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Abstract

An equitable (Ok,Ok, . . . ,Ok)︸ ︷︷ ︸
m

-partition of a graph G, which is also called

an equitable k clusterm-partition, is the partition of V (G) intom non-empty
subsets V1, V2, . . . , Vm such that for every integer i in {1, 2, . . . ,m}, G[Vi]
is a graph with components of order at most k, and for each pair of distinct
i, j in {1, . . . ,m}, there is −1 ≤ |Vi| − |Vj | ≤ 1. In this paper, we proved
that every graph G with minimum degree δ(G) ≥ 2 and maximum average
degree mad(G) < 8

3 admits an equitable (O6,O6, . . . ,O6)︸ ︷︷ ︸
m

-partition, for any

integer m ≥ 3.

Keywords: equitable cluster partition, maximum average degree, discharg-
ing.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. For a graph
G, we use V (G) to denote the vertex set. An equitable k-partition of a graph
G is a partition of V (G) into (V1, . . . , Vk) such that −1 ≤ |Vi| − |Vj | ≤ 1 for all
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1 ≤ i < j ≤ k, a k-partition is ascending equitable if |V1| ≤ |V2| ≤ · · · ≤ |Vk| ≤
|V1|+1 and descending equitable if |V1| ≥ |V2| ≥ · · · ≥ |Vk| ≥ |V1| − 1. Let Gi be
a class of graphs for 1 ≤ i ≤ k. Given a graph G, an equitable (G1,G2, . . . ,Gk)-
partition of graph G is an equitable k-partition of G such that for all 1 ≤ i ≤ k,
the induced subgraph G[Vi] belongs to Gi.

The G-equitable partition number of a graph G, denoted by χeG(G), is the
smallest integer k such that G has an equitable (G1, . . . ,Gk)-partition with G1 =
G2 = · · · = Gk = G. In contrast to the ordinary vertex partition, a graph
may have an equitable (G1, . . . ,Gk)-partition, but no equitable (G1, . . . ,Gk,Gk+1)-
partition with G1 = · · · = Gk = Gk+1 = G. The G-equitable partition threshold
of G, denoted by χ∗

eG(G), is the smallest integer k such that G has an equitable
(G1, . . . ,Gm)-partition for all m ≥ k with G1 = G2 = · · · = Gm = G.

It is clear that χeG(G) ≤ χ∗
eG(G). In fact, the gap between the two parameters

can be arbitrarily large. Let I, Ok, Tk denote the class of edge-less graphs, the
class of graphs each of whose components has order at most k, the class of trees
whose components have order at most k, respectively. I-partition is equivalent
to proper vertex coloring of graphs. And Ok-partition relax the requirement that
adjacent vertices are put in distinct vertex sets. Compared with vertex coloring,
we say that a partition of G has cluster k if each of V1, . . . , Vm induces a graph
each of whose components has at most k vertices, and denote such a partition
by (Ok,Ok, . . . ,Ok)︸ ︷︷ ︸

m

. Equitable tree partition is an equitable partition of V (G)

into (V1, . . . , Vm), where G[Vi] ∈ Tk. Let mad(G) denote the maximum average

degree of G, which is defined as mad(G) = max{2|E(H)|
|V (H)|

∣∣H ⊆ G}.
Hajnal and Szemerédi [3] proved that for any graph G with maximum degree

∆(G), there is χ∗
eI(G) ≤ ∆(G) + 1. Chen, Lih and Wu [2] conjectured that

for any connected graph G different from Km, C2m+1 and K2m+1,2m+1, there is
χ∗
eI(G) ≤ ∆(G). For planar graphs, Zhang and Yap [8] proved that for every

planar graph with ∆(G) ≥ 13, there is χ∗
eI(G) ≤ ∆(G). Wu and Wang [7] proved

that for every planar graph with δ(G) ≥ 2 and g(G) ≥ 26, there is χ∗
eI(G) ≤ 3

and, for every planar graph with δ(G) ≥ 2 and g(G) ≥ 14, there is χ∗
eI(G) ≤ 4.

Later, Luo, Sereni, Stephens and Yu [5] improved the above results by proving
that for every planar graph with δ(G) ≥ 2 and g(G) ≥ 14, there is χ∗

eI(G) ≤ 3,
and for every planar graph with δ(G) ≥ 2 and g(G) ≥ 10, there is χ∗

eI(G) ≤ 4.

We are interested in the equitable (Ok, . . . ,Ok)︸ ︷︷ ︸
m

-partition for any integers

m ≥ 2 and k ≥ 2. Such a partition was first studied in [6], under the name of
defective equitable coloring. The following results are rewritten using the notion
in the present paper.

Theorem 1 (Williams, Vandenbussche and Yu, [6]). Every planar graph G with
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minimum degree δ(G) ≥ 2 and girth g(G) ≥ 10 has an equitable (O2, . . . ,O2)︸ ︷︷ ︸
m

-

partition for any integer m ≥ 3, that is χ∗
eO2

(G) ≤ 3.

Theorem 2 (Li and Zhang, [4]). Every planar graph G with minimum degree
δ(G) ≥ 2 and girth g(G) ≥ 8 has an equitable (O2, . . . ,O2)︸ ︷︷ ︸

m

-partition for any

integer m ≥ 4, that is χ∗
eO2

(G) ≤ 4.

In this paper, we extend the equitable cluster partition to general graphs,
and obtain the following main result.

Theorem 3. Every graph G with minimum degree δ(G) ≥ 2 and maximum
average degree mad(G) < 8

3 admits an equitable (O6,O6, . . . ,O6)︸ ︷︷ ︸
m

-partition for

any integer m ≥ 3, that is χ∗
eO6

(G) ≤ 3.

By Euler’s formula, a planar graph G with girth g satisfies mad(G) < 2g
g−2

[1]. According to Theorem 3, it is natural to infer the following corollary.

Corollary 4. Every planar graph G with minimum degree δ(G) ≥ 2 and girth
g(G) ≥ 8 admits an equitable (O6,O6, . . . ,O6)︸ ︷︷ ︸

m

-partition for any integer m ≥ 3,

that is χ∗
eO6

(G) ≤ 3.

Though Corollary 4 is not a completely improvement of Theorems 1 and
2, it optimized the condition of g(G) and equitable cluster partition threshold,
respectively. And actually Corollary 4 gave an equitable tree partition threshold
by the condition g(G) ≥ 8.

2. The Structure of Minimal Counterexamples

Let G be a counterexample to Theorem 3 with a smallest order. Before discussing
the structure of G, we clarify some necessary definitions and notations firstly.

The degree of a vertex v in G, written by dG(v) or simply d(v) when there is
no confusion, is the number of edges incident with v in G. A k-vertex, k+-vertex
and k−-vertex is a vertex of degree k, at least k and at most k, respectively. A
neighbor of vertex v with degree k, at least k and at most k is called a k-neighbor,
k+-neighbor and k−-neighbor of v, respectively.

A chain of G is a maximal induced walk whose internal vertices all have
degree 2. A t-chain is a chain with t internal vertices. In a chain, the 3+-vertex
is called endvertex. Specially, a cycle with exactly one 3+-vertex and all other
vertices of degree 2 is also called a chain, in this case, the endvertices of chain are
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identical. Let x be an endvertex of a chain P , y be a vertex in P , if the distance
between x and y on P is l+1, then we say that y is loosely l-adjacent to x. Thus
“loosely 0-adjacent” is the same as usual “adjacent”.

Let x be a vertex with d(x) ≥ 3, then x is the endvertex of d(x) different
chains. Set T (x) = (a2, a1, a0), where ai is the number of i-chains incident with
x, i ∈ {0, 1, 2}. Let A(x) be the vertex set consisting of all 2-vertices in its
incident chains, then t(x) = |A(x)| = 2a2 + a1. We define several kinds of 3-
vertices that we will use in the following proof. We call a 3-vertex x bad 3-vertex
if T (x) = (0, 2, 1), terrible 3-vertex if T (x) = (0, 3, 0) or T (x) = (1, 1, 1), A-3-
vertex if t(x) = 1 and it is adjacent to a bad 3-vertex, B-3-vertex if t(x) = 0
and it is adjacent to two bad 3-vertices, C-3-vertex if t(x) = 1 and it is adjacent
to an A-3-vertex. If a neighbor of the vertex v is A-3-vertex, B-3-vertex or C-3-
vertex, then we call it an A-3-neighbor, B-3-neighbor or C-3-neighbor of v. We
use hollow dots to represent 3+-vertices that the degree is unfixed, use solid dots
to represent the vertices that its degree is fixed and the degree is the number of
edges incident with it. These kinds of 3-vertices are shown in Figure 1.

C-3-vertexA-3-vertex B-3-vertex

terrible 3-vertexterrible 3-vertexbad 3-vertex

x x x

xx x

Figure 1. Several kinds of 3-vertices.

For convenience, let m(mod m) = m for any positive integer m. In the whole
paper, all the integers m we mentioned are not less than 3, and there is an obvious
fact that if G1 ⊆ G, then mad(G1) ≤ mad(G). For brief, we will not mention
them again.
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Lemma 5. The graph G is connected.

Proof. On the contrary, letH1, H2, . . . ,Hk be the components ofG, where k ≥ 2.
By the minimality of G, both H = H1∪H2∪· · ·∪Hk−1 and Hk admit an equitable
6 cluster m-partition. An ascending equitable 6 cluster m-partition of H with
|V1(H)| ≤ · · · ≤ |Vm(H)| and a descending equitable 6 cluster m-partition of
Hk with |V1(Hk)| ≥ · · · ≥ |Vm(Hk)| generate an equitable 6 cluster m-partition
(V1(H)∪V1(Hk), . . . , Vm(H)∪Vm(Hk)) of G, which contradicts the choice of G.

Lemma 6. If G has a t-chain, then t ≤ 2.

Proof. Suppose to the contrary that G has a t-chain P = v0v1 · · · vtvt+1 with
t ≥ 3, where d(v0), d(vt+1) ≥ 3. Let G1 = G− {v1, . . . , vt}.

If v0 ̸= vt+1 or v0 = vt+1 and d(v0) ≥ 4, then δ(G1) ≥ 2. By the minimality
of G, the graph G1 has an equitable 6 cluster m-partition with |V1| ≤ · · · ≤ |Vm|.
We can extend the partition of G1 to an equitable 6 cluster m-partition of G as
follows. First put the vertex vi into the part Vi(mod m) for each i ∈ {1, 2, . . . , t}.
Swap the positions of v1 and v2 if v0 and v1 are put in the same part, and further
swap the positions of vt−1 and vt if vt and vt+1 are put in the same part.

Now suppose that v0 = vt+1 and d(v0) = 3. Let x be the neighbor of v0
in G1. If d(x) ≥ 3, consider G2 = G − {v0, v1, . . . , vt}, there is δ(G2) ≥ 2.
By the choice of G, the graph G2 has an equitable 6 cluster m-partition with
|V1| ≤ · · · ≤ |Vm|. We can extend the partition of G2 to an equitable 6 cluster
m-partition of G as follows. First put the vertex vi into the part Vi+1(mod m) for
each i ∈ {0, 1, . . . , t}. Swap the positions of v0 and v1 if the vertices v0 and x
are put in the same part (the partition of {v0, v1, . . . , vt} generated in this way
admits that the order of each component of each part is at most 2). If d(x) = 2,
then let Q = x0x1x2 · · ·xqxq+1 be the chain with x0 = v0, x1 = x, q ≥ 1.
Consider the graph G3 = G− {x0, x1, . . . , xq, v1, . . . , vt}, there is δ(G3) ≥ 2. By
the minimality of G, the graph G3 has an equitable 6 cluster m-partition with
|V1| ≤ · · · ≤ |Vm|. We first extend the partition of G3 to G1 to obtain an equitable
6 cluster m-partition of G − {v1, . . . , vt} as follows. First put the vertex xi into
the part Vi+1(mod m) for each i ∈ {0, 1, . . . , q}. If xq and xq+1 are put in the
same part, swap the positions of xq−1 and xq. Next we put the vertex vi in the
part Vq+i+1(mod m) for each i ∈ {1, 2, . . . , t}, then swap the vertices similarly to
the case that v0 = vt+1 and d(v0) ≥ 4 if necessary. In any case, we can always
get an equitable 6 cluster m-partition of G. This contradicts the choice of G.
Hence, there is no t-chain with t ≥ 3. In other words, there are only 1-chains and
2-chains in G.

Let H be a subgraph of G, for x ∈ V (H), if x has no neighbors in G − H,
then we call it free vertex, otherwise we call it non-free vertex, the neighbors
of x in G −H are called outer neighbors of x. Let s(H) denote the number of
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non-free vertices in H, si(H) denote the number of non-free vertices with exactly
i outer neighbors in G−H, i ≥ 1, f(H) denote the number of free vertices in H,
and n(H) denote the number of vertices in H.

Next, we use Hall’s Theorem to analyze the reducible structures, allowing
us to avoid lengthy case analysis. [n(H)] = {1, 2, . . . , n(H)}. Our method is to
construct an auxiliary bipartite graph B(H) = (V (H), [n(H)]) in such a way that
u ∈ V (H) is adjacent to i ∈ [n(H)] if and only if no neighbor of u in G−H is put
into the part Vi(mod m). A perfect matching in the auxiliary graph corresponds
to a descending equitable partition of H. We first show that B(H) has a perfect
matching by Hall’s Theorem, then modify it to obtain an equitable 6 cluster m-
partition of H and further obtain an equitable 6 cluster m-partition of G. This
approach may somewhat simplify the proofs in the area of equitable partition.

LetH be a reducible structure of G. By the minimality of G, the graph G−H
has an equitable 6 cluster m-partition. Let c : V (G −H) → {V1, . . . , Vm} be an
ascending equitable 6 cluster m-partition. We claim that c can be extended to an
equitable partition of G (but the number of clusters is uncertain) such that the
vertices of H that are non-free are put into the part that their outer neighbors
are not put in. As long as there is a way of partition such that the number of
clusters in H does not exceed 6, we can get that G has an equitable 6 cluster
m-partition. Therefore, H cannot appear in G.

We observe a few facts about the graph B(H).

(F1) If s(H) = s1(H)+s2(H) ≤ n(H)−
⌈
n(H)
3

⌉(
≤ n(H)−

⌈
n(H)
m

⌉)
and s2(H) ≤

1, then B(H) has a perfect matching. (By Hall’s Theorem, B(H) has a perfect
matching if and only if for any S ⊆ V (H), |N(S)| ≥ |S|. Note that if S contains
a free vertex, then |N(S)| = n(H). Thus if B(H) contains no perfect matching,
then there exists a set S0 such that |S0| > |N(S0)|, obviously, S0 only contains
non-free vertices. If S0 = {x}, where x is the vertex which has two outer neigh-

bors, |S0| = 1, |N(S0)| ≥ n(H) −
⌈
n(H)
3

⌉
× 2 ≥ 1, now |S0| ≤ |N(S0)|, which

contradicts the choice of S0. If S0 contains the vertex which has one outer neigh-

bor, s(H) ≥ |S0| > |N(S0)| ≥ n(H)−
⌈
n(H)
3

⌉
, a contradiction. Hence B(H) has

a perfect matching.)

(F2) A perfect matching in B(H) gives rise to a partition c′ of V (H) such that
(i) no vertex is put in the same part with its outer neighbors;
(ii) c′ is descending equitable.

(F3) If (i) s(H) = s1(H) + s2(H) ≤ n(H) −
⌈
n(H)
3

⌉(
≤ n(H)−

⌈
n(H)
m

⌉)
and

s2(H) ≤ 1, (ii) f(H) ≥
⌈
n(H)
3

⌉(
≥

⌈
n(H)
m

⌉)
, (iii)

⌈
n(H)
3

⌉
≤ 6 hold at the

same time, then the perfect matching of B(H) induces an equitable 6 cluster
m-partition of H that is descending equitable.
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Next we use these facts to prove the following structural lemmas. In order
to ensure δ(G−H) ≥ 2, before the proof, we first provide a remark.

Remark. LetH be one of the reducible structures of G. If s(H) = s1(H)+s2(H)
and s2(H) ≤ 1, then we will proceed as follows. For the non-free vertices u and w
inH, if the outer neighbors of them inG−H are identical, three cases on the outer
neighbor, say v, to consider. If dG−H(v) ≥ 2, then the method of constructing H
is the same as in the case when the outer neighbors are different. If dG−H(v) = 1,
after deleting the reducible structure, in order to ensure that the minimum degree
of the subgraph of G is at least 2, we need to perform the following processing.
Let Q = v0v1 · · · vq be the chain in G − H, where v0 = v, 1 ≤ q ≤ 3. Let
H ′ = H ∪ {v0, v1, . . . , vq−1}, if dG−H(v) = 1 and dG−H′(v) ≥ 2, we will use H ′ as
a new reducible structure; if dG−H(v) = 1 and dG−H′(v) = 1, we will continue to
take the chains incident with vq in G−H ′, and update H ′ and vertices involved
according to the aforementioned construction method until dG−H′(v) ≥ 2. In
each step of processing, record the update reducible structure as H ′ and the pre
updated structure as H, repeat this process until the conditions are met. Due to
the fact that the structures in every lemma are explicit, it is evident that H can
be obtained within a finite number of steps. Finally, if dG−H(v) = 0, in other
words, the vertex v is isolated in G−H, we can always find an equitable partition
that meets the requirements. In the process of determining H ′ at each step, H ′

compared to the one before updating only increases the number of free vertices
without increasing the number of non-free vertices, this operation increases the

order of H by at most 3. If s(H) ≤ n(H) −
⌈
n(H)
3

⌉
, f(H) ≥

⌈
n(H)
3

⌉
, then

s(H ′) ≤ s(H) ≤ n(H) −
⌈
n(H)
3

⌉
≤ n(H ′) −

⌈
n(H′)

3

⌉
and f(H ′) ≥

⌈
n(H′)

3

⌉
. If⌈

n(H)
3

⌉
≤ 5, then

⌈
n(H′)

3

⌉
≤ 6. After proving Lemma 7(1), we will know that the

case d(v) = 3 and t(v) ≥ 4 or T (v) = (1, 0, 2) is impossible to exist.
By (F1), if H has an equitable 6 cluster 3-partition, then H must have an

equitable 6 cluster m-partition for any integer m ≥ 4. Therefore, we only need
to prove H admits an equitable 6 cluster 3-partition. And we will find that the
structures H in Lemmas 7–26 satisfy s(H) = s1(H) + s2(H) and s2(H) ≤ 1.

Lemma 7. The following cases of 2-vertex on the chain incident with x hold.

(1) If d(x) = 3, then t(x) ≤ 3 and T (x) ̸= (1, 0, 2);

(2) If d(x) = 4, then t(x) ≤ 4 and T (x) ̸= (2, 0, 2);

(3) If d(x) = 5, then t(x) ≤ 6 and T (x) ̸= (3, 0, 2), T (x) ̸= (2, 1, 2);

(4) If d(x) = 6, then t(x) ≤ 7 and T (x) ̸= (3, 1, 2);

(5) If d(x) = 7, then t(x) ≤ 9 and T (x) ̸= (3, 2, 2), T (x) ̸= (4, 1, 2).

Proof. For each case of the lemma, we suppose to the contrary as follows: (1)
d(x) = 3, t(x) ≥ 4 or T (x) = (1, 0, 2); (2) d(x) = 4, t(x) ≥ 5 or T (x) = (2, 0, 2);
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(3) d(x) = 5, t(x) ≥ 7 or T (x) = (3, 0, 2) or T (x) = (2, 1, 2); (4) d(x) = 6,
t(x) ≥ 8 or T (x) = (3, 1, 2); (5) d(x) = 7, t(x) ≥ 10 or T (x) = (3, 2, 2) or
T (x) = (4, 1, 2). Let H be the graph induced by x and the 2-vertices in its
incident chains. Lemma 6 implies that x is not incident with t-chains for any
t ≥ 3. By Remark, δ(G −H) ≥ 2 or δ(G −H ′) ≥ 2. Then we will refer to the
following tables for some computations.

n(H) 3 5 6 7⌈
n(H)
3

⌉
1 2 2 3

n(H)−
⌈
n(H)
3

⌉
2 3 4 4

s(H) 2 3 3 3

f(H) 1 2 3 4

Table 1. d(x) = 3.

n(H) 5 6 7 8 9⌈
n(H)
3

⌉
2 2 3 3 3

n(H)−
⌈
n(H)
3

⌉
3 4 4 5 6

s(H) 3 4 4 4 4

f(H) 2 2 3 4 5

Table 2. d(x) = 4.

n(H) 6 7 8 9 10 11⌈
n(H)
3

⌉
2 3 3 3 4 4

n(H)−
⌈
n(H)
3

⌉
4 4 5 6 6 7

s(H) 4 4 5 5 5 5

f(H) 2 3 3 4 5 6

Table 3. d(x) = 5.

n(H) 8 9 10 11 12 13⌈
n(H)
3

⌉
3 3 4 4 4 5

n(H)−
⌈
n(H)
3

⌉
5 6 6 7 8 8

s(H) 5 5,6 6 6 6 6

f(H) 3 4,3 4 5 6 7

Table 4. d(x) = 6.
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n(H) 9 10 11 12 13 14 15⌈
n(H)
3

⌉
3 4 4 4 5 5 5

n(H)−
⌈
n(H)
3

⌉
6 6 7 8 8 9 10

s(H) 6 6 6,7 7 7 7 7

f(H) 3 4 5,4 5 6 7 8

Table 5. d(x) = 7.

By (F1), (F3) and the above tables, we can observe that s(H) ≤ n(H) −⌈
n(H)
3

⌉
(≤ n(H) −

⌈
n(H)
m

⌉
), so B(H) has a perfect matching. And we can know

that f(H) ≥
⌈
n(H)
3

⌉
and

⌈
n(H)
3

⌉
≤ 5, combining Remark, the perfect matching of

B(H) induces a descending equitable 6 cluster m-partition of H or H ′. Thereby,
we get an equitable 6 cluster m-partition of G, this leads to a contradiction.

Lemma 8. If x is a bad 3-vertex, where T (x) = (0, 2, 1), and y is the 3+-neighbor
of x, then

(i) d(y) = 3 with t(y) ≤ 1, or

(ii) d(y) = 4 with t(y) ≤ 1 or T (y) = (0, 2, 2), (0, 3, 1), (1, 1, 2), or

(iii) d(y) = 5 with t(y) ≤ 3 or T (y) = (0, 4, 1), (1, 2, 2), or

(iv) d(y) ≥ 6.

Proof. Let x be a bad 3-vertex, and y is the 3+-neighbor of x. Suppose to
the contrary that d(y) = 3 with t(y) ≥ 2, d(y) = 4 with t(y) ≥ 2 and T (y) ̸=
(0, 2, 2), (0, 3, 1), (1, 1, 2), and d(y) = 5 with t(y) ≥ 4 and T (y) ̸= (0, 4, 1), (1, 2, 2).
By Lemma 7(1)–(3), if d(y) = 3, then 2 ≤ t(y) ≤ 3 and T (y) ̸= (1, 0, 2), if
d(y) = 4, then 2 ≤ t(y) ≤ 4 and T (y) ̸= (2, 0, 2), (0, 2, 2), (0, 3, 1), (1, 1, 2) and if
d(y) = 5, then 4 ≤ t(y) ≤ 6 and T (y) ̸= (3, 0, 2), (2, 1, 2), (0, 4, 1), (1, 2, 2). Let
H be the graph induced by x, y and the 2-vertices in their incident chains. By
Lemma 6, y is only incident with 1-chains and 2-chains. By Remark, δ(G−H) ≥ 2
or δ(G−H ′) ≥ 2. Then we can get the following table.

n(H) 6 7 8 9 10⌈
n(H)
3

⌉
2 3 3 3 4

n(H)−
⌈
n(H)
3

⌉
4 4 5 6 6

s(H) 4 4 5 6 6

f(H) 2 3 3 3 4

Table 6. The 3+-neighbors of bad 3-vertex.
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Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G, this leads to a contradiction.

Lemma 9. Every 3-vertex y with t(y) = 0 is adjacent to at most two bad 3-
vertices.

Proof. Suppose to the contrary that there is a 3-vertex y with t(y) = 0 that is
adjacent to three bad 3-vertices x1, x2 and x3. Let H be the graph induced by x1,
x2, x3, y and the 2-vertices in their incident chains. By Remark, δ(G −H) ≥ 2
or δ(G−H ′) ≥ 2. By the minimality of G, the graph G−H or G−H ′ admits an
ascending equitable 6 cluster m-partition. s(H) = d(x1) + d(x2) + d(x3)− 3 = 6,
n(H) = t(x1) + t(x2) + t(x3) + 4 = 10. By calculation, we have s(H) ≤ n(H)−⌈
n(H)
3

⌉
≤ n(H) −

⌈
n(H)
m

⌉
, so B(H) has a perfect matching. And we know that

f(H) ≥
⌈
n(H)
3

⌉
and

⌈
n(H)
3

⌉
≤ 5, thus the perfect matching induces an equitable 6

clusterm-partition ofH orH ′. Thereby, we get an equitable 6 clusterm-partition
of G, this leads to a contradiction.

Lemma 10. Let x be a B-3-vertex, where d(x) = 3, t(x) = 0, and x is adjacent
to two bad 3-vertex x1 and x2. If y is the 3+-neighbor of x other than x1 and x2,
then

(i) d(y) = 4 with T (x3) = (0, 0, 4) or T (y) = (0, 2, 2), or

(ii) d(y) ≥ 5.

Proof. Suppose to the contrary that d(y) = 3, d(y) = 4 with T (y) ̸= (0, 0, 4)
and T (y) ̸= (0, 2, 2). By Lemma 7(1)(2) and Lemma 9, if d(y) = 3, then 0 ≤
t(y) ≤ 3 and T (y) ̸= (1, 0, 2), (0, 2, 1), if d(y) = 4, then t(y) ≤ 4 and T (y) ̸=
(0, 0, 4), (0, 2, 2), (2, 0, 2). Let H be the graph induced by x, x1, x2, y and the
2-vertices on their incident chains. By Lemma 6, y is only incident with 1-chains
and 2-chains. By Remark, δ(G−H) ≥ 2 or δ(G−H ′) ≥ 2. Then we can get the
following table.

n(H) 8 9 10 11 12⌈
n(H)
3

⌉
3 3 4 4 4

n(H)−
⌈
n(H)
3

⌉
5 6 6 7 8

s(H) 5 6 6 6,7 7

f(H) 3 3 4 5,4 5

Table 7. The other neighbors of B-3-vertex x.

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G, this leads to a contradiction.
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Lemma 11. Let y be an A-3-vertex, where d(y) = 3, t(y) = 1, and x is a bad
3-vertex that is adjacent to y. If z is a 3+-vertex that is adjacent to y other than
x, then

(i) d(z) = 3 with t(z) = 1, or

(ii) d(z) = 4 with t(z) ≤ 2 and T (z) ̸= (1, 0, 3), or

(iii) d(z) ≥ 5.

Proof. Suppose to the contrary that d(z) = 3 with t(z) = 0 or t(z) ≥ 2, d(z) = 4
with t(z) ≥ 3 or T (z) = (1, 0, 3). By Lemma 7(1)(2), if d(z) = 3, then t(z) = 0
or 2 ≤ t(z) ≤ 3 and T (z) ̸= (1, 0, 2); if d(z) = 4, then 3 ≤ t(z) ≤ 4 and
T (z) ̸= (2, 0, 2), or T (z) = (1, 0, 3). Let H be the graph induced by x, y, z
and the 2-vertices in their incident chains. By Lemma 6, z is only incident with
1-chains and 2-chains. By Remark, δ(G − H) ≥ 2 or δ(G − H ′) ≥ 2. Then we
can get the following table.

n(H) 6 8 9 10⌈
n(H)
3

⌉
2 3 3 4

n(H)−
⌈
n(H)
3

⌉
4 5 6 6

s(H) 4 5 5,6 6

f(H) 2 3 4,3 4

Table 8. The other neighbors of A-3-vertex y.

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G, this leads to a contradiction.

Lemma 12. Let x be a C-3-vertex, where d(x) = 3, t(x) = 1, and x is adjacent
to an A-3-vertex y. If z is the 3+-neighbor of x other than y, then

(i) d(z) = 4 with T (z) = (0, 0, 4) or T (z) = (0, 2, 2), or

(ii) d(z) ≥ 5.

Proof. Suppose to the contrary that d(z) = 3, d(z) = 4 with T (z) ̸= (0, 0, 4)
and T (z) ̸= (0, 2, 2). By Lemma 7(1)(2), if d(z) = 3, then t(z) ≤ 3 and T (z) ̸=
(1, 0, 2), if d(z) = 4, then t(z) ≤ 4 and T (z) ̸= (0, 0, 4), (0, 2, 2) and (2, 0, 2). Let
H be the graph induced by x, y, z and the 2-vertices on their incident chains. By
Lemma 6, z is only incident with 1-chains and 2-chains. By Remark, δ(G−H) ≥ 2
or δ(G−H ′) ≥ 2. We can get the following table.
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n(H) 8 9 10 11 12⌈
n(H)
3

⌉
3 3 4 4 4

n(H)−
⌈
n(H)
3

⌉
5 6 6 7 8

s(H) 5 6 6 6,7 7

f(H) 3 3 4 5,4 5

Table 9. The other neighbors of C-3-vertex x.

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G, this leads to a contradiction.

Lemma 13. Let x be a terrible 3-vertex with T (x) = (0, 3, 0), and let y be a
vertex that is loosely 1-adjacent to x, then

(i) d(y) = 4 with T (y) = (0, 1, 3) or T (y) = (0, 3, 1), or

(ii) d(y) ≥ 5.

Proof. Suppose to the contrary that d(y) = 3, d(y) = 4 with T (y) ̸= (0, 1, 3)
and T (y) ̸= (0, 3, 1). By Lemma 7 (1)(2), if d(y) = 3, then t(y) ≤ 3 and T (y) ̸=
(1, 0, 2), if d(y) = 4, then t(y) ≤ 4 and T (y) ̸= (0, 1, 3), (0, 3, 1), (2, 0, 2). LetH be
the graph induced by x, y and the 2-vertices on their incident chains. By Lemma
6, y is only incident with 1-chains and 2-chains. By Remark, δ(G − H) ≥ 2 or
δ(G−H ′) ≥ 2. Then we can get the following table.

n(H) 5 6 7 8⌈
n(H)
3

⌉
2 2 3 3

n(H)−
⌈
n(H)
3

⌉
3 4 4 5

s(H) 3 4 4 5

f(H) 2 2 3 3

Table 10. The vertices that are loosely 1-adjacent to terrible 3-vertex x with

T (x) = (0, 3, 0).

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G, this leads to a contradiction.

Lemma 14. Let x be a terrible 3-vertex with T (x) = (1, 1, 1), and let y be the
3+-vertex that is loosely 1-adjacent to x, then

(i) d(y) = 4 with T (y) = (0, 1, 3) or T (y) = (0, 3, 1), or

(ii) d(y) ≥ 5.
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Proof. Suppose to the contrary that d(y) = 3, d(y) = 4 with T (y) ̸= (0, 1, 3)
and T (y) ̸= (0, 3, 1). By Lemma 7(1)(2), if d(y) = 3, then t(y) ≤ 3 and T (y) ̸=
(1, 0, 2); if d(y) = 4, then t(y) ≤ 4 and T (y) ̸= (0, 1, 3), (0, 3, 1), (2, 0, 2). LetH be
the graph induced by x, y and the 2-vertices on their incident chains. By Lemma
6, y is only incident with 1-chains and 2-chains. By Remark, δ(G − H) ≥ 2 or
δ(G−H ′) ≥ 2. Then we can get the following table.

n(H) 5 6 7 8⌈
n(H)
3

⌉
2 2 3 3

n(H)−
⌈
n(H)
3

⌉
3 4 4 5

s(H) 3 4 4 5

f(H) 2 2 3 3

Table 11. The vertices that are loosely 1-adjacent to terrible 3-vertex x with

T (x) = (1, 1, 1).

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G, this leads to a contradiction.

Lemma 15. Let x be a terrible 3-vertex with T (x) = (1, 1, 1), and let y be the
3+-vertex that is adjacent to x, then

(i) d(y) = 4 with T (y) = (0, 0, 4) or T (y) = (0, 2, 2), or

(ii) d(y) ≥ 5.

Proof. Suppose to the contrary that d(y) = 3, d(y) = 4 with T (y) ̸= (0, 0, 4)
and T (y) ̸= (0, 2, 2). By Lemma 7 (1)(2), if d(y) = 3, then t(y) ≤ 3 and T (y) ̸=
(1, 0, 2), if d(y) = 4, then t(y) ≤ 4 and T (y) ̸= (0, 0, 4), (0, 2, 2) and (2, 0, 2). Let
H be the graph induced by x, y and the 2-vertices on their incident chains. By
Lemma 6, y is only incident with 1-chains and 2-chains. By Remark, δ(G−H) ≥ 2
or δ(G−H ′) ≥ 2. Then we get the following table.

n(H) 5 6 7 8 9⌈
n(H)
3

⌉
2 2 3 3 3

n(H)−
⌈
n(H)
3

⌉
3 4 4 5 6

s(H) 3 4 4 4,5 5

f(H) 2 2 3 4,3 4

Table 12. The neighbors of terrible 3-vertex x with T (x) = (1, 1, 1).

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G, this leads to a contradiction.
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Lemma 16. Let x be a terrible 3-vertex with T (x) = (1, 1, 1) or T (x) = (0, 3, 0)
and let y be a 4-vertex with T (y) = (0, 3, 1) that is loosely 1-adjacent to x. If z
is the 3+-neighbor of y, then

(i) d(z) = 4 with T (z) = (0, 0, 4) or T (y) = (0, 2, 2), or

(ii) d(z) ≥ 5.

Proof. Suppose to the contrary that d(z) = 3, d(z) = 4 with T (z) ̸= (0, 0, 4)
and T (z) ̸= (0, 2, 2). By Lemma 7(1)(2), if d(z) = 3, then t(z) ≤ 3 and T (z) ̸=
(1, 0, 2), if d(z) = 4, then t(z) ≤ 4 and T (z) ̸= (0, 0, 4), (0, 2, 2) and (2, 0, 2). Let
H be the graph induced by x, y, z and the 2-vertices on their incident chains. By
Lemma 6, z is only incident with 1-chains and 2-chains. By Remark, δ(G−H) ≥ 2
or δ(G−H ′) ≥ 2. Then we get the following table.

n(H) 8 9 10 11 12⌈
n(H)
3

⌉
3 3 4 4 4

n(H)−
⌈
n(H)
3

⌉
5 6 6 7 8

s(H) 5 6 6 6,7 7

f(H) 3 3 4 5,4 5

Table 13. The neighbors of some 4-vertex.

Similarly to the proof of Lemma 7, combined with the Remark, we can obtain an
equitable 6 cluster m-partition of G, this leads to a contradiction.

Lemma 17. Every 4-vertex y with T (y) = (0, 3, 1) is

(1) loosely 1-adjacent to at most one terrible 3-vertex x;

(2) not loosely 1-adjacent to a terrible 3-vertex and adjacent to a bad 3-vertex,
a A-3-vertex, a B-3-vertex or a C-3-vertex at the same time.

Proof. (1) Suppose to the contrary that there exists a 4-vertex y with T (y) =
(0, 3, 1) that is loosely 1-adjacent to at least two terrible 3-vertices x1 and x2.
Let H be the graph induced by y, x1, x2 and the 2-vertices on their incident
chains. By Remark, δ(G −H) ≥ 2 or δ(G −H ′) ≥ 2. By the minimality of G,
the graph G−H or G−H ′ admits an ascending equitable 6 cluster m-partition.
n(H) = t(y) + t(x1) + t(x2) + 1 = 10, s(H) = d(y) + d(x1) + d(x2) − 4 = 6.

By calculation, we obtain s(H) ≤ n(H) −
⌈
n(H)
3

⌉
. Combining with Remark,

B(H) or B(H ′) has a perfect matching. And we know that f(H) ≥
⌈
n(H)
3

⌉
and⌈

n(H)
3

⌉
≤ 5. Thus, the perfect matching induces an descending equitable 6 cluster

m-partition of H or H ′. Thereby, we get an equitable 6 cluster m-partition of G.
This leads to a contradiction.
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(2) Suppose to the contrary that there exists a 4-vertex y with T (y) = (0, 3, 1)
that is loosely 1-adjacent to a terrible 3-vertex x1 and a bad 3-vertex, an A-3-
vertex, a B-3-vertex or a C-3-vertex x2 at the same time. Let H be the graph
induced by y, x1, x2 and the 2-vertices on their incident chains. By Remark,
δ(G−H) ≥ 2 or δ(G−H ′) ≥ 2. We get the following table.

n(H) 10 12 14⌈
n(H)
3

⌉
4 4 5

n(H)−
⌈
n(H)
3

⌉
6 8 9

s(H) 6 7 8

f(H) 4 5 6

Table 14. The possible 4-vertices with three 1-chains.

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G. This leads to a contradiction.

Lemma 18. Every 4-vertex y with T (y) = (0, 1, 3) is

(1) adjacent to at most two bad 3-vertices;

(2) adjacent to at most one terrible 3-vertex;

(3) adjacent to at most one A-3-vertex;

(4) not adjacent to B-3-vertex;

(5) not adjacent to C-3-vertex;

(6) not adjacent to a bad 3-vertex and (loosely 1-)adjacent to a terrible 3-vertex
at the same time;

(7) not adjacent and loosely 1-adjacent to terrible 3-vertex at the same time;

(8) not adjacent to two bad 3-vertices and adjacent to an A-3-vertex at the same
time;

(9) not adjacent to an A-3-vertex and (loosely 1-)adjacent to a terrible 3-vertex
at the same time.

Proof. In the nine cases of the lemma, we suppose to the contrary as follows.
(1) there exists a 4-vertex y with T (y) = (0, 1, 3) that is adjacent to three bad
3-vertices x1, x2 and x3; (2) y is adjacent to at least two terrible 3-vertices x1
and x2; (3) y is adjacent to at least two A-3-vertices x1 and x2; (4) y is adjacent
to at least one B-3-vertex x; (5) y is adjacent to at least one C-3-vertex x; (6) y
is adjacent to a bad 3-vertex x1 and (loosely 1-) adjacent to a terrible 3-vertex x2
at the same time; (7) y is adjacent to a terrible 3-vertex x1 and loosely 1-adjacent
to a terrible 3-vertex x2 at the same time; (8) y is adjacent to two bad 3-vertices
x1 x2 and adjacent to an A-3-vertex x3 at the same time; (9) y is adjacent to
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an A-3-vertex x1 and (loosely 1-) adjacent to a terrible 3-vertex x2 at the same
time. Let H be the graph induced by the vertices involved and the 2-vertices on
their incident chains. By Remark, δ(G −H) ≥ 2 or δ(G −H ′) ≥ 2. We get the
following table.

n(H) 8 9 10 11 12 13⌈
n(H)
3

⌉
3 3 4 4 4 5

n(H)−
⌈
n(H)
3

⌉
5 6 6 7 8 8

s(H) 5 5,6 6 7 8 8

f(H) 3 4,3 4 4 4 5

Table 15. The possible cases for a 4-vertex y with one 1-chain.

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G. This leads to a contradiction.

Lemma 19. Every 4-vertex y with T (y) = (0, 2, 2) is

(1) adjacent to at most one bad 3-vertex;

(2) adjacent to at most one terrible 3-vertex;

(3) loosely 1-adjacent to at most one terrible 3-vertex;

(4) adjacent to at most one B-3-vertex;

(5) adjacent to at most one A-3-vertex;

(6) adjacent to at most one C-3-vertex;

(7) not adjacent to a bad 3-vertex and adjacent to or loosely 1-adjacent to a
terrible 3-vertex or adjacent to a B-3-vertex or adjacent to an A-3-vertex or
adjacent to a C-3-vertex at the same time;

(8) not loosely 1-adjacent to a terrible 3-vertex and adjacent to a terrible 3-vertex
or a B-3-vertex or an A-3-vertex or a C-3-vertex at the same time;

(9) not adjacent to a terrible 3-vertex and adjacent to a B-3-vertex or an A-3-
vertex or a C-3-vertex at the same time;

(10) not adjacent to a B-3-vertex and adjacent to an A-3-vertex or a C-3-vertex
at the same time;

(11) not adjacent to an A-3-vertex and adjacent to a C-3-vertex at the same time.

Proof. In the eleven cases of the lemma, we suppose to the contrary as follows.
(1) there exists a 4-vertex y with T (y) = (0, 2, 2) that is adjacent to two bad
3-vertices x1 and x2; (2) y is adjacent to two terrible 3-vertices x1 and x2; (3) y
is loosely 1-adjacent to two terrible 3-vertices x1 and x2; (4) y is adjacent to two
B-3-vertices x1 and x2; (5) y is adjacent to two A-3-vertices x1 and x2; (6) y is
adjacent to two C-3-vertices x1 and x2; (7) y is adjacent to a bad 3-vertex x1 and
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adjacent to or loosely 1-adjacent to a terrible 3-vertex or adjacent to a B-3-vertex
or adjacent to an A-3-vertex or adjacent to a C-3-vertex x2 at the same time; (8)
y is loosely 1-adjacent to a terrible 3-vertex x1 and adjacent to a terrible 3-vertex
or a B-3-vertex or an A-3-vertex or a C-3-vertex x2 at the same time; (9) y is
adjacent to a terrible 3-vertex x1 and adjacent to a B-3-vertex or an A-3-vertex
or a C-3-vertex x2 at the same time; (10) y is adjacent to a B-3-vertex x1 and
adjacent to an A-3-vertex or a C-3-vertex x2 at the same time; (11) y is adjacent
to an A-3-vertex x1 and adjacent to a C-3-vertex x2 at the same time. Let H be
the graph induced by the vertices involved and the 2-vertices on their incident
chains. By Remark, δ(G−H) ≥ 2 or δ(G−H ′) ≥ 2. We get the following table.

n(H) 9 10 11 12 13 14 15 17⌈
n(H)
3

⌉
3 4 4 4 5 5 5 6

n(H)−
⌈
n(H)
3

⌉
6 6 7 8 8 9 10 11

s(H) 5,6 6 6,7 7 8 8 9 10

f(H) 4,3 4 5,4 5 5 6 6 7

Table 16. The possible cases for a 4-vertex y with two 1-chains.

When |V (H)| = 17, although
⌈
n(H)
3

⌉
= 6, because of f(H) = 7, we can always

find a way to partition such that H admits an equitable 5 cluster m-partition.
Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G. This leads to a contradiction.

Lemma 20. Every 4-vertex y with T (y) = (1, 1, 2) is adjacent to at most one
bad 3-vertex.

Proof. Suppose to the contrary that there exists a 4-vertex y with T (y) =
(1, 1, 2) that is adjacent to two bad 3-vertices x1 and x2. Let H be the graph
induced by x1, x2 and the 2-vertices on their incident chains. By Remark,
δ(G − H) ≥ 2 or δ(G − H ′) ≥ 2. By the minimality of G, the graph G − H
or G −H ′ admits an ascending equitable 6 cluster m-partition. s(H) = d(y) +
d(x1) + d(x2)− 4 = 6, n(H) = t(y) + t(x1) + t(x2) + 3 = 10. By calculation, we

obtain s(H) ≤ n(H) −
⌈
n(H)
3

⌉
≤ n(H) −

⌈
n(H)
m

⌉
, so B(H) has a perfect match-

ing. And we can know that f(H) ≥
⌈
n(H)
3

⌉
and

⌈
n(H)
3

⌉
≤ 5, thus the perfect

matching induces an equitable 6 cluster m-partition of H or H ′. Thereby, we get
an equitable 6 cluster m-partition of G. This leads to a contradiction.

Lemma 21. Every 5-vertex y with T (y) = (0, 3, 2), T (y) = (0, 4, 1), T (y) =
(1, 2, 2), T (y) = (0, 5, 0) or T (y) = (1, 3, 1) is loosely 1-adjacent to at most one
terrible 3-vertex.
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Proof. Suppose to the contrary that there exists a 5-vertex y with T (y) =
(0, 3, 2), T (y) = (0, 4, 1), T (y) = (1, 2, 2), T (y) = (0, 5, 0) or T (y) = (1, 3, 1)
that is loosely 1-adjacent to at least two terrible 3-vertices x1 and x2. Let H be
the graph induced by y, x1, x2 and the 2-vertices on their incident chains. By
Remark, δ(G−H) ≥ 2 or δ(G−H ′) ≥ 2, and by the minimality of G, the graph
G − H or G − H ′ admits an ascending equitable 6 cluster m-partition. We get
the following table.

n(H) 10 11 12⌈
n(H)
3

⌉
4 4 4

n(H)−
⌈
n(H)
3

⌉
6 7 8

s(H) 6 6,7 7

f(H) 4 5,4 5

Table 17. Some 5-vertices y.

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G. This leads to a contradiction.

Lemma 22. Every 5-vertex y with T (y) = (1, 4, 0) is not loosely 1-adjacent to
terrible 3-vertex.

Proof. Suppose to the contrary that there exists a 5-vertex y with T (y) =
(1, 4, 0) that is loosely 1-adjacent to a terrible 3-vertex x. Let H be the graph in-
duced by x, y and the 2-vertices on their incident chains. By Remark, δ(G−H) ≥
2 or δ(G − H ′) ≥ 2. By the minimality of G, the graph G − H or G − H ′ ad-
mits an ascending equitable 6 cluster m-partition. s(H) = d(y) + d(x) − 2 = 6,

n(H) = t(y)+ t(x)+1 = 10. By calculation, we obtain s(H) ≤ n(H)−
⌈
n(H)
3

⌉
≤

n(H) −
⌈
n(H)
m

⌉
, so B(H) has a perfect matching. And we know that f(H) ≥⌈

n(H)
3

⌉
and

⌈
n(H)
3

⌉
≤ 5, thus the perfect matching induces an equitable 6 cluster

m-partition of H or H ′. Thereby, we get an equitable 6 cluster m-partition of G.
This leads to a contradiction.

Lemma 23. Every 5-vertex y with T (y) = (2, 2, 1) is not loosely 1-adjacent to
terrible 3-vertex.

Proof. Suppose to the contrary that there exists a 5-vertex y with T (y) =
(2, 2, 1) that is loosely 1-adjacent to a terrible 3-vertices x. Let H be the graph in-
duced by x, y and the 2-vertices on their incident chains. By Remark, δ(G−H) ≥
2 or δ(G − H ′) ≥ 2. By the minimality of G, the graph G − H or G − H ′ ad-
mits an ascending equitable 6 cluster m-partition. s(H) = d(x) + d(y) − 2 = 6,



Equitable Cluster Partition of Graphs 19

n(H) = t(x)+ t(y)+2 = 10. By calculation, we obtain s(H) ≤ n(H)−
⌈
n(H)
3

⌉
≤

n(H) −
⌈
n(H)
m

⌉
, so B(H) has a perfect matching. And we know that f(H) ≥⌈

n(H)
3

⌉
and

⌈
n(H)
3

⌉
≤ 5, thus the perfect matching induces an equitable 6 cluster

m-partition of H or H ′. Thereby, we get an equitable 6 cluster m-partition of G.
This leads to a contradiction.

Lemma 24. Every 6-vertex y with T (y) = (0, 5, 1), T (y) = (0, 6, 0) or T (y) =
(1, 4, 1) is loosely 1-adjacent to at most one terrible 3-vertex.

Proof. Suppose to the contrary that there exists a 6-vertex y with T (y) =
(0, 5, 1), T (y) = (0, 6, 0) or T (y) = (1, 4, 1) that is loosely 1-adjacent to at least
two terrible 3-vertices x1 and x2. Let H be the graph induced by y, x1, x2 and the
2-vertices on their incident chains. By Remark, δ(G−H) ≥ 2 or δ(G−H ′) ≥ 2.
By the minimality of G, the graph G−H or G−H ′ admits an ascending equitable
6 cluster m-partition. We get the following table.

n(H) 12 13⌈
n(H)
3

⌉
4 5

n(H)−
⌈
n(H)
3

⌉
8 8

s(H) 8 8

f(H) 4 5

Table 18. Some 6-vertices y.

Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G. This leads to a contradiction.

Lemma 25. Every 6-vertex y with T (y) = (1, 5, 0) or T (y) = (2, 3, 1) is not
loosely 1-adjacent to terrible 3-vertex.

Proof. Suppose to the contrary that there is a 6-vertex y with T (y) = (1, 5, 0)
or T (y) = (2, 3, 1) that is loosely 1-adjacent to a terrible 3-vertex x. Let H
be the graph induced by x, y and the 2-vertices on their incident chains. By
Remark, δ(G − H) ≥ 2 or δ(G − H ′) ≥ 2. By the minimality of G, the graph
G −H or G −H ′ admits an ascending equitable 6 cluster m-partition. s(H) =
d(x) + d(y) − 2 = 7, n(H) = t(x) + t(y) + 1 = 11. By calculation, we obtain

s(H) ≤ n(H)−
⌈
n(H)
3

⌉
≤ n(H)−

⌈
n(H)
m

⌉
, so B(H) has a perfect matching. And

we know that f(H) ≥
⌈
n(H)
3

⌉
and

⌈
n(H)
3

⌉
≤ 5, thus the perfect matching induces

an equitable 6 cluster m-partition of H or H ′. Thereby, we get an equitable 6
cluster m-partition of G. This leads to a contradiction.
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Lemma 26. Every 7-vertex y with T (y) = (0, 7, 0), T (y) = (1, 6, 0) or T (y) =
(2, 5, 0) is loosely 1-adjacent to at most one terrible 3-vertex.

Proof. Suppose to the contrary that there exists a 7-vertex y with T (y) =
(0, 7, 0), T (y) = (1, 6, 0) or T (y) = (2, 5, 0) that is loosely 1-adjacent to at least
two terrible 3-vertices x1 and x2. Let H be the graph induced by y, x1, x2 and the
2-vertices on their incident chains. By Remark, δ(G−H) ≥ 2 or δ(G−H ′) ≥ 2.
By the minimality of G, the graph G−H or G−H ′ admits an ascending equitable
6 cluster m-partition. We get the following table.

n(H) 14 15 16⌈
n(H)
3

⌉
5 5 6

n(H)−
⌈
n(H)
3

⌉
9 10 10

s(H) 9 9 9

f(H) 5 6 7

Table 19. Some 7-vertices y.

When |V (H)| = 16, although
⌈
n(H)
3

⌉
= 6, because of f(H) = 7, we can always

find a way to partition such that H admits an equitable 5 cluster m-partition.
Similarly to the proof of Lemma 7, we can obtain an equitable 6 cluster m-
partition of G. This leads to a contradiction.

3. Discharging

Consider the minimal counterexample G to Theorem 3, we know mad(G) < 8
3 .

For any x ∈ V (G), let µ(x) = d(x)− 8
3 be the initial charge. We have

∑
x∈V (G)

µ(x) =
∑

x∈V (G)

(d(x)− 8

3
) < 0.

Next, we redistribute the charges among vertices according to the following
rules.

(R1) Every 3+-vertex gives 1
3 to each 2-vertex on its incident chains.

(R2) Every 3+-vertex y gives 1
3 to each bad 3-vertex x which is adjacent to y.

(R3) Every 3+-vertex except bad 3-vertex gives 1
3 to each of its A-3-neighbor.

(R4) Every 4+-vertex gives 1
3 to each of its B-3-neighbor.

(R5) Every 4+-vertex gives 1
3 to each of its C-3-neighbor.
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(R6) Every 4+-vertex y gives 2
9 to the terrible 3-vertex x with T (x) = (0, 3, 0)

which is loosely 1-adjacent to y.

(R7) Every 4+-vertex y gives 1
3 to the terrible 3-vertex x with T (x) = (1, 1, 1)

which is adjacent to y.

(R8) Every 4+-vertex y gives 1
3 to the terrible 3-vertex x with T (x) = (1, 1, 1)

which is loosely 1-adjacent to y.

Let µ′(x) be the final charge of x after applying rules R1–R8. Then, we prove
µ′(x) ≥ 0 for all x ∈ V (G), and next are some cases to be discussed.

Case 1. d(x) = 2. If d(x) = 2, by Lemma 6, ∆(G) ≥ 3, then µ′(x) =(
2− 8

3

)
+ 1

3 × 2 = 0 by R1.

Case 2. d(x) = 3. If d(x) = 3, by Lemma 7(1) t(x) ≤ 3 and T (x) ̸= (1, 0, 2),
and according to discharging rules 3-vertex only sends charge to 2-vertex, bad
3-vertex and A-3-vertex. Then we will discuss several kinds of situations that
may appear.

Case 2.1. t(x) = 0. Lemma 9 and Lemma 11 imply that every 3-vertex y
with t(y) = 0 is adjacent to at most two bad 3-vertices and it is not adjacent
to any A-3-vertex. By Lemma 10, the neighbor of B-3-vertex except for the
two bad 3-vertices adjacent in the definition of B-3-vertex is 4+-vertex, then
µ′(x) ≥

(
3− 8

3

)
− 1

3 × 2 + 1
3 × 1 = 0 by R2 and R4.

Case 2.2. t(x) = 1. Lemma 11 implies that every 3-vertex y with t(y) = 1
is adjacent to at most one bad 3-vertex and A-3-vertex is not adjacent to the
other bad 3-vertices except for the bad 3-vertex in the definition of A-3-vertex.
By Lemma 12, the neighbor of C-3-vertex except for the A-3-vertex and 2-vertex
adjacent in the definition of C-3-vertex is 4+-vertex, then µ′(x) ≥

(
3− 8

3

)
− 1

3 ×
1− 1

3 × 1 + 1
3 × 1 = 0 by R1, R2, R3 and R5.

Case 2.3. t(x) = 2. According to Lemma 8, we know bad 3-vertex is not
adjacent to bad 3-vertex, and Lemma 11 implies that A-3-vertex is not adjacent to
the other bad 3-vertices except for the bad 3-vertex in the definition of A-3-vertex,
in other words, bad 3-vertex x is not adjacent to A-3-vertex that is adjacent to
the other bad 3-vertices different from x, so µ′(x) ≥

(
3− 8

3

)
− 1

3 × 2 + 1
3 × 1 = 0

by R1 and R2.

Case 2.4. t(x) = 3. Lemmas 13, 14 and 15 imply that the neighbor of terrible
3-vertex is 4+-vertex and the vertex that loosely 1-adjacent to terrible 3-vertex is
4+-vertex. If T (x) = (0, 3, 0), then µ′(x) = (3− 8

3)−
1
3 × 3+ 2

9 × 3 = 0 by R1 and
R6. If T (x) = (1, 1, 1), Lemma 8 implies that terrible 3-vertex is not adjacent
to bad 3-vertex, and Lemma 11 implies that terrible 3-vertex is not adjacent to
A-3-vertex, then µ′(x) ≥

(
3− 8

3

)
− 1

3 × 3 + 1
3 × 1 + 1

3 × 1 = 0 by R1 and R7 and
R8.
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According to discharging rules, 4+-vertex may send charge to 2-vertex, bad
3-vertex, B-3-vertex, A-3-vertex, C-3-vertex and terrible 3-vertex.

Case 3. d(x) = 4. If d(x) = 4, by Lemma 7(2), t(x) ≤ 4 and T (x) ̸= (2, 0, 2),
next we will analyze various possible situations.

Case 3.1. t(x) = 0. µ′(x) ≥
(
4− 8

3

)
− 1

3 × 4 = 0 by R2–R5 and R7.

Case 3.2. t(x) = 1. According to Lemma 18, we have µ′(x) ≥
(
4− 8

3

)
− 1

3 ×
1− 1

3 × 2 = 1
3 by R1–R8.

Case 3.3. t(x) = 2. If T (x) = (0, 2, 2), then according to Lemma 19, we
have µ′(x) ≥

(
4 − 8

3

)
− 1

3 × 2 − 1
3 × 1 = 1

3 by R1–R8. If T (x) = (1, 0, 3), then
according to Lemmas 8, 15, 11, 10 and 12, we obtain that every 4-vertex x with
T (x) = (1, 0, 3) is not adjacent to bad 3-vertex, terrible 3-vertex, A-3-vertex,
B-3-vertex or C-3-vertex, then µ′(x) ≥

(
4− 8

3

)
− 1

3 × 2 = 2
3 by R1.

Case 3.4. t(x) = 3. If T (x) = (0, 3, 1), then according to Lemmas 16 and 17,
we obtain µ′(x) ≥

(
4− 8

3

)
− 1

3 × 3− 1
3 × 1 = 0 by R1–R8. If T (x) = (1, 1, 2), then

according to Lemmas 15, 11, 10, 12, 13 and 14, we obtain that every 4-vertex x
with T (x) = (1, 1, 2) is not adjacent to a terrible 3-vertex, A-3-vertex, B-3-vertex
or C-3-vertex, and it is not loosely 1-adjacent to a terrible 3-vertex, combining
with Lemma 20, we get µ′(x) ≥

(
4− 8

3

)
− 1

3 × 3− 1
3 × 1 = 0 by R1 and R2.

Case 3.5 t(x) = 4. If T (x) = (0, 4, 0), then according to Lemma 13 and
Lemma 14, we know that every 4-vertex x with T (x) = (0, 4, 0) is not loosely
1-adjacent to terrible 3-vertex, then µ′(x) ≥

(
4 − 8

3

)
− 1

3 × 4 = 0 by R1. If
T (x) = (1, 2, 1), then according to Lemmas 8, 15, 11, 10, 12, 13 and 14, we know
that every 4-vertex x with T (x) = (1, 2, 1) is not adjacent to bad 3-vertex, terrible
3-vertex, A-3-vertex, B-3-vertex or C-3-vertex, and it is not loosely 1-adjacent
to terrible 3-vertex, then µ′(x) ≥

(
4− 8

3

)
− 1

3 × 4 = 0 by R1.

Case 4. d(x) = 5. If d(x) = 5, by Lemma 7(3), t(x) ≤ 6 and T (x) ̸= (3, 0, 2),
T (x) ̸= (2, 1, 2).

Case 4.1. t(x) = 0. µ′(x) ≥
(
5− 8

3

)
− 1

3 × 5 = 2
3 by R1–R8.

Case 4.2. t(x) = 1. µ′(x) ≥
(
5− 8

3

)
− 1

3 × 1− 1
3 × 5 = 1

3 by R1–R8.

Case 4.3. t(x) = 2. If T (x) = (0, 2, 3), then µ′(x) ≥
(
5− 8

3

)
− 1

3×2− 1
3×5 = 0

by R1–R8. If T (x) = (1, 0, 4), then µ′(x) ≥
(
5− 8

3

)
− 1

3 ×2− 1
3 ×4 = 1

3 by R1–R5
and R7.

Case 4.4. t(x) = 3. If T (x) = (0, 3, 2), according to Lemma 21, then µ′(x) ≥(
5 − 8

3

)
− 1

3 × 3 − 1
3 × 1 − 1

3 × 2 = 1
3 by R1–R8. If T (x) = (1, 1, 3), then

µ′(x) ≥
(
5− 8

3

)
− 1

3 × 3− 1
3 × 4 = 0 by R1–R8.

Case 4.5. t(x) = 4. If T (x) = (0, 4, 1), according to Lemma 21, then µ′(x) ≥(
5 − 8

3

)
− 1

3 × 4 − 1
3 × 1 − 1

3 × 1 = 1
3 by R1–R8. If T (x) = (1, 2, 2), according
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to Lemma 21, then µ′(x) ≥
(
5 − 8

3

)
− 1

3 × 4 − 1
3 × 1 − 1

3 × 2 = 0 by R1–R8. If
T (x) = (2, 0, 3), then µ′(x) ≥

(
5− 8

3

)
− 1

3 × 4− 1
3 × 3 = 0 by R1–R5 and R7.

Case 4.6. t(x) = 5. If T (x) = (0, 5, 0), according to Lemma 21, then µ′(x) ≥(
5− 8

3

)
− 1

3 × 5− 1
3 × 1 = 1

3 by R1, R6 and R8. If T (x) = (1, 3, 1), according to
Lemma 21, then µ′(x) ≥

(
5− 8

3

)
− 1

3 × 5− 1
3 × 1− 1

3 × 1 = 0 by R1–R8.

Case 4.7. t(x) = 6. If T (x) = (1, 4, 0), according to Lemma 22, then µ′(x) ≥(
5 − 8

3

)
− 1

3 × 6 = 1
3 by R1. If T (x) = (2, 2, 1), according to Lemma 23, then

µ′(x) ≥
(
5− 8

3

)
− 1

3 × 6− 1
3 × 1 = 0 by R1–R5 and R7.

Case 5. d(x) = 6. If d(x) = 6, by Lemma 7(4), t(x) ≤ 7 and T (x) ̸= (3, 1, 2).

Case 5.1. t(x) ≤ 4. µ′(x) ≥
(
6− 8

3

)
− 1

3 × 4− 1
3 × 6 = 0 by R1–R8.

Case 5.2. t(x) = 5. If T (x) = (0, 5, 1), according to Lemma 24, then µ′(x) ≥(
6 − 8

3

)
− 1

3 × 5 − 1
3 × 1 − 1

3 × 1 = 3
3 = 1 by R1–R8. If T (x) = (1, 3, 2), then

µ′(x) ≥
(
6 − 8

3

)
− 1

3 × 5 − 1
3 × 5 = 0 by R1–R8. If T (x) = (2, 1, 3), then

µ′(x) ≥
(
6− 8

3

)
− 1

3 × 5− 1
3 × 4 = 1

3 by R1–R8.

Case 5.3. t(x) = 6. If T (x) = (0, 6, 0), according to Lemma 24, then µ′(x) ≥(
6− 8

3

)
− 1

3 × 6− 1
3 × 1 = 3

3 = 1 by R1, R6 and R8. If T (x) = (1, 4, 1), according
to Lemma 24, then µ′(x) ≥

(
6 − 8

3

)
− 1

3 × 6 − 1
3 × 1 − 1

3 × 1 = 2
3 by R1–R8.

If T (x) = (2, 2, 2), then µ′(x) ≥
(
6 − 8

3

)
− 1

3 × 6 − 1
3 × 4 = 0 by R1–R8. If

T (x) = (3, 0, 3), then µ′(x) ≥
(
6− 8

3

)
− 1

3 × 6− 1
3 × 3 = 1

3 by R1–R5 and R7.

Case 5.4. t(x) = 7. If T (x) = (1, 5, 0), according to Lemma 25, then µ′(x) ≥(
6− 8

3

)
− 1

3 × 7 = 3
3 = 1 by R1. If T (x) = (2, 3, 1), according to Lemma 25, then

µ′(x) ≥
(
6− 8

3

)
− 1

3 × 7− 1
3 × 1 = 2

3 by R1–R5 and R7.

Case 6. d(x) = 7. If d(x) = 7, by Lemma 7(5), t(x) ≤ 9 and T (x) ̸= (3, 2, 2),
T (x) ̸= (4, 1, 2).

Case 6.1. t(x) ≤ 6. µ′(x) ≥
(
7− 8

3

)
− 1

3 × 6− 1
3 × 7 = 0 by R1–R8.

Case 6.2. t(x) = 7. If T (x) = (0, 7, 0), according to Lemma 26, then µ′(x) ≥(
7 − 8

3

)
− 1

3 × 7 − 1
3 × 1 = 5

3 by R1, R6 and R8. If T (x) = (1, 5, 1), then
µ′(x) ≥ (7 − 8

3) −
1
3 × 7 − 1

3 × 6 = 0 by R1–R8. If T (x) = (2, 3, 2), then
µ′(x) ≥

(
7 − 8

3

)
− 1

3 × 7 − 1
3 × 5 = 1

3 by R1–R8. If T (x) = (3, 1, 3), then
µ′(x) ≥

(
7− 8

3

)
− 1

3 × 7− 1
3 × 4 = 2

3 by R1–R8.

Case 6.3. t(x) = 8. If T (x) = (1, 6, 0), according to Lemma 26, then µ′(x) ≥(
7− 8

3

)
− 1

3×8− 1
3×1 = 4

3 by R1–R8. If T (x) = (2, 4, 1), then µ′(x) ≥
(
7− 8

3

)
− 1

3×
8− 1

3×5 = 0 by R1–R8. If T (x) = (4, 0, 3), then µ′(x) ≥
(
7− 8

3

)
− 1

3×8− 1
3×3 = 2

3
by R1–R5 and R7.

Case 6.4. t(x) = 9. If T (x) = (2, 5, 0), according to Lemma 26, then µ′(x) ≥(
7 − 8

3

)
− 1

3 × 9 − 1
3 × 1 = 3

3 = 1 by R1, R6 and R8. If T (x) = (3, 3, 1), then
µ′(x) ≥

(
7− 8

3

)
− 1

3 × 9− 1
3 × 4 = 0 by R1–R8.
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Case 7. d(x) ≥ 8. If d(x) ≥ 8, then µ′(x) ≥ (d(x)− 8
3)−

1
3 ×d(x)− 1

3 ×d(x) =
1
3 × d(x)− 8

3 ≥ 0 by R1–R8.

We have proved that µ′(x) ≥ 0 for all x ∈ V (G), then
∑

x∈V (G) µ
′
(x) ≥ 0.

This contradicts the fact that
∑

x∈V (G) µ(x) < 0. This completes the proof.
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