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Abstract

Given two non-empty graphs G,H and a positive integer k, the Gallai-
Ramsey number grk(G : H) is defined as the minimum integer N such that
for all n ≥ N , every k-edge-coloring of Kn contains either a rainbow copy
of G or a monochromatic copy of H. Given a graph H, the k-color Ramsey
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number Rk(H) is the minimum number n such that every k-edge-coloring of
Kn contains a monochromatic H. In this paper, we determine several exact
values and bounds for Gallai-Ramsey numbers grk(G : H) and Ramsey
numbers R3(H), where G is a special tree and H is a union of stars.
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1. Introduction

All graphs considered in this paper are undirected, finite and simple. Any un-
defined concepts or notations can be found in [5]. Let G = (V (G), E(G)) be a
graph. For a vertex subset V of G, G \ V is obtained by deleting all vertices of
V . Let G[V ] be the subgraph of G induced by V . For any vertex u ∈ V (G), we
abbreviate G \ {u} as G− u. We denote the minimum degree of G by δ(G). For
a bipartite graph K1,t on t+1 vertices, the center vertex of the bipartite graph is
the vertex adjacent to the other t vertices, and the remaining vertices are called
leaf vertices. Let [k] = {1, 2, . . . , k}. The k-edge-coloring is exact if every color
is used at least once. Let H be a disconnected graph and C(H) be the set of
connected graphs containing H as a subgraph. In this paper, we solely focus on
exact k-edge-colorings of graphs. An edge-colored graph is called rainbow if no
two edges share the same color. It is referred to as monochromatic if every edge
has the same color.

As we all know, Ramsey theory was introduced in 1930 (see [28]), and the
main subject of the theory are complete graphs whose subgraphs can have some
regular properties. Many results about the exact values and bounds for Ramsey
numbers have been obtained, which can be referred to a survey [27].

Definition. Given graphsH1, H2, . . . , Hk, the multi-color Ramsey number R(H1,
H2, . . . , Hk) is the minimum number n for which every k-edge-coloring of Kn con-
tains a monochromatic Hi for some 1 ≤ i ≤ n. If H1 = H2 = · · · = Hk, we write
the number as Rk(H).

Definition. Given two graphs G and H, the general k-edge-colored Gallai-
Ramsey number grk(G : H) is the minimum integer m such that every k-edge-
coloring of the complete graph on m vertices contains either a rainbow copy of
G or a monochromatic copy of H.

Edge colorings of complete graphs that contain no rainbow triangle possess
very interesting and somewhat surprising structures. In 1967, Gallai [12] first
examined the edge colorings of complete graphs without rainbow triangle under
the guise of transitive orientations of graphs and it can also be traced back to [5].
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For this reason, edge-colored complete graphs without rainbow triangle are called
Gallai colorings. Gallai’s result was restated in [17] in the terminology of graphs.
Ramsey number has its applications on the fields of communications, information
retrieval in computer science, and decision-making; see [29,30]. For the following
statement, a trivial partition is a partition into only one part.

Theorem 1 [5, 12, 17]. For each edge coloring of a complete graph containing

no rainbow triangle, there is a nontrivial partition of the vertices (called a Gallai

partition) such that at most two colors are on the edges between the parts and

only one color is on the edges between each pair of parts.

The induced subgraph of a Gallai colored complete graph constructed by
selecting a single vertex from each part of a Gallai partition is called the reduced

graph. By Theorem 1, the reduced graph is a 2-colored complete graph. This
kind of restriction on the distribution of colors has led to a variety of interesting
results like [14].

With the additional restriction of forbidding rainbow copies of G, we have
grk(G : H) ≤ Rk(H) for any G. Till now, most research focuses on the case
of G = K3; see [6, 8, 11, 17, 19, 21, 24–26, 32, 33]. Additionally, Gallai-Ramsey
numbers of hypergraphs were also studied by Li et al. [18] and Liu [22]. For more
details on the Gallai-Ramsey numbers, we refer to the book [23] and a survey
paper [9].

Some small trees have been studied. Li et al. [20] obtained the structural
theorems for complete bipartite graphs without rainbow 3-path and 4-path and
some exact values and bounds of grk(P5 : Kt). Fujita and Magnant [10] obtained
the structural theorem for G = S+

3 . Zou et al. [34] studied grk(P5 : H). Zhou et

al. [35] got exact values or bounds of grk(K1,3 : P3 ∪K1,q) for m, q ≥ 3, and the
Gallai-Ramsey number grk(P5 : P3∪K1,q) for q ≥ 3. Thomason and Wagner [31]
obtained construct theorems without rainbow 3-path, rainbow P+

4 , rainbow 4-
path or rainbow K1,3. The subject has also been expanded through several other
publications including but certainly not limited to [11,16]. In particular, in [16],
the following general behavior of Gallai-Ramsey numbers was established.

Theorem 2 [16]. Let H be a fixed graph with no isolated vertices. If H is

bipartite and not a star, then grk(K3 : H) is linear in k. If H is not bipartite,

then grk(K3 : H) is exponential in k.

By Theorem 2, it is clear that grk(K3 : H) is dependent on the variable k.
Motivated by the phenomenon, we will determine several exact values and bounds
for Gallai-Ramsey numbers grk(G : H) which is independent on the variable k,
where G is a special tree and H is a union of stars.
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Theorem 3. For positive integers n, t, k with n ≥ 2, t = 3, 4, k > 4, we have

(1) grk(P5 : nK1,t)



































= tn+ n+ 1, if 2 ≤ n ≤ 4, 4 < k ≤ tn+ n,
= tn+ n+ 1, if n ≥ 5,

⌊

n+3
2

⌋

+ 1 ≤ k ≤ tn+ n,
= 5n− 1, if t = 3, n ≥ 5, 4 < k ≤

⌊

n+3
2

⌋

,
∈ [6n− 1, 9n+ 20], if t = 4, n is sufficiently large and

4 < k ≤
⌊

n+3
2

⌋

,

=
⌈

1+
√
1+8k
2

⌉

, if n ≥ 2, k ≥ tn+ n+ 1.

Theorem 4. For positive integers n, t, k with n ≥ 2, t = 3, 4, k ≥ 3, we have

(2)

grk(K1,3 : nK1,t)
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= 6n, if k = 3, n = odd,
= 6n− 1, if k = 3, n = even,
∈ [3

⌊

5n
2

⌋

+ β, 9n+ 18], if t=4, n is sufficiently large and

n ≥ 7, k = 3, where β = −1 for
even n, otherwise, β = 2,

= tn+ n, if 2 ≤ n ≤ 4, 4 ≤ k ≤
⌊

tn+n+1
2

⌋

,
= tn+ n, if n≥5,

⌊

n+3
2

⌋

+1≤k≤
⌊

tn+n+1
2

⌋

,
= 5n− 1, if t = 3, n ≥ 5, 4 ≤ k ≤

⌊

n+3
2

⌋

,
∈ [6n− 1, 9n+ 20], for t=4, sufficiently large n≥13,

4 ≤ k ≤
⌊

n+3
2

⌋

,

=
⌈

1+
√
1+8k
2

⌉

, if n ≥ 2, k ≥
⌊

tn+n+1
2

⌋

+ 1.

Theorem 5. For positive integers n, t, k with n ≥ 2, t = 3, 4, k ≥ 5, we have

(3)

grk(P
+
4 : nK1,t)


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= tn+ n, if 2 ≤ n ≤ 4, 5 ≤ k ≤
⌊

tn+n+1
2

⌋

,
= tn+ n, if n ≥ 5,

⌊

n+3
2

⌋

+ 1 ≤ k ≤
⌊

tn+n+1
2

⌋

,
= 5n− 1, if t = 3, n ≥ 5, 5 ≤ k ≤

⌊

n+3
2

⌋

,
∈ [6n− 1, 9n+ 20], if t = 4, n is sufficiently large,

5 ≤ k ≤
⌊

n+3
2

⌋

,

=
⌈

1+
√
1+8k
2

⌉

, if n ≥ 2, k ≥
⌊

tn+n+1
2

⌋

+ 1.

2. Preliminaries

In this section, we will give several structure theorems and lemmas that will be
used in our main theorems.

Theorem 6 [31]. Let Kn, n ≥ 4, be edge colored so that it contains no rainbow

3-path P4. Then one of the following holds.

(a) At most two colors are used;
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(b) n = 4 and three colors are used, each color forming a 1-factor.

For n ≥ 1, let G1(n) be a 3-edge-coloring of Kn satisfying that the vertices
of Kn are partitioned into three pairwise disjoint sets V1, V2 and V3 such that
for 1 ≤ i ≤ 3 (with indices modulo 3), all edges between Vi and Vi+1 have color
i, and all edges connecting pairs of vertices within Vi+1 have color i or i + 1.
Note that one of V1, V2 and V3 is allowed to be empty, but at least two of
them are non-empty; otherwise, at most two colors can appear. For convenience,
for an k-edge-colored graph, we let Ei be the set of all edges with color i for
i ∈ {1, 2, . . . , k}. We denote the set of all vertices, each of which is incident with
at least one edge of Ei, by V i.

Theorem 7 [31]. For positive integers k and n, if G is a k-edge-coloring of Kn

without rainbow P+
4 , then after renumbering the colors, one of the following holds.

(a) k ≤ 3 or n ≤ 4;

(b) k = 4 and G ∈ {G2(n), G3(n)};
(c) k ≥ 4 and G contains on rainbow K1,3. In particular, item (b) in Theorem 8

holds.

Theorem 8 [31]. Let Kn, n ≥ 5, be edge colored so that it contains no rainbow

4-path P5. Then, after renumbering the colors, one of the following must hold.

(a) At most three colors are used;

(b) color 1 is dominant, meaning that the sets V i, i ≥ 2, are disjoint;

(c) Kn − a is monochromatic for some vertex a;

(d) there are three vertices a, b, c such that E2 = {ab}, E3 = {ac}, E4 contains

bc plus perhaps some edges incident with a, and every other edge is in E1;

(e) there are four vertices a, b, c, d such that {ab} ⊆ E2 ⊆ {ab, cd}, E3 = {ac, bd},
E4 = {ad, bc} and every other edge is in E1;

(f) n = 5, V (Kn) = {a, b, c, d, e}, E1 = {ad, ae, bc}, E2 = {bd, be, ac}, E3 =
{cd, ce, ab} and E4 = {de}.

Theorem 9 [2, 31]. For positive integers k and n, if G is an k-edge-coloring of

Kn without rainbow K1,3, then after renumbering the colors, one of the following

holds.

(a) k ≤ 2 or n ≤ 3;

(b) k = 3 and G ≃ G1(n);

(c) k ≥ 4 and item (b) in Theorem 8 holds.

Theorem 10 [3]. Let k and l be fixed and let n be sufficiently large. Then

R(nKk, nKl) = n(k + l − 1) +R(Kk−1,Kl−1)− 2.
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We obtain the following corollary which will be used to prove Lemma 25.

Corollary 11. Let n be a sufficiently large integer. Then

R(nK5, nK5) = 9n+ 16.

Proof. By Theorem 10, taking k = l = 5, we have R(nK5, nK5) = 9n +
R(Kk−1,Kl−1)− 2. Since R(4, 4) = 18 by [13], R(nK5, nK5) = 9n+ 16.

Theorem 12 [4]. Let G and H be graphs. Then for m,n > 1 we have that

R(mG,nH) ≤ (m+ 1)V (G) + (n− 1)V (H) +R(G,H).

Theorem 13 [1, 7]. 43 ≤ R(5, 5) ≤ 48.

By Theorems 12 and 13, we have the following corollary which will be used
to prove Lemma 25.

Corollary 14. For positive integers m,n > 1, we have that

R(mK5, nK5) ≤ 5(m+ 1) + 5(n− 1) +R(K5,K5) ≤ 5m+ 5n+ 48.

3. Proof of Theorem 3

Lemma 15 [21]. Let H be a disconnected graph and C(H) be the set of connected

graphs containing H as a subgraph. If R3(H) ≥ R2(C(H)), then grk(P5 : H) =
R3(H).

Lemma 16 [15]. Suppose that the edges of a graph G with δ(G) ≥ 3|V (G)|
4 are

2-colored. Then there is a monochromatic connected subgraph with order larger

than δ(G). This estimate is sharp.

We first give the proof of Theorem 20 using the following two lemmas.

Lemma 17. For 1 ≤ m ≤ n, R(C(nK1,3),mK2) = 4n+m− 1.

Proof. Let G be such a red-blue-coloring graph of K4n+m−2: we partition V (G)
into V1 and V2 such that G[V1] is a copy of K4n−1 and G[V2] is a copy of Km−1.
All edges of G[V1] are colored by red, and the remaining edges of G are colored
by blue. It is easy to check that there is no red nK1,3 or blue mK2 in this
red-blue-coloring. So we have that R(C(nK1,3),mK2) > 4n+m− 2.

Next, we prove the upper bound by induction on m. It is trivial for m = 1.
Assume that it holds for m ≤ k. Then we will prove it also holds for m = k + 1.
Let G be a red-blue coloring graph of K4n+k−1. If there is a red copy of the graph
of C(nK1,3) in G, then the red copy of the graph of C(nK1,3) must occur in the
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edge-colored graph of K4n+k. If there is no red copy of the graph of C(nK1,3)
in G, then G contains a blue copy of kK2 and the edge-colored graph of K4n+k

also has it. In the following, we will show that there is a red copy of the graph
of C(nK1,3) in the edge-colored graph of K4n+k.

If some edges between each end of ei ∈ E(kK2) and some vertices of X
(= V \V (kK2)) are colored by blue, then there will be a blue (k + 1)K2 by
replacing this ei with two independent blue edges. And it is easy to check that X
induces a red complete subgraph containing a red copy of the graph of C(nK1,3).
If there is a vertex, say ai, incident with ei for each edge ei ∈ E(kK2) such that
all edges between the vertex ai and all vertices of X (= V \V (kK2)) are colored
by red. Owing to |X| = 4n + k − 2k = 4n − k ≥ 3k + 4, there are 3k vertices
of X as leaf vertices and k vertices a1, a2, . . . , ak as center vertices of a red copy
of kK1,3. Since there are 4n + k − 2k − 3k = 4n − 4k vertices in the remaining
vertices of X, we can find a red copy of (n− k)K1,3 on those vertices. It is easy
to see that the nK1,3 are included in a connected red subgraph, which produces
the desired red copy of a graph in C(nK1,3).

Burr and Erdős [4] provided the Ramsey number of union of stars, and this
theorem played a significant role in the proof of Theorem 19.

Theorem 18 [4]. For m ≥ n,m ≥ 2, we have that

R(mK1,3, nK1,3) = 4m+ n− 1.

Theorem 19. For n ≥ 2, 5n− 1 ≤ R(C(nK1,3), C(nK1,3)) ≤ 6n.

Proof. By Theorem 18 with m = n, we have that 5n − 1 = R(nK1,3, nK1,3) ≤
R(C(nK1,3), C(nK1,3)). For the upper bound, let G be an arbitrary red-blue-
coloring G of KN (N = 6n). We assume that there is no monochromatic copy of
C(nK1,3) in G. Clearly, there is a monochromatic connected subgraph of order N
by Lemma 16. Without loss of generality, suppose that there is a blue connected
subgraph of order N . If a minimal red subgraph of G, say H, contains a copy of
nK1,3, then H must be disconnected.

Let X1, X2, . . . , Xs be all the components of H with |X1| ≥ |X2| ≥ · · · ≥
|Xs| ≥ 1 for s ≥ 2. Note that all edges between those components must be blue.
If |X1| ≥ 5n − 1, then there is a monochromatic C(nK1,3) by Theorem 18 with
R(nK1,3, nK1,3) = 5n− 1. So we have that |X1| < 5n− 1. Now we consider the
following three cases.

Case 1. |X1| ≥ 4n and |X2| ≥ n. Let |X1| = 4n+ k1. By Lemma 17, G[X1]
contains either a red C(nK1,3) or a blue (k1 + 1)K2. Assume that there is no
red copy of C(nK1,3). Then we will obtain a blue matching M = (k1 + 1)K2 in
G[X1]. We have that

|X1| − |V (M)| = 4n+ k1 − 2(k1 + 1) = 4n− k1 − 2 ≥ 3n− 1,
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since k1 ≤ n − 1. If |X1| − |V (M)| ≥ 3n, then we choose n vertices as center
vertices from X2 and 3n vertices as leaves from G[X1] \M . Thus, we get a blue
copy of C(nK1,3) in G. If |X1|−|V (M)| = 3n−1, then |V (KN )\X1| = n+1. Since
G[X1] has a blue copy of (k1 + 1)K2 = nK2, the two vertices of K2 from G[X1]
and two leaves from V (KN ) \ X1 will induce a blue K1,3. Moreover, there is a
blue copy of (n−1)K1,3 induced by all the remaining n−1 vertices in V (KN )\X1

and 3n−3 vertices from G[X1]\M . Thus we still have a blue connected subgraph
C(nK1,3).

Case 2. |X1| ≥ 4n and |X2| < n. Let |X1| = 4n+ k1 and |X2| = n− k2. By
Lemma 17, we have that R(C(nK1,3), (k1 + 1)K2) = 4n+ k1. Assume that there
is a blue matching M = (k1 + 1)K2 in G[X1]. Then we have that

|X1| − |V (M)| = 4n+ k1 − 2(k1 + 1) = 4n− k1 − 2 ≥ 3n− 1,

since k1 ≤ n− 1. Also, since |V (KN ) \X1| ≥ n+ 1, we have that

|V (KN ) \ (X1 ∪X2)| = 6n− 4n− k1 − n+ k2 = n− k1 + k2 ≥ k2 + 1.

Because there is a blue (k1+1)K2 by our assumption, two vertices of a blue copy
of K2 from G[X1] and two vertices, say u1, u2, of V (KN ) \X1 will induce a blue
copy of K1,3. Since |V (KN ) \ (X1 ∪ {u1, u2})| ≥ n− 1, we choose n− 1 vertices
from V (KN ) \ (X1 ∪ {u1, u2}) as the center vertices and 3n− 3 vertices as leaves
from X1 \ V (M) to form a blue copy of (n− 1)K1,3. Thus we have a connected
blue C(nK1,3).

Case 3. |X1| ≤ 4n−1. If 3n ≤ |X1| ≤ 4n−1, then 2n+1 ≤ |V (G)\X1| ≤ 3n.
Thus we choose 3n vertices from X1 as leaves, n vertices from V (G)\X1 as center
vertices to form a blue nK1,3. If 2n ≤ |X1| ≤ 3n−1, then 3n+1 ≤ |V (G)\X1| ≤
4n. We choose 3n vertices from V (G)\X1 as leaves, n vertices from X1 as center
vertices to form a blue nK1,3. If |X1| < 2n and |X2| < n, then n > |X2| ≥ |X3|
and n ≤ |X2 ∪X3| < 2n. Then we choose 3n vertices from V (G) \ (X2 ∪X3) as
leaves, n vertices from X2 ∪X3 as center vertices to form a blue copy of nK1,3.
If |X1| < 2n and |X2| ≥ n, then there is a vertex set Xj for j ≥ 2 satisfying
∑j

i=1 |Xi| ≤ 3n − 1 and
∑j+1

i=1 |Xi| ≥ 3n. Thus we choose 3n vertices from
⋃j+1

i=1 Xi as leaves, n vertices from V (G) \
(
⋃j+1

i=1 Xi

)

as center vertices to form a
blue copy of nK1,3. Thus we still have a connected blue copy of C(nK1,3) in this
case. This completes the proof.

Theorem 20. For the positive integers k, n with n ≥ 2, we have gr3(P5 :
nK1,3) = R3(nK1,3) ≥ 6n if n is odd; R3(nK1,3) ≥ 6n− 1 if n is even.

Proof. To begin with, we prove R3(nK1,3) > 6n− 1 (respectively, R3(nK1,3) >
6n− 2) for odd (respectively, even) number n. If n is odd, then we arrange such
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a 3-edge-coloring, denoted by G, for K6n−1: partition V (K6n−1) into V1, V2, V3,
and let G[V1] (respectively, G[V2]) be a copy of the complete subgraph K2n of
K6n−1 colored by 3 (colored by 2), let G[V3] be a copy of complete subgraph
K2n−1 of K6n−1 colored by at least one color from {2, 3} and we color by 3
the edges between V1 and V3 and we color by 2 the edges between V2 and V3.
It suffices to verify whether the edges between G[V1] and G[V2] colored by 1
can induce a monochromatic copy of nK1,3. We denote by t1 (respectively, t2)
the number of center vertices contained in V1 (respectively, V2). Then, assume
that the sum, denoted by n, of t1 and t2 is as large as possible. According
to the parity of n, we immediately have ti ≤

⌊

n
2

⌋

for i = 1, 2. It is easy to
check that there is a monochromatic copy of (n − 1)K1,3 with color 1 and two
vertices of V1(respectively, V2) are left not contained in the monochromatic copy
of (n−1)K1,3, say

{

v11, v
2
1

}

∈ V1 (respectively,
{

v12, v
2
2

}

∈ V2). But the vertices as
leaves cannot induce a monochromatic copy of K1,3. Thus, R3(nK1,3) > 6n − 1
for the odd n. By Lemma 15 and Theorem 19, we have the required result.

On the other hand, we prove that R3(nK1,3) > 6n − 2 for the even n. We
denote by G such a 3-edge-coloring of K6n−2: partition V (K6n−2) into V1, V2, V3,
and let G[V2] be a copy of the complete subgraph K2n−1 with color 2, and let
G[V3] be a copy of the complete subgraph K2n−1 of K6n−2 colored by at least one
color from {2, 3}, and let G[V1] be a copy of complete subgraph K2n of K6n−2

with color 3. The edges between V1 and V2 are colored by 1, the edges between V2

and V3 are colored by 2 and the edges between V1 and V3 are colored by 3. This
coloring can guarantee the fact that there is no monochromatic copy of nK1,3 in
K6n−2. It is concluded that R3(nK1,3) > 6n−1 (respectively, R3(nK1,3) > 6n−2)
for odd (respectively, even) number n.

Before proving more theorems, we give an observation utilized in some proofs
of theorems.

Observation 21. Let Ka,b be a complete bipartite graph with vertex sets V and

U , where |V | = a ≥ tn and |U | = b ≥ n. Then Ka,b contains a copy of nK1,t.

Theorem 22. For positive integers n > 1, k ≥ 4, and t = 3, 4, we have that

(4) grk(P5 : nK1,t) =

{

tn+ n+ 1, if 2 ≤ n ≤ 4, 4 ≤ k ≤ tn+ n,

tn+ n+ 1, if n ≥ 5,
⌊

n+3
2

⌋

+ 1 ≤ k ≤ tn+ n.

Proof. We first prove grk(P5 : nK1,t) > tn+n. Let G be such a k-edge-coloring
graph of Ktn+n: we partition V (G) into V1 and V2 such that G[V1] is a copy of
Ktn+n−1 and G[V2] is an isolated vertex v, where each edge of G[V1] is colored
by color 1 and all edges between V1 and V2 are assigned arbitrarily by k − 1
colors, say 2, . . . , k. It is easy to check that neither a rainbow copy of P5 nor a
monochromatic copy of nK1,t occurs in G. So grk(P5 : nK1,t) ≥ tn+ n+ 1.



980 Y. Gao, M. Ji, Y.P. Mao and M. Wei

Next, we prove grk(P5 : nK1,t) ≤ tn+n+1. Let G be an arbitrarily k-edge-
coloring of KN (N ≥ tn+ n+ 1) without a rainbow copy of P5. Then it follows
Theorem 8(b). We partition V (G) into V 1, . . . , V k with |V 2| ≥ · · · ≥ |V k| ≥ 2.
So it follows that

⌈

N/(k − 1)
⌉

≤ |V 1 ∪ V 2| ≤ N − 2(k − 2).

Case 1. 2 ≤ n ≤ 4 and 4 ≤ k ≤
⌈

tn+n+2
2

⌉

− 1, or n ≥ 5 and
⌊

n+3
2

⌋

+ 1 ≤ k ≤
⌈

tn+n+2
2

⌉

− 1.

Clearly, we have that
⌈

N/(k−1)
⌉

≤ |V 1∪V 2| ≤ tn+1. If the size of V 1∪V 2

is n, then |V (KN ) \ (V 1 ∪V 2)| = 3n+1 (similarly, if the size of V 1 ∪V 2 is n+1,
3n, or 3n+1, then |V (KN ) \ (V 1 ∪V 2)| will be 3n, n+1, or n, respectively). By
Observation 21, there is always a monochromatic copy of nK1,t with color 1 in
G. If n + 2 ≤ |V 1 ∪ V 2| ≤ tn − 1, then we claim that there is a monochromatic
subgraph nK1,t induced by edges between V 1 ∪ V 2 and V (KN ) \ (V 1 ∪ V 2). In
order to prove it, we construct the monochromatic subgraph nK1,t when n+2 ≤
|V 1 ∪ V 2| ≤

⌈

tn+n+2
2

⌉

and
⌈

(tn+ n+ 1)/2
⌉

≤ |V 1 ∪ V 2| ≤ tn− 1, respectively.

Let x = |V 1 ∪ V 2|. We denote the remainder of x/(t − 1) by r0 and denote
|V (KN )\ (V 1∪V 2)| by y. Clearly, x+ y = tn+n+1 ≤ N . Then, apparently, we
have that x = tm+ r0 for m =

⌊

x/(t− 1)
⌋

≤ n− 1 and n− 1 ≤ m+ r0 ≤ n+ 2.
If m+ r0 = n+1, then y = m+ tr0− t, and regard r0− 1 vertices of V 1 ∪V 2 and
m vertices of V (KN ) \ (V 1 ∪ V 2) as center vertices of a copy of nK1,3. Clearly,
there must exist a monochromatic copy of nK1,t with color 1. If m + r0 = n,
then y = m + tr0 + 1. We regard r0 vertices of V 1 ∪ V 2 and m vertices of
V (KN ) \ (V 1 ∪ V 2) as center vertices of a copy of nK1,3. So there must exist
a monochromatic copy of nK1,t with color 1. If m + r0 = n + 2 and t = 4,
then y = m + 3, and x = 4m + 3. There at last exists one edge with color 1
of G[V (KN ) \ (V 1 ∪ V 2)], and we denote the edge by u1u2. Select arbitrarily
3 vertices, say {v1, v2, v3}, from V 1 ∪ V 2. Clearly, {u1u2, u1v1, u1v2, u1v2} is a
monochromatic copy ofK1,4 with color 1 inG[V (KN )\(V 1∪V 2)]. By Observation
21, G contains a monochromatic copy of (n− 1)K1,t with color 1.

For m+ r0 = n− 1 and t = 3, let w be a positive integer for w ∈ {(n−m−
r0)/2, (n −m − r0 + 1)/2}. There is n −m + w vertices of V 1 ∪ V 2 and m − w
vertices of V (KN ) \ (V 1 ∪ V 2) as center vertices of a copy of nK1,3. Clearly,
there must exist a monochromatic copy of nK1,3 with color 1. For

⌈

N/(k−1)
⌉

≤
|V 1∪V 2| ≤ n−1, let |V 1∪V 2| = c and |V 3| = s+j where c+s = n. Hence, we have
⌈

(3n+2)/(k−2)
⌉

≤ |V 3| ≤ n−1. Since
∑k

i=4 |V i| ≥ N−2c ≥ 2c+4s+1, there is

a monochromatic copy of sK1,3 with vertex set X having color 1 in G
[
⋃k

i=3 V
i
]

.
Let B = V (G) \ (X ∪ V 1 ∪ V 2). Then there is a monochromatic copy of cK1,3 in

G
[
⋃k

i=4 V
i ∪B

]

. By c+ t = n, we have constructed the monochromatic copy of
nK1,3 with color 1 in G.

Case 2.
⌈

tn+n+2
2

⌉

≤ k ≤ tn+ n. Since at least two vertices are contained in
each V i for 2 ≤ i ≤

⌈

(tn+ n)/2
⌉

, let aij ∈ V i (1 ≤ j ≤ 2). Since (tn+ n)/2 ≡ 0
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(mod t+1) for even n, then the edge set {a21ai1, a22ai2 | 3 ≤ i ≤ t+2} will induce
a monochromatic copy of 2K1,t with color 1. Furthermore, there is n/2 copies of
2K1,t with color 1.

For odd n, if t = 3 and n ≡ 1 (mod 2), then n − 3 ≡ 0 (mod 2) holds.
It follows that

(⌈

tn+n
2

⌉

− 6
)

/4 = (n − 3)/2, so, there is a monochromatic copy

of (n − 3)K1,3 with color 1 in G
[

V (G) \
(
⋃7

i=2 V
i
)]

for even n − 3. Choos-
ing distinct vertices aij ∈ V i (2 ≤ i ≤ 7), the subgraph induced by edge set
{a21ai1, a22a32, a22a42, a22a62, a61a52, a61b7j | 3 ≤ i ≤ 5} contains a monochro-
matic copy of 3K1,3 with color 1 in G

[
⋃7

i=2 V
i
]

. Therefore, there is a monochro-
matic copy of nK1,3 with color 1. If t = 4 and (5n + 1)/2 ≡ 3 (mod 5), then
(5n+1)/2−3 ≡ 0 (mod 5) holds. It follows that

(⌈

tn+n
2

⌉

−3
)

/5 = (n−1)/2, then

we find a monochromatic copy of (n−1)K1,4 with color 1 in G
[

V (G)\
(
⋃4

i=2 V
i
)]

for n−1. The subgraph induced by edge set {a31a2j , a31a4j} contains a monochro-
matic copy of K1,4 with color 1 in G

[
⋃4

i=2 V
i
]

. Therefore, we find a monochro-
matic copy of nK1,4 with color 1, as desired.

If Theorem 8(c) holds, it is easy to check that there is a monochromatic copy
of K4n with color 1 containing a monochromatic copy of nK1,3. If Theorem 8(d)
for k = 4 holds, the subgraph induced by {v1a, v1b, v1c, v1v2} contains a K1,t

copy with color 1, where vertex vi ∈ V (G) \ {a, b, c} (1 ≤ i ≤ 2). There is a
monochromatic (n− t)K1,t copy with color 1 in G \K1,t. Suppose that it follows
Theorem 8(e). We choose distinct vertices v1 ∈ V (KN )\{a, b, c, d}. The subgraph
induced by the edge set {av1, bv1, cv1, dv1} will make up a monochromatic copy of
K1,t of with color 1. And it is easy to see that there is a monochromatic copy of
KN−5 containing a monochromatic copy of (n−1)K1,t with color 1. Consequently,
a monochromatic copy of (n− 1)K1,t in KN−5 is constructed, as desired.

At the end of this section, we give the proof of Theorem 3 by Theorem 23
and Lemmas 24, 25.

Theorem 23 [34]. Let H be a graph of order n. For integers k ≥ 7 and k ≥ n+1,
we have that

grk(P5 : H) =

⌈

1 +
√
1 + 8k

2

⌉

.

Lemma 24. For any positive integers n ≥ 5 and 4 < k ≤
⌈

n+3
2

⌉

, we have that

grk(P5 : nK1,3) = 5n− 1.

Proof. We first prove that grk(P5 : nK1,3) ≥ 5n− 2. Let G be a k-edge-coloring
of K5n−2: we partition V (G) into V1, . . . , Vk−1 with |V2| ≥ · · · ≥ |Vk−1| ≥ 2 such
that G[V1] is a monochromatic copy of K4n−1 with color 2, G[Vi] is colored by i+1
for 2 ≤ i ≤ k−1, and all edges between Vi and Vj for all i 6= j ∈ [k−1] with color
1. It is easy to check that no rainbow P5 appears in the graph G. Furthermore,
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according to
∑k−2

i=2 |Vi| = n − 1 the graph G contains no monochromatic copy
of nK1,3. As a consequence, G contains neither a rainbow copy of P5 nor a
monochromatic copy of nK1,3. So it admits grk(P5 : nK1,3) ≥ 5n− 1.

For the upper bound, let G be an arbitrary k-edge-coloring of KN (N ≥
5n− 1) that contains no rainbow copy of P5. Suppose that G satisfies Theorem
8(b), we divide V (G) into V 1, . . . , V k with |V 2| ≥ · · · ≥ |V k| ≥ 2 (2 ≤ i ≤ k− 1).
We immediately have that |V 1 ∪ V 2| ≥

⌈

N/(k − 1)
⌉

.

Case 1. 4n+1 ≤ |V 1∪V 2| ≤ 5n+3−2k. If 4n+1 ≤ |V 1∪V 2| ≤ 5n+3−2k,
then it follows from Theorem 18 that R(nK1,3, (n − j)K1,3) = 5n − j − 1 (j =
|V (KN ) \ (V 1 ∪ V 2)|, n ≥ 2). If there is a monochromatic copy of (n − j)K1,3

with color 1 in G[V 1 ∪ V 2], then it is clear that j vertices of V (KN ) \ (V 1 ∪ V 2)
and 3j vertices of V 1 ∪ V 2 induce a monochromatic copy of jK1,3 with color 1,
which will lead to a monochromatic copy of nK1,3 with color 1 contained in G.
Otherwise, G[V 1 ∪ V 2] contains a monochromatic copy of nK1,3 with color 2.

Case 2. |V 1 ∪ V 2| = 4n and |V (KN ) \ (V 1 ∪ V 2)| = n− 1. If |V 1 ∪ V 2| = 4n
and |V (KN ) \ (V 1 ∪ V 2)| = n − 1, then we have that R(nK1,3,K1,3) = 4n by
Theorem 18. We assume that there is no monochromatic copy of nK1,3 with
color 2 in G[V 1 ∪ V 2]. Then there is a monochromatic copy of K1,3 with color 1
in G[V 1 ∪ V 2]. And then, we further choose all vertices of V (KN ) \ (V 1 ∪ V 2)
and all vertices of (V 1 ∪ V 2) \ V (K1,3). It will form a monochromatic copy of
(n− 1)K1,3 with color 1.

Case 3. 3n ≤ |V 1 ∪ V 2| ≤ 4n− 1 and n ≤ |V (KN ) \ (V 1 ∪ V 2)| ≤ 2n− 1. If
3n ≤ |V 1∪V 2| ≤ 4n−1 and n ≤ |V (KN )\(V 1∪V 2)| ≤ 2n−1, then by Observation
21 we have |V (KN ) \ (V 1 ∪ V 2)| ≥ n and |V 1 ∪ V 2| ≥ 3n. Clearly, we find a
monochromatic copy of nK1,3 with color 1. If 2n ≤ |V 1 ∪ V 2| ≤ 3n− 1 and 2n ≤
|V (KN )\ (V 1∪V 2)| ≤ 3n−1, then let X = max{|V 1∪V 2|, |V (KN )\ (V 1∪V 2)|}
and Y = min{|V 1∪V 2|, |V (KN )\(V 1∪V 2)|} with |Y | ≥ 2n−1 and |X| ≥ 2n+1.
Now we construct a monochromatic copy of nK1,3 with color 1. We select

⌈

n/2
⌉

vertices from Y and
⌊

n/2
⌋

vertices from X, and 3
⌈

n/2
⌉

vertices from X and
3
⌊

n/2
⌋

vertices from Y . It is easy to check that the vertices selected above
form a monochromatic copy of nK1,3 with color 1. If n ≤ |V 1 ∪ V 2| ≤ 2n − 1
and 3n ≤ |V (KN ) \ (V 1 ∪ V 2)| ≤ 4n − 1, then, by Observation 21, we find a
monochromatic copy of nK1,3 with color 1. If |V 1 ∪ V 2| ≤ n − 1 and 4n ≤
|V (KN ) \ (V 1 ∪ V 2)| ≤ 5n − 1 −

⌈

N/(k − 1)
⌉

, then there is a vertex set V j for

2 ≤ j ≤ k−1 satisfying
∑j+1

i=1 |V i| ≤ n−1 and
∑j+1

i=1 |V i| ≥ n. Let s =
∑j+1

i=1 |V i|
and t =

∑k−1
i=j+2 |V i|. Since |V j+1| ≤ |V j | ≤ n − 1 and by Observation 21, we

find a monochromatic copy of nK1,3 with color 1 in Ks,t. If k = 4, then it is
easy to see that we find a monochromatic copy of K4n with color 1 containing a
monochromatic copy of nK1,3, as desired.
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Lemma 25. For sufficiently large n with 4 < k ≤
⌈

n+3
2

⌉

, we have that

6n− 1 ≤ grk(P5 : nK1,4) ≤ 9n+ 20.

Proof. For the lower bound, let G be a k-edge-coloring of K6n−2. Then partition
V (G) into V1, V2, . . . , Vk−1 with |Vi| ≥ |Vi+1| ≥ 2 (1 ≤ i ≤ k − 1). Let G[V1] be a
monochromatic K5n−1 with color 2. And we color G[Vi] by i+1 for 2 ≤ i ≤ k−2
and the remaining edges of G are colored by color 1. If Σk−1

i=2 |Vi| = n− 1, then G
contains no monochromatic copy of nK1,4. Then there is neither a rainbow copy
of P5 nor a monochromatic copy of nK1,4 in G. So grk(P5 : nK1,4) ≥ 6n− 1.

For the upper bound, let G be an arbitrary k-edge-coloring of KN (N ≥ 9n+
20) without rainbow copy of P5. For the case of Theorem 8(b), we divide V (G)
into V 1, . . . , V k with |V 2| ≥ · · · ≥ |V k| ≥ 2. We have that |V 1∪V 2| ≥

⌈

N/(k−1)
⌉

.
If |V 1 ∪V 2| ≥ 9n+16, then it follows from Corollary 11 that R(nK5) = 9n+16.
It is easy to check that there exists a monochromatic nK5 with color 1.

If 8n+ 21 ≤ |V 1 ∪ V 2| ≤ 9n+ 15, then 5 ≤ |V (KN ) \ (V 1 ∪ V 2)| ≤ 9n+ 15.
Let |V (KN ) \ (V 1 ∪ V 2)| = z. By Corollary 14, we have R(nK5, (n − z)K5) ≥
10n + 38 − 5z. If there is a monochromatic copy of (n − z)K1,4 with color 1
in G[V 1 ∪ V 2], then it is clear that z vertices of V (KN ) \ (V 1 ∪ V 2) and 4z
vertices of V 1 ∪ V 2 induce a monochromatic copy of zK1,4 with color 1, which
lead to a monochromatic copy of nK1,4 with color 1 contained in G. Otherwise,
in G[V 1 ∪ V 2] there is a monochromatic copy of nK1,4 with color 2.

If 4n ≤ |V 1∪V 2| ≤ 8n+20 and n ≤ |V 1∪V 2| ≤ 4n−1, then by Observation
21 we find a monochromatic copy of nK1,4 with color 1. If

⌈

N/(k−1)
⌉

≤ |V (KN )\
(V 1 ∪ V 2)| ≤ n − 1, then there is a vertex set V j for 2 ≤ j ≤ k − 1 satisfying
∑j

i=1 |V i| ≤ n − 1 and
∑j+1

i=1 |V i| ≥ n. Let s =
∑j+1

i=1 |V i| and t =
∑k−1

i=j+2 |V i|.
Since |V j+1| ≤ |V j | ≤ n − 1 and by Observation 21, we find a monochromatic
copy of nK1,4 with color 1 in Ks,t. If k = 4, then it is easy to see that we find
a monochromatic copy of K5n with color 1 containing a monochromatic copy of
nK1,4, as desired.

4. Proof of Theorem 4

We give the proof of Theorem 4 by proving several lemmas in the following.

Lemma 26. For n ≥ 2, we have

(5) gr3(K1,3 : nK1,3) =

{

6n, if n is odd,
6n− 1, if n is even.

Proof. To begin with, we proveR3(K1,3 : nK1,3) > 6n−1 (respectively, R3(K1,3 :
nK1,3) > 6n − 2) for odd (respectively, even) number n. If n is odd, then we
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arrange such a 3-edge-coloring, denoted by G, forK6n−1: partition V (K6n−1) into
V1, V2, V3, and let G[V1] (respectively, G[V2]) be a copy of the complete subgraph
K2n ofK6n−1 colored by 3 (colored by 2), letG[V3] be a copy of complete subgraph
K2n−1 of K6n−1 colored by at least one color from {2, 3} and we color by 3 the
edges between V1 and V3, we color by 2 the edges between V2 and V3 and we color
by 1 the edges between V1 and V2. We can check that there is no rainbow K1,3

for the edge-coloring. It suffices to verify whether the edges between G[V1] and
G[V2] colored by 1 can induce a monochromatic copy of nK1,3. We denote by t1
(respectively, t2) the number of center vertices contained in V1 (respectively, V2).
Then, assume that the sum, denoted by n, of t1 and t2 is as large as possible.
According to the parity of n, we immediately have ti ≤

⌊

n
2

⌋

for i = 1, 2. It is easy
to check that there is a monochromatic copy of (n− 1)K1,3 with color 1 and two
vertices of V1(respectively, V2) are left not contained in the monochromatic copy
of (n − 1)K1,3, say

{

v11, v
2
1

}

∈ V1 (respectively,
{

v12, v
2
2

}

∈ V2). But the vertices
as leaves cannot induce a monochromatic copy of K1,3. Thus, R3(K1,3 : nK1,3) >
6n− 1 for the odd n.

On the other hand, we prove that R3(K1,3 : nK1,3) > 6n − 2 for the even
n. We denote by G such a 3-edge-coloring of K6n−2: partition V (K6n−2) into
V1, V2, V3, and let G[V2] be a copy of the complete subgraph K2n−1 with color
2, and let G[V3] be a copy of the complete subgraph K2n−1 of K6n−2 colored
by at least one color from {2, 3}, and let G[V1] be a copy of complete subgraph
K2n of K6n−2 with color 3. The edges between V1 and V2 are colored by 1,
the edges between V2 and V3 are colored by 2 and the edges between V1 and V3

are colored by 3. This coloring can guarantee the fact that there is no rainbow
copy of K1,3 and monochromatic copy of nK1,3 in K6n−2. It is concluded that
R3(K1,3 : nK1,3) > 6n − 1 (respectively, R3(K1,3 : nK1,3) > 6n − 2) for odd
(respectively, even) number n.

For the upper bound, let G be an arbitrary 3-edge-coloring of KN without a
rainbow copy of K1,3. We divide V (G) into V1, V2, and V3 with |V1| ≥ |V2| ≥ |V3|.
Let G[V1] be a 2-edge-coloring complete graph colored by at least one color from
{1, 3}, and let G[V2] be a 2-edge-coloring complete graph colored by at least one
color from {1, 2}, and let G[V3] be a 2-edge-coloring complete graph colored by at
least one color from {2, 3}. We construct G by coloring all edges between G[V1]
and G[V2] with color 1, all edges between G[V2] and G[V3] with color 2 and all
edges between G[V1] and G[V3] with color 3. Then the coloring satisfies Theorem
9(b). If n is odd, then N ≥ 6n. Otherwise N ≥ 6n−1. We consider the following
two cases.

Case 1. |V3| = 0. We have that |V1| ≥
⌈

N/2
⌉

= 3n. If |V1| ≥ 5n − 1, then
R(nK1,3) = 5n − 1 by Theorem 18. So there is a monochromatic copy of nK1,3

with color 1 or color 3 in G[V1]. If 3n ≤ |V1| ≤ 5n − 2 and n + 1 ≤ |V2| ≤
3n − 1, then there is a monochromatic copy of nK1,3 with color 1 in G[V1 ∪ V2]
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by Observation 21.

Case 2. |V3| ≥ 1. In this case, we have that |V1| ≥
⌈

N/3
⌉

≥ 2n. If |V1| ≥
5n− 1, then it is easy to check that there is a monochromatic copy of nK1,3 with
color 1 or 3 in G[V1]. If 4n + 1 ≤ |V1| ≤ 5n − 2 and |V2| ≥ n, then there is a
monochromatic nK1,3 with color 1 by Observation 21. If 4n+ 1 ≤ |V1| ≤ 5n− 2,
then |V2| ≤ n − 1. Let |V2| = m and |V3| ≤ m. By Theorem 18, we have
R(nK1,3, (n−m)K1,3) = 5n−m−1. It follows that |V1| ≥ R(nK1,3, (n−m)K1,3).
If there is a monochromatic copy of (n − m)K1,3 with color 1, then it is clear
that m vertices of V2 and 3m vertices of V1 induce a monochromatic copy of
mK1,3 with color 1, which lead to a monochromatic copy of nK1,3 with color 1
in G. Otherwise, G[V1] contains a monochromatic copy of nK1,3 with color 3. If
3n ≤ |V1| ≤ 4n and |V2| ≥

⌈

(N − |V1|)/2
⌉

= n, then there is a monochromatic
copy of nK1,3 with color 1 by Observation 21 in G[V1 ∪ V2].

Suppose that 2n + 1 ≤ |V1| < 3n − 1. If n is odd, then we denote |V1| =
2n + 1 + 2l (l = 0, 1, 2, . . .). Clearly, |V2| ≥

⌈

(N − |V1|)/2
⌉

= 2n − l. We
regard

⌊

n/2
⌋

− l of V1 and
⌈

n/2
⌉

+ l of V2 as center vertices and the remaining
vertices as leaves of the copy of nK1,3. Clearly, there is a monochromatic copy
of nK1,3 with color 1. Suppose that n is even. If |V1| = 2n+ 2+ 2l (i ≥ 1), then
|V2| ≥

⌈

(N − |V1|)/2
⌉

= 2n − 1 − l. We look on n/2 − l vertices from V1 and
n/2+l vertices from V2 as center vertices and remaining vertices as corresponding
leaf vertices to from a monochromatic copy of nK1,3 with color 1. If l = 0, then
|V1| = 2n+ 2 and |V2| ≥ 2n− 1. Hence, there is a monochromatic copy of nK1,3

with color 1 in G[V1∪V2], which contains n/2+1 center vertices in V1 and n/2−1
center vertices in V2.

Suppose that |V1| = 3n − 1. If |V1| = 3n − 1 and |V2| ≥
⌈

(N − 3n + 1)/2
⌉

,
then

⌈

(N − 3n+ 1)/2
⌉

≥ n+ 2. Hence, there is a monochromatic copy of nK1,3

with color 1 in G[V1 ∪ V2], which contains one center vertices in V1 and n − 1
center vertices in V2.

Suppose that |V1| = 2n. If n is odd, then we obtain |V1| = |V2| = |V3| = 2n.
Let

⌊

n/2
⌋

vertices be center vertices and 3
⌊

n/2
⌋

vertices be the leaves of Vi (i =
1, 2) (respectively, i = 1, 3) of a copy of (n − 1)K1,3. Clearly, there must exist a
monochromatic copy of (n−1)K1,3 with color 1 or color 3. It is obvious that there
are two vertices remaining in each vertex sets, denote these edges are u1iu

2
i ∈ Vi

(i = 1, 2, 3). Clearly,
{

u11u
2
1, u

1
1u

1
1

}

(i = 2, 3) is a monochromatic copy of K1,3

with color 1 when u11u
2
1 has color 1. On the other hand, there is a monochromatic

copy of K1,3 with color 3. We have constructed the monochromatic copy of
nK1,3 with color 1 or 3 in G[V1 ∪ V2] or G[V1 ∪ V3]. If n is even, then we obtain
|V1| = |V2| = 2n and |V3| = 2n−1. There is a monochromatic copy of nK1,3 with
color 1 in G[V1 ∪ V2]. Let t1 (respectively, t2) be the number of center vertices of
a copy of nK1,3 contained in V1 (respectively, V2) and t1 = t2 = n/2. It is easy
to check that there is a monochromatic copy of nK1,3 with color 1.
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Lemma 27. For sufficiently large n, we have

3

⌊

5n

2

⌋

+ β ≤ gr3(K1,3 : nK1,4) ≤ 9n+ 18,

where β = −1 if n is even, otherwise, β = 2.

Proof. On the one hand, we prove gr3(K1,3 : nK1,4) > 3 ⌊5n/2⌋+1 (respectively,
gr3(K1,3 : nK1,4) > 3 ⌊5n/2⌋ − 2) for odd (respectively, even) number n. If n
is odd, then 3

⌊

5n/2
⌋

+ 1 = 15(n − 1)/2 + 1. Let G be a 3-edge-coloring of
K15(n−1)/2+1 as follows. We first partition V (K15(n−1)/2+1) into V1, V2, and V3,
and let G[V1] and G[V2] be the copies of the complete subgraph K(5n−5)/2+3 of
K15(n−1)/2+1 colored by 3 and 2, respectively. Let G[V3] be a copy of complete
subgraph K(5n−1)/2−1 of K15(n−1)/2+1 with one color from {2, 3}. It is obvious
that the edges between V1 and V2 colored by 1 induce a monochromatic copy
of nK1,4. We choose n − 1 center vertices of a copy of (n − 1)K1,4 in V1 ∪ V2.
Thus, there is a monochromatic copy of (n − 1)K1,4 with color 1. Two vertices
v1i , v

2
i ∈ Vi (i = 1, 2) are not contained in the monochromatic copy of (n−1)K1,4.

However, the remaining vertices will not induce a monochromatic copy of K1,4.
Hence, gr3(K1,3 : nK1,4) ≥ 3

⌊

5n/2
⌋

+ 2 for the odd n.
On the other hand, we prove that gr3(K1,3 : nK1,4) ≥ 3

⌊

5n/2
⌋

− 1 for the
even n. Consider such a 3-edge-coloring of K15n/2−2 and denote it by G: partition
V (K15n/2−2) into V1, V2, V3, and let G[V2] be the copy of the complete subgraphs
K5n/2−1 with color 2, and let G[V3] be the copy of the complete subgraph K5n/2−1

of K15n/2−2 colored by at least one color from {2, 3}. Let G[V1] be a copy of com-
plete subgraph K5n/2 of K15n/2−2 with color 3. There is no monochromatic copy
of nK1,4 in K15n/2−2. We conclude that K3⌊5n/2⌋+β contains no a monochromatic
copy of nK1,4.

For the upper bound of gr3(K1,3 : nK1,4), let G be an arbitrary 3-edge-
coloring of KN (N ≥ 9n+18) without a rainbow copy of K1,3. Firstly, we divide
V (G) into V 1, V 2, and V 3 with |V1| ≥ |V2| ≥ |V3|, where G[V1] is a complete
graph colored by at least one color from {1, 3}, and G[V2] is a complete graph
colored by at least one color from {1, 2}, and G[V3] is a complete graph colored
by at least one color from {2, 3}. Then we color all edges between G[V1] and
G[V2] with color 1, all edges between G[V2] and G[V3] with color 2, and all edges
between G[V1] and G[V3] with color 3. Then the coloring satisfies Theorem 9(b).

Case 1. |V3| = 0. If |V1| ≥ 9n+ 16, then R(nK5) = 9n+ 16 by Theorem 10.
It follows that there is a monochromatic copy of nK1,4 with color 1 or color 3.
Because of 4n <

⌈

N/2
⌉

≤ |V1| ≤ 9n + 15, we obtain |V2| ≥ n. Hence, there is a
monochromatic copy of nK1,4 with color 1 by Observation 21.

Case 2. |V3| ≥ 1. In this case, we have |V1| ≥
⌈

N/3
⌉

= 3n+6. If |V1| ≥ 9n+
16, then R(nK5) = 9n+ 16 by Theorem 10. So there is again a monochromatic
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copy of nK1,4 with color 1 or color 3. If 7n+ 18 ≤ |V1| ≤ 9n+ 15 with |V2| ≥ n,
then there is a monochromatic copy of nK1,4 with color 1 by Observation 21. If
7n+18 ≤ |V1| ≤ 9n+15 with |V2| ≤ n−1, then we denote |V2| by m. By Corollary
14, we have that R(nK5, (n−m)K5) ≤ 10n+38−5m. If there is a monochromatic
copy of (n−m)K5 with color 1 in G[V1], m vertices of V2 and 4m vertices of V1

induce a monochromatic copy of mK1,4 with color 1 in G. Otherwise, G[V1]
contains a monochromatic copy of nK1,4 with color 1. If 4n ≤ |V1| ≤ 7n + 17,
then |V2| ≥

⌈

(N − |V1|)/2
⌉

≥ n. So, there must exist a monochromatic copy of
nK1,4 with color 1 by Observation 21. If 3n + 6 ≤ |V1| ≤ 4n − 1, then we have
3n+6 ≥ |V2| ≥

⌈

(N−|V1|)/2
⌉

≥
⌈

(5n+19)/2
⌉

. Clearly,
⌊

n/2
⌋

−1 center vertices of
V1 and

⌈

n/2
⌉

+1 center vertices of V2 induce a monochromatic copy of nK1,4 with
color 1 in G[V1 ∪V2]. Consequently, we have that gr3(K1,3 : nK1,4) ≤ 9n+18.

Lemma 28. For positive integers n, k, and t = 3, 4, we have that

(6) grk(K1,3 : nK1,t) =

{

tn+ n, if 2 ≤ n ≤ 4, 4 ≤ k ≤
⌊

tn+n+1
2

⌋

,

tn+ n, if n ≥ 5,
⌊

n+3
2

⌋

+ 1 ≤ k ≤
⌊

tn+n+1
2

⌋

.

Proof. For the lower bound, let G be a k-edge-coloring of Ktn+n−1. We divide
V (G) into V1, . . . , Vk−1 with |V1| = tn+ n− 2k + 3 and |Vj | = 2 (2 ≤ j ≤ k − 1).
Then the k-edge-coloring follows the rules: each edge of the subgraph G[Vj ] for
1 ≤ j ≤ k − 1 is colored by color j and the remaining edges of G are colored by
k. So, there is neither a monochromatic copy of nK1,t nor a rainbow K1,3.

For the upper bound, let G be an any k-edge-coloring of KN (N ≥ tn + n)
without a rainbow copy of K1,3 and we divide V (G) into V1, . . . , Vk. Then the
coloring satisfies Theorem 9(c). Without loss of generality, we assume that |V i| ≥
|V i+1| ≥ 2 (2 ≤ i ≤ k − 1). It implies that

⌈

N/(k − 1)
⌉

≤ |V 1 ∪ V 2| ≤ tn+ n−
2(k− 2). Let vij ∈ V i (2 ≤ i ≤ k, j = 1, 2). If |V 1 ∪V 2| = n or tn, then there is a
monochromatic copy of nK1,t with color 1 by Observation 21. Now we consider
two cases.

Case 1. |V 1 ∪ V 2| ≥ n + 1 and t = 3. If |V 1 ∪ V 2| − n = 2m for a positive
integer m, then we denote V 1 ∪ V 2 by B1. Next, we choose m center vertices
from V (KN ) \ (V 1 ∪ V 2) and n − m center vertices from B1, which will form
a monochromatic copy of nK1,3 with color 1. If |V 1 ∪ V 2| − n = 2m ± 1, we
denote V 1 ∪ V 2 by B2. Let vij ∈ V i for i = 2, 3, 4 and j = 1, 2. Then the edge

set
{

v31v
2
1, v

3
1v

2
2, v

3
1v

4
1

}

will induce a monochromatic copy of K1,3 with color 1. If
|B2| = |B1| − 1, then both of the number of the center vertices in V 1 ∪ V 2 for a
copy of (n− 1)K1,3 and those in B1 is n−m. If |B2| = |B1|+1, then the number
of center vertices in V 1∪V 2 is n−m−1, which is less than that of center vertices
of a copy of (n − 1)K1,3 in B1. Then there is a monochromatic copy of nK1,3

with color 1.
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Case 2. |V 1∪V 2| ≥ n+1 and t = 4. If |V 1∪V 2| = 4n−3m for m ≥ 0, then m
center vertices from V 1∪V 2 and n−m center vertices from V (KN )\(V 1∪V 2) will
induce a monochromatic copy of nK1,4 with color 1. If |V 1∪V 2| = 4n−3m+1 for
m ≥ 0, there is a monochromatic copy of K1,4 having color 1 in G

[
⋃4

i=1 V
i
]

. Let
v2j ∈ V 1∪V 2, v3 ∈ V 3 and v4 ∈ V 4 for j = 1, 2, 3. Then the edge set

{

v3v2j , v
3v4

}

will induce a monochromatic copy of K1,4 with color 1. Then m center vertices
from V 1∪V 2−v2j and n−m−1 center vertices from V (KN )\(V 1∪V 2∪{v3, v4})
will induce a monochromatic copy of (n− 1)K1,4 with color 1.

If |V 1 ∪ V 2| = 4n − 3m + 2 for m ≥ 0, there is a monochromatic copy of
K1,4 having color 1 in G

[
⋃4

i=1 V
i
]

. Let v2j ∈ V 1 ∪ V 2, v3 ∈ V 3 and v4j ∈ V 4 for

j = 1, 2. Then the edge set
{

v3v2j , v
3v4j

}

will induce a monochromatic copy of

K1,4 with color 1. Then choose m center vertices from V 1∪V 2−v2j and n−m−1

center vertices from V (KN ) \
(

V 1 ∪ V 2 ∪
{

v3, v4j
})

will induce a monochromatic
copy of (n − 1)K1,4 with color 1. Hence, in this case we have a monochromatic
copy of nK1,4 with color 1.

If
⌈

N/(k − 1)
⌉

≤ |V 1 ∪ V 2| ≤ n − 1, then there is a vertex set V l for l ≥ 3

satisfying
∑l−1

i=1 |V i| ≤ n − 1 and
∑l

i=1 |V i| > n − 1. When
∑l

i=1 |V i| = n and
∣

∣V (KN ) \
(
⋃l

i=1 V
i
)
∣

∣ = tn, there is a monochromatic copy of nK1,t with color

1 by Observation 21. If
∑l

i=1 |V i| ≥ n + 1, then we consider the following two
cases.

Subcase 2.1.
⋃l

i=1 |V i| ≥ n + 1 and t = 3. If
∑l

i=1 |V i| − n = 2m for a

positive integer m, then we denote
⋃l

i=1 V
i by B1. Next, we choose m center

vertices from V (KN ) \
(
⋃l

i=1 V
i
)

and n−m center vertices from B1, which will

form a monochromatic copy of nK1,3 with color 1. If
∑l

i=1 |V i| − n = 2m ± 1,

we denote
⋃l

i=1 V
i by B2. Let vij ∈ V i for i = 2, l, l + 1 and j = 1, 2. Then the

edge set
{

vl1v
2
j , v

l
1v

l+1
1

}

will induce a monochromatic copy of K1,3 with color 1.

If |B2| = |B1|− 1, then both of the number of the center vertices in
⋃l

i=1 V
i for a

copy of (n− 1)K1,3 and those in B1 is n−m. If |B2| = |B1|+1, then the number

of center vertices in
⋃l

i=1 V
i is n−m−1, which is less than that of center vertices

of a copy of (n − 1)K1,3 in B1. Then there is a monochromatic copy of nK1,3

with color 1.

Subcase 2.2.
∑l

i=1 |V i| ≥ n + 1 and t = 4. If
∑l

i=1 |V i| = 4n − 3m for

m ≥ 0, then m center vertices from
⋃l

i=1 V
i and n − m center vertices from

V (KN ) \
(
⋃l

i=1 V
i
)

will induce a monochromatic copy of nK1,4 with color 1. If
∑l

i=1 |V i| = 4n− 3m+ 1 for m ≥ 0, then there is a monochromatic copy of K1,4

having color 1 in G
[
⋃l+2

i=1 V
i
]

. Let v2j ∈ V 1 ∪ V 2, vl+1 ∈ V l+1 and vl+2 ∈ V l+2

for j = 1, 2, 3. Then the edge set
{

vl+1v2j , v
l+1vl+2

}

will induce a monochromatic

copy of K1,4 with color 1. Then choose m center vertices from
⋃l

i=1 V
i − v2j and



Ramsey and Gallai-Ramsey Numbers for Forests 989

n − m − 1 center vertices from V (KN ) \
(
⋃l

i=1 V
i ∪

{

vl+1, vl+2
})

will induce a
monochromatic copy of (n− 1)K1,4 with color 1.

If
∣

∣

⋃l
i=1 V

i
∣

∣ = 4n−3m+2 for m ≥ 0, there is a monochromatic copy of K1,4

having color 1 in G
[
⋃l+2

i=1 V
i
]

. Let v2j ∈ V 1∪V 2, vl+1 ∈ V l+1 and vl+2
j ∈ V l+2 for

j = 1, 2. Then the edge set
{

vl+1v2j , v
l+1vl+2

j

}

will induce a monochromatic copy

ofK1,4 with color 1. Thenm center vertices from
⋃l

i=1 V
i−v2j and n−m−1 center

vertices from V (KN )\
(
⋃l

i=1 V
i∪

{

vl+1, vl+2
j

})

will induce a monochromatic copy
of (n − 1)K1,4 with color 1. Hence, in this case we have a monochromatic copy
of nK1,4 with color 1. Thus, grk(K1,3 : nK1,3) ≤ tn+ n.

Lemma 29. For positive integers n ≥ 5, and 4 < k ≤
⌊

n+3
2

⌋

, we have

grk(K1,3 : nK1,3) = 5n− 1.

Proof. Basically, the proof is analogous to the proof of grk(P5 : nK1,3) = 5n−1.
We first prove that grk(K1,3 : nK1,3) ≥ 5n − 2. Let G be a k-edge-coloring of
K5n−2: we partition V (G) into V1, . . . , Vk−1 with |V2| ≥ · · · ≥ |Vk−1| ≥ 2 such
that G[V1] is a monochromatic copy of K4n−1 with color 2, G[Vi] is colored by i+1
for 2 ≤ i ≤ k−1, and all edges between Vi and Vj for all i 6= j ∈ [k−1] with color
1. It is easy to check that no rainbow K1,3 appears in the graph G. Furthermore,

according to
∑k−2

i=2 |Vi| = n − 1 the graph G contains no monochromatic copy
of nK1,3. As a consequence, G contains neither a rainbow copy of K1,3 nor a
monochromatic copy of nK1,3. So it admits grk(K1,3 : nK1,3) ≥ 5n− 1.

For the upper bound, let G be an arbitrary k-edge-coloring of KN (N ≥
5n−1) that contains no rainbow copy of K1,3. Suppose that G satisfies Theorem
9(c), we divide V (G) into V 1, . . . , V k with |V 2| ≥ · · · ≥ |V k| ≥ 2 (2 ≤ i ≤ k− 1).
We immediately have that |V 1 ∪ V 2| ≥

⌈

N/(k − 1)
⌉

.

Case 1. 4n+1 ≤ |V 1∪V 2| ≤ 5n+3−2k. If 4n+1 ≤ |V 1∪V 2| ≤ 5n+3−2k,
then it follows from Theorem 18 that R(nK1,3, (n − j)K1,3) = 5n − j − 1 (j =
|V (KN ) \ (V 1 ∪ V 2)|, n ≥ 2). If there is a monochromatic copy of (n − j)K1,3

with color 1 in G[V 1 ∪ V 2], then it is clear that j vertices of V (KN ) \ (V 1 ∪ V 2)
and 3j vertices of V 1 ∪ V 2 induce a monochromatic copy of jK1,3 with color 1,
which will lead to a monochromatic copy of nK1,3 with color 1 contained in G.
Otherwise, G[V 1 ∪ V 2] contains a monochromatic copy of nK1,3 with color 2.

Case 2. |V 1 ∪ V 2| = 4n and |V (KN ) \ (V 1 ∪ V 2)| = n− 1. If |V 1 ∪ V 2| = 4n
and |V (KN ) \ (V 1 ∪ V 2)| = n − 1, then we have that R(nK1,3,K1,3) = 4n by
Theorem 18. We assume that there is no monochromatic copy of nK1,3 with
color 2 in G[V 1 ∪ V 2]. Then there is a monochromatic copy of K1,3 with color 1
in G[V 1 ∪ V 2]. Next, we further choose all vertices of V (KN ) \ (V 1 ∪ V 2) and all
vertices of (V 1∪V 2)\V (K1,3). It will form a monochromatic copy of (n−1)K1,3

with color 1.
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Case 3. 3n ≤ |V 1 ∪ V 2| ≤ 4n− 1 and n ≤ |V (KN ) \ (V 1 ∪ V 2)| ≤ 2n− 1. If
3n ≤ |V 1∪V 2| ≤ 4n−1 and n ≤ |V (KN )\(V 1∪V 2)| ≤ 2n−1, then by Observation
21 we have |V (KN ) \ (V 1 ∪ V 2)| ≥ n and |V 1 ∪ V 2| ≥ 3n. Clearly, we find a
monochromatic copy of nK1,3 with color 1. If 2n ≤ |V 1 ∪ V 2| ≤ 3n− 1 and 2n ≤
|V (KN )\ (V 1∪V 2)| ≤ 3n−1, then let X = max{|V 1∪V 2|, |V (KN )\ (V 1∪V 2)|}
and Y = min{|V 1∪V 2|, |V (KN )\(V 1∪V 2)|} with |Y | ≥ 2n−1 and |X| ≥ 2n+1.
Now we construct a monochromatic copy of nK1,3 with color 1. We select

⌈

n/2
⌉

vertices from Y and
⌊

n/2
⌋

vertices from X, and 3
⌈

n/2
⌉

vertices from X and
3
⌊

n/2
⌋

vertices from Y . It is easy to check that the selected vertices above
form a monochromatic copy of nK1,3 with color 1. If n ≤ |V 1 ∪ V 2| ≤ 2n − 1
and 3n ≤ |V (KN ) \ (V 1 ∪ V 2)| ≤ 4n − 1, then, by Observation 21, we find a
monochromatic copy of nK1,3 with color 1. If |V 1 ∪ V 2| ≤ n − 1 and 4n ≤
|V (KN ) \ (V 1 ∪ V 2)| ≤ 5n − 1 −

⌈

N/(k − 1)
⌉

, then there is a vertex set V j for

2 ≤ j ≤ k−1 satisfying
∑j+1

i=1 |V i| ≤ n−1 and
∑j+1

i=1 |V i| ≥ n. Let s =
∑j+1

i=1 |V i|
and t =

∑k−1
i=j+2 |V i|. Since |V j+1| ≤ |V j | ≤ n − 1 and Observation 21, we

find a monochromatic copy of nK1,3 with color 1 in Ks,t. If k = 4, then it is
easy to see that we find a monochromatic copy of K4n with color 1 containing a
monochromatic copy of nK1,3, as desired.

Lemma 30. Let n be a sufficiently large integer. We have

6n− 1 ≤ grk(K1,3 : nK1,4) ≤ 9n+ 20,

for 4 ≤ k ≤
⌊

n+3
2

⌋

.

Proof. Since grk(K1,3 : nK1,4) = grk(P5 : nK1,4), then we have 6n − 1 ≤
grk(K1,3 : nK1,4) ≤ 9n+ 20 by Lemma 25.

Lemma 31. For positive integers n ≥ 2 and k ≥
⌊

tn+n+1
2

⌋

+ 1, we have

grk(K1,3 : nK1,t) =

⌈

1 +
√
1 + 8k

2

⌉

.

Proof. Let M =
⌈

1+
√
1+8k
2

⌉

. For the lower bound, we have that grk(K1,3 :

nK1,t) ≥ M , because every color occurs at least once. Hence, k ≤ |E(KM −1)| =
(

M−1
2

)

, contradicting the fact that M =
⌈

1+
√
1+8k
2

⌉

.

For the upper bound, let G be an arbitrary exact k-edge-colored KM without
a rainbow copy of K1,3 for N ≥ M . We divide V (G) into V1, . . . , Vk. The coloring
satisfies Theorem 9(c). Without loss of generality, we assume that |V i| ≥ |V i+1| ≥
2 (2 ≤ i ≤ k − 1). Hence, there are only edges of color 1 among the parts. Since
k ≥ 2n + 1 and N ≥ 2k − 2 ≥ tn + n, the subgraph of G[V i] (2 ≤ i ≤ k − 1)
contains a monochromatic copy of nK1,t.
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5. Proof of Theorem 5

In this section, we give the proof of Theorem 5 by Lemmas 32 and 33.

Lemma 32 [35]. For integers k ≥ 5 and grk(K1,3 : H) ≥ 5, we have

grk(K1,3 : H) = grk(P
+
4 : H).

Lemma 33. For positive integers n ≥ 2 and t = 3, 4, we have

gr4(P
+
4 : nK1,t) = tn+ n+ 2.

Proof. Let G1 be a k-edge-coloring of Ktn+n−1 with color 1 and x, y be two
isolated vertices. Assign color 3 to all edges between V (G1) and x, color 4 to
all edges between V (G1) and y, and color 2 to xy. We obtain a 4-edge-colored
Ktn+n+1 that contains neither a rainbow copy of P+

4 nor a monochromatic copy
of nK1,t.

For the upper bound, let G be a 4-edge-colored KN where N ≥ tn + n +
2. If G contains no rainbow copy of P+

4 , then by Theorem 7(b) we get G ∈
{G2(N), G3(N)}. Clearly, there is a monochromatic copy of nK1,t in G. If G ∼=
G2(N), then unlike the lower bound we constructed. There is a monochromatic
copy of nK1,t with color 1 of G1. Let G3(N) be a 4-edge-coloring of Ktn+n+2 in
which there is a rainbow K3 having colors 2, 3 and 4. Suppose that every edge is
incident with at most one vertex in the rainbow K3 with color 1. Define the three
vertices of this rainbow K3 as a, b, c. Let G2 be a monochromatic copy of Ktn+n−1

with color 1. Taking the three vertices of a, b, c as the three center vertices of
monochromatic 3K1,t, the edges connected to V (G2) form a monochromatic copy
of 3K1,t with color 1. Then there are |V (G2)| = tn + n − 3t − 1 vertices which
can form a monochromatic copy of (n − 3)K1,t with color 1. Consequently, we
have that gr4(P

+
4 : nK1,t) ≤ tn+ n+ 2.
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