au|. Thus,

λ′(D) = |[X,X]|

⩾ |[N+(Av) ∩X,X]|+ |[Bv, X]|+ |[Bu, X]|+ |[N+(Au) ∩X,X]|

⩾ |N+(Av) ∩X|+ |Bv|+ |Bu|+ |N+(Au) ∩X|

⩾ |Av|+ |Bv|+ |Bu|+ |Au| = |N+(v)|+ |N+(u)− v|

= |ω+({u, v})| ⩾ ξ′(uv) ⩾ ξ′(D).

Case 2. There is no arc uv in D[F ] such that d(u,X) = d(v,X) = µ.

Subcase 2.1. µ ⩾ 2, which implies l2 ⩾ 4, see Figure 4. Define Au = (N+(u)−
v)∩Fµ−1, Av = N+(v)∩Fµ−1, Bv = N+(v)∩Fµ, C = N+(Bv)∩Fµ−1. As l2 ⩾ 4, it
is clear that N+(u), Av and C are pairwise disjoint. Since the induced subdigraph
D[Fµ] contains no arc, we have |C| ⩾ δ|Bv| ⩾ 2|Bv|. Set A1 = N+

µ (u) ∩ X,

A2 = N+
µ−1(Av) ∩X and A3 = N+

µ−1(C) ∩X. Similar arguments as in Subcase
1.1 show that A1, A2 and A3 are pairwise disjoint. As µ ⩽ l2 − 2, it follows that
|A3| ⩾ |C|, |A2| ⩾ |Av| and |A1| = |N+

µ (u) ∩X| = |N+
µ−1(Au) ∩X|+ |N+

µ−1(v) ∩
X| = |N+

µ−1(Au) ∩ X| + |N+
µ−2(N

+(v) ∩ Fµ−2) ∩ X| ⩾ |Au| + |N+(v) ∩ Fµ−2|.
Thereby,

λ′(D) = |[X,X]| ⩾ |X| ⩾ |A1|+ |A2|+ |A3|
⩾ |Au|+ |N+(v) ∩ Fµ−2|+ |Av|+ |C|
⩾ |Au|+ |N+(v) ∩ Fµ−2|+ |Av|+ 2|Bv|
= |N+(u)− v|+ |N+(v)|+ |Bv|
= |ω+({u, v})|+ |Bv| ⩾ ξ′(uv) + |Bv| ⩾ ξ′(D).

Figure 4.
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Figure 5.

Subcase 2.2. µ = 1, which implies l2 ⩾ 3, see Figure 5. Consider the sets
Au = (N+(u)− v) ∩X, Av = N+(v) ∩X, Bv = N+(v) ∩ F1, C = N+(Bv) ∩X.
As l2 ⩾ 3, one can show that N+(u), Av, and C are pairwise disjoint. Since the
induced subdigraph D[F1] contains no arc, we have |C| ⩾ δ|Bv| ⩾ 2|Bv|. Hence,

λ′(D) = |[X,X]| ⩾ |[N+(u), X]|+ |[Av, X]|+ |[C,X]|
= |[Au, X]|+ |[v,X]|+ |[Av, X]|+ |[C,X]|
⩾ |Au|+ |[v,X]|+ |Av|+ |C| ⩾ |Au|+ |[v,X]|+ |Av|+ 2|Bv|
= |N+(u)− v|+ |N+(v)|+ |Bv| = |ω+({u, v})|+ |Bv|
⩾ ξ′(uv) + |Bv| ⩾ ξ′(D).

All cases lead to contradictions.

For tournaments, oriented bipartite graphs and k-iterated line digraphs, the
following corollaries follow from Lemma 7 and Theorem 9.

Corollary 10. Let D be a strong tournament or oriented bipartite graph with
minimum degree δ ⩾ 2. Then D is λ′-optimal if diam(D) ⩽ 2l2(D)− 2.

Corollary 11. Let D be a strong oriented graph with minimum degree δ ⩾ 2.
Then Lk(D) is λ′-optimal if k ⩾ diam(D)− 2l2(D) + 2.

2.2. Super-λ′ oriented graphs

In this subsection we characterize super-λ′ oriented graphs in terms of their di-
ameter and the parameter l2.

Theorem 12. Let D be a strong oriented graph with minimum degree δ ⩾ 3.
Then D is super-λ′ if diam(D) ⩽ 2l2(D)− 2.
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Proof. Theorem 9 shows that D is λ′-optimal, thus, λ′(D) = ξ′(D). Suppose
that D is not super-λ′. Let S be a λ′-cut of D such that S /∈

⋃
uv∈A(D)Ωuv. By

Theorem 5, there exists a subset of vertices F ⊂ V (D) such that S = ω+(F ) =
[F, F ] = [X,X] and both the induced subdigraphs D[F ] and D[F ] contain an
arc. We use the same notation as in the proof of Theorem 9. Now in this proof
we have µ + µ + 1 ⩽ 2l2 − 2. Without loss of generality, suppose µ ⩽ µ. Then
µ ⩽ l2 − 2.

If µ = 0, then l2 ⩾ 2 and F = X, see Figure 1. As shown in the proof of
Theorem 9, we have

ξ′(D) = λ′(D) = |[X,X]| ⩾ |[{u, v}, X]|+ |[Av, X]|+ |[Au, X]|
⩾ |[{u, v}, X]|+ |Av|+ |Au| = |N+(v)|+ |N+(u)− v|
= |ω+({u, v})| ⩾ ξ′(uv) ⩾ ξ′(D),

which implies λ′(D) = ξ′(D) and all the inequalities are equalities, yielding in
particular |Av| = |[Av, X]|, |Au| = |[Au, X]|. This implies |[z,X]| = 1 for all
z ∈ Au ∪ Av. If Au ∪ Av = ∅, then F = {u, v} and S = ω+(F ) = ω+({u, v}),
a contradiction. Thus Au ∪ Av ̸= ∅. Let u0 ∈ Au ∪ Av. Since |[u0, X]| = 1 and
δ ⩾ 3, we have |N+(u0) ∩ X| ⩾ 2. Let v0, z0 ∈ N+(u0) ∩ X, we consider now
the arc u0v0. As above, we have |[z′, X]| = 1 for all z′ ∈ Au0 ∪ Av0 such that
Au0 = (N+(u0) − v0) ∩ X and Av0 = N+(v0) ∩ X. It implies the existence of
some t0 ∈ N+(z0) ∩ X. As l2 ⩾ 2, we have t0 /∈ Au0 ∪ Av0 ∪ {u0, v0}. Clearly,
Au0 , Av0 , {u0, v0} and {t0} are pairwise disjoint. Thus,

ξ′(D) = λ′(D) = |[X,X]|
⩾ |[{u0, v0}, X]|+ |[Av0 , X]|+ |[Au0 , X]|+ |[t0, X]|
⩾ |[{u0, v0}, X]|+ |Av0 |+ |Au0 |+ |[t0, X]|
= |N+(v0)|+ |N+(u0)− v0|+ |[t0, X]|
> |ω+({u0, v0})| ⩾ ξ′(u0v0) ⩾ ξ′(D),

a contradiction.

Assume that 1 ⩽ µ ⩽ l2 − 2. We distinguish the following two cases.

Case 1. There exists an arc uv in D[F ] such that d(u,X) = d(v,X) = µ.

Subcase 1.1. µ ⩾ 2, which implies l2 ⩾ 4, see Figure 2. As mentioned in the
proof of Subcase 1.1 of Theorem 9, we deduce that

ξ′(D) = λ′(D) = |[X,X]| ⩾ |X| ⩾ |A1|+ |A2|+ |A3|+ |A4|
⩾ |Av|+ |Bv|+ |Bu|+ |Au| = |N+(v)|+ |N+(u)− v|
= |ω+({u, v})| ⩾ ξ′(uv) ⩾ ξ′(D),
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which implies λ′(D) = ξ′(D) and all the inequalities are equalities, which yields
in particular |A3| = |Bu| and X = A1 ∪ A2 ∪ A3 ∪ A4. Since |A3| = |Bu| and
δ ⩾ 3, there exists a vertex u′ ∈ Bu such that N+(u′) ∩ (Fµ ∪ Fµ−1) ̸= ∅. Let
z ∈ N+(u′)∩ (Fµ ∪Fµ−1), it can be obtained that z /∈ Av ∪Bv ∪Bu ∪Au ∪{u, v}
for the fact that l2 ⩾ 4. Therefore there exists a vertex x ∈ N+

d(z,X)(z) ∩X with

µ − 1 ⩽ d(z, x) ⩽ µ. If x ∈ A1, then we find a shortest u → x path of length
µ+ 1 or µ+ 2 and there is also a u → x path of length µ+ 2, contradicting the
definition of l2 as µ ⩽ l2 − 2. Similar contradictions will arise when x ∈ A2 or
x ∈ A3 or x ∈ A4.

Subcase 1.2. µ = 1, which implies l2 ⩾ 3, see Figure 3. It is recalled from the
proof of Subcase 1.2 of Theorem 9 that

ξ′(D) = λ′(D) = |[X,X]|
⩾ |[N+(Av) ∩X,X]|+ |[Bv, X]|+ |[Bu, X]|+ |[N+(Au) ∩X,X]|
⩾ |N+(Av) ∩X|+ |Bv|+ |Bu|+ |N+(Au) ∩X|
⩾ |Av|+ |Bv|+ |Bu|+ |Au| = |N+(v)|+ |N+(u)− v|
= |ω+({u, v})| ⩾ ξ′(uv) ⩾ ξ′(D),

which implies λ′(D) = ξ′(D) and all the inequalities are equalities, deducing in
particular |Bu| = |[Bu, X]| and X = (N+(Av) ∩X) ∪ Bv ∪ Bu ∪ (N+(Au) ∩X).
Since δ ⩾ 3, there exists a vertex u′ ∈ Bu such that N+(u′) ∩ (F1 ∪X) ̸= ∅. Let
z ∈ N+(u′)∩ (F1∪X). Then z /∈ Av ∪Bv ∪Bu∪Au∪ (N+(Av)∩X)∪ (N+(Au)∩
X) ∪ {u, v} for the fact that l2 ⩾ 3. Thus z ∈ F1 with d(z,X) = 1. Therefore
there exists a vertex x ∈ N+(z) ∩ X. If x ∈ N+(Av) ∩ X, then there are two
disjoint u → x paths of length 3, contradicting the definition of l2 as l2 ⩾ 3. It
will lead to similar contradictions when x ∈ Bv or x ∈ Bu or x ∈ N+(Au) ∩X.

Case 2. There is no arc uv in D[F ] such that d(u,X) = d(v,X) = µ.

Subcase 2.1. µ ⩾ 2, which implies l2 ⩾ 4, see Figure 4. As the induced
subdigraph D[Fµ] contains no arc, |C| ⩾ δ|Bv| ⩾ 3|Bv|. It is easily obtained
from the proof of Subcase 2.1 of Theorem 9 that

ξ′(D) = λ′(D) = |[X,X]| ⩾ |X| ⩾ |A1|+ |A2|+ |A3|
⩾ |Au|+ |N+(v) ∩ Fµ−2|+ |Av|+ |C|
⩾ |Au|+ |N+(v) ∩ Fµ−2|+ |Av|+ 3|Bv|
= |N+(u)− v|+ |N+(v)|+ 2|Bv| = |ω+({u, v})|+ 2|Bv|
⩾ ξ′(uv) + 2|Bv| ⩾ ξ′(D) + 2|Bv|.

This is a contradiction unless Bv = ∅, which yields in this case C = ∅, and
all the inequalities are equalities. Therefore, |A1| = |Au| + |N+(v) ∩ Fµ−2| and
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X = A1∪A2. As δ ⩾ 3, there exists a vertex z ∈ N+(Au)∩ (Fµ∪Fµ−1). Observe
that z /∈ Au∪Av ∪{u, v} as l2 ⩾ 4. Thus there exists a vertex x ∈ N+

d(z,X)(z)∩X

with µ− 1 ⩽ d(z, x) ⩽ µ. If x ∈ A1, then d(u, x) = µ and there is a u → x path
of length µ+ 1 or µ+ 2, contradicting the definition of l2 as µ ⩽ l2 − 2. One can
get a similar contradiction if x ∈ A2.

Subcase 2.2. µ = 1, which implies l2 ⩾ 3, see Figure 5. As the induced
subdigraph D[F1] contains no arc, |C| ⩾ δ|Bv| ⩾ 3|Bv|. The proof of Subcase 2.2
of Theorem 9 shows that

ξ′(D) = λ′(D) = |[X,X]| ⩾ |[N+(u), X]|+ |[Av, X]|+ |[C,X]|
= |[Au, X]|+ |[v,X]|+ |[Av, X]|+ |[C,X]| ⩾ |Au|+ |[v,X]|+ |Av|+ |C|
⩾ |Au|+ |[v,X]|+ |Av|+ 3|Bv| = |N+(u)− v|+ |N+(v)|+ 2|Bv|
= |ω+({u, v})|+ 2|Bv| ⩾ ξ′(uv) + 2|Bv| ⩾ ξ′(D) + 2|Bv|.

This is a contradiction unless Bv = ∅, inferring that in this case C = ∅, and all
the inequalities are equalities. Therefore |Au| = |[Au, X]| and X = N+(u) ∪ Av.
As δ ⩾ 3, there exists a vertex z ∈ N+(Au) ∩ (F1 ∪ X). It is seen that z /∈
Au ∪ Av ∪ {u, v} as l2 ⩾ 3. Thus z ∈ F1 with d(z,X) = 1, and there exists a
vertex x ∈ N+(z) ∩ X. If x ∈ N+(u), then d(u, x) = 1 and there is a u → x
path of length 3, contradicting the definition of l2 as l2 ⩾ 3. There will be a
contradiction when x ∈ Av.

For tournaments, oriented bipartite graphs and k-iterated line digraphs, the
following corollaries are obtained from Lemma 7 and Theorem 12.

Corollary 13. Let D be a strong tournament or oriented bipartite graph with
minimum degree δ ⩾ 3. Then D is super-λ′ if diam(D) ⩽ 2l2(D)− 2.

Corollary 14. Let D be a strong oriented graph with minimum degree δ ⩾ 3.
Then Lk(D) is super-λ′ if k ⩾ diam(D)− 2l2(D) + 2.

Acknowledgements

This work is supported by China Scholarship Council (No. 202406290008), China
Postdoctoral Science Foundation (No. 2024M754212) and Natural Science Foun-
dation of Xinjiang (No. 2021D01C116).

References

[1] M. Aigner, On the linegraph of a directed graph, Math. Z. 102 (1967) 56–61.
https://doi.org/10.1007/BF01110285
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