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Abstract

A dissociation set of a graph G is a set of vertices which induces a sub-
graph of G with maximum degree at most 1, or equivalently, a set of vertices
whose complement in G is a 3-path vertex cover (intersecting every 3-path
of G). The maximum cardinality of a dissociation set of G is called the
dissociation number of G. We study the dissociation number of a circulant
graph (a Cayley graph of the group Zn) and generalize this concept to the
dissociation ratio of an integer distance graph (a Cayley graph of the group
Z).
Keywords: dissociation number, dissociation ratio, circulant graph, integer
distance graph.
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1. Introduction

Let G = (V,E) be a (finite, simple, undirected) graph with vertex set V and edge
set E. Given a positive integer k, a k-path vertex cover of G is a set T ⊆ V such
that every path in G with k vertices contains some vertex in T . Let ψk(G) denote
the minimum cardinality of a k-path vertex cover of G. With motivations based
on security conerns for communications in wireless sensor networks [3], minimum
k-path vertex covers have been widely studied, especially for k ≤ 3 [4, Section 1].

In fact, one sees that ψ1(G) = |V | and ψ2(G) = |V | − α(G), where α(G) is
the maximum cardinality of an independent set of G, known as the independence
number of G. For k = 3, we have T ⊆ V is a k-path vertex cover of G if and
only if V −T is a dissociation set of G, i.e., a set of vertices inducing a subgraph
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of G with maximum degree at most 1. Thus ψ3(G) = |V | − diss(G), where the
dissociation number diss(G) of G is the maximum cardinality of a dissociation
set of G. The dissociation number was first studied by Yannakakis [19] and
Yannakakis and Papadimitriou [14]. The computational complexity of finding
a maximum dissociation set has been determined for many families of graphs
[1, 3, 5, 13] and it is NP-hard even if G is bipartite or planar [19]. On the other
hand, various lower and upper bounds for diss(G) have been obtained and we
summarize some of them below [2, 3].

Theorem 1 [2, 3]. Let G be a graph with n vertices.

1. If each vertex v has d(v) > 0 neighbors, then diss(G) ≥ 4
3

∑
v∈V (G)

1
d(v)+1 .

2. If G has maximum degree ∆ := maxv∈V d(v), then diss(G) ≥ n/⌈(∆+1)/2⌉.
3. If G has m edges, then diss(G) ≥ (4n−m)/6.

4. If d(v) = d ≥ 2 for every vertex v in G, then diss(G) ≤ nd/(2d− 1).

Recently, Tu, Zhang and Du [17] and Tu, Zhang and Shi [18] investigated
the maximum number of maximum dissociation sets in trees.

In this paper, we focus on circulant graphs and integer distance graphs.
Let Zn be the finite cyclic group of integers modulo n. Let S be a subset of
{1, 2, . . . , ⌊n/2⌋}. A circulant graph C(n, S) is a finite Cayley graph whose vertex
set is Zn and whose edge set is {ij : i, j ∈ Zn, |i− j| ∈ S}. We exclude 0 from S
to make sure C(n, S) has no loop. If gcd (S ∪ {n}) = d, then

(1) diss(C(n, S)) = d · diss(C(n/d, S/d))

since C(n, S) is a disjoint union of d copies of C(n/d, S/d), where S/d := {s/d :
s ∈ S}. Thus we may assume gcd (S ∪ {n}) = 1 if necessary.

Circulant graphs have many nice properties, such as high symmetry, fault-
tolerance, and good routing capabilities. They are important topological struc-
tures for interconnection networks and widely used in telecommunication net-
works, VLSI design, and distributed computation (see, e.g., Monakhova [11]).
When |S| = 1 (respectively, 2) the circulant graph C(n, S) is called a single-loop
network (respectively, double-loop network).

We study the dissociation number of the single-loop and double-loop networks
in Section 2. We show that

diss(C(n, {s})) =

{
n if s = n/2,

⌊2n/3⌋ if 1 ≤ s < n/2 and gcd(n, s) = 1.

One can handle the case gcd(n, s) ̸= 1 by (1). For the double-loop network
diss(C(n, {s, t})), where 1 ≤ s < t ≤ n/2, we show that

⌈n/3⌉ ≤ diss(C(n, {s, t})) ≤ ⌊n/2⌋
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and give some sufficient conditions for diss(C(n, {s, t})) = ⌊n/2⌋. In particular,
the dissociation number of C(n, {1, s}), where 1 < s ≤ n/2, reaches the upper
bound ⌊n/2⌋ unless 2 | s and the least nonnegative residue r of n modulo 2s
satisfies r > 0, 2 | r and (4 | r ⇒ 4 | s); in that case we have diss(C(n, {1, s})) =
n/2− 1.

Now let S be a finite set of positive integers. The integer distance graph Z(S)
is the Cayley graph with vertex set Z and edge set {ij : i, j ∈ Z, |i − j| ∈ S}.
It can be viewed as the limit of the circulant graph C(n, S) as n→ ∞. One can
extend many parameters from a finite graph to an integer distance graph. For
example, the independence ratio of an integer distance graph is related to the
chromatic number and has been extensively studied (see, e.g., Carraher, Galvin,
Hartke, Radcliffe and Stolee [6] and Liu [10]). The domination ratio of an integer
distance graph was studied in our earlier work [8, 9] and an equivalent problem
in terms of linear coverings of Z was investigated by Schmidt and Tuller [15, 16],
Frankl, Kupavskii and Sagdeev [7], and others.

In Section 3 we study the dissociation ratio diss(Z(S)) of the integer distance
graph Z(S), which is defined as the supremum of the (upper) density

δ(D) := lim sup
n→∞

|D ∩ [−n, n]|
2n+ 1

over all dissociation sets D of Z(S). If gcdS = d then

(2) diss(Z(S)) = diss(Z(S/d))

as Z(S) is the disjoint union of d copies of Z(S/d). Thus we may assume gcdS = 1
if necessary. Our results on the dissociation ratio of integer distance graphs are
summarized below.

Theorem 2. Let S be a set of positive integers with |S| = d <∞.

1. If d = 1, then diss(Z(S)) = 2/3.

2. If d = 2, then diss(Z(S)) = 1/2.

3. If d = 3, and ||T || ≠ ||T ′|| for all distinct T, T ′ ⊆ S, where ||T || denotes
the sum of the elements of T , then diss(Z(S)) ≤ 1/2; the equality holds if in
addition, all elements of S are odd.

4. We have diss(Z(S)) ≤ 2d/(4d− 1).

Furthermore, we show that the dissociation ratio of every integer distance
graph must be achieved by a periodic dissociation set. We also relate the disso-
ciation ratio of an integer distance graph to the dissociation number of a corre-
sponding circulant graph.

In Section 4 we conclude the paper with some questions for future study.
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2. Single-Loop and Double-Loop Networks

In this section we study dissociation in single-loop and double-loop networks.
For the single-loop network C(n, {s}), where 1 ≤ s ≤ n/2, we may assume

gcd(n, s) = 1 if necessary, thanks to (1). Applying the bounds in Theorem 1
gives {

n/2 ≤ diss(C(n, {s})) ≤ 2n/3 if 1 ≤ s < n/2,

2n/3 ≤ diss(C(n, {s})) ≤ n if s = n/2.

We determine the precise value of diss(C(n, {s})) below.

Proposition 3. (i) If s = n/2, then diss(C(n, {s}) = n.

(ii) If 1 ≤ s < n/2 and gcd(n, s) = 1, then diss(C(n, {s}) = ⌊2n/3⌋.

Proof. (i) If s = n/2, then C(n, {s}) is a disjoint union of n/2 copies of K2, and
thus we have diss(C(n, {s})) = n.

(ii) Suppose 1 ≤ s < n/2 and gcd(n, s) = 1. We have an isomorphism from
the graph C(n, {1}) to the graph C(n, {s}) by sending each i ∈ Zn to si. Thus
we may assume that s = 1, which implies n ≥ 3.

We have diss(C(n, {1}) ≤ 2n/3 since a dissociation set of C(n, {1}) contains
at most two of every three consecutive integers (modulo n). On the other hand,
we have a dissociation set

D =

{
{3i, 3i+ 1 : i = 0, 1, . . . , k − 1} if n = 3k or n = 3k + 1,

{3i, 3i+ 1 : i = 0, 1, . . . , k − 1} ∪ {3k} if n = 3k + 2.

This implies diss(C(n, {1}) = ⌊2n/3⌋.

Remark 4. We can use Proposition 3 together with equation (1) to calculate
diss(C(n, {s})) when gcd(n, s) ̸= 1, and the result does not always reach ⌊2n/3⌋.
For example, we have

diss(C(8, {2})) = 2 · diss(C(4, {1})) = 2 · 2 < ⌊2 · 8/3⌋.

Now consider a double loop network C(n, S) with S = {s, t} for distinct
integers s and t satisfying 1 ≤ s, t ≤ n/2. Applying Theorem 1 gives

(3)

{
n/3 ≤ diss(C(n, {s, t})) ≤ 4n/7 if 1 ≤ s < t < n/2,

n/2 ≤ diss(C(n, {s, t})) ≤ 3n/5 if 1 ≤ s < t = n/2.

We provide a better result below.

Proposition 5. If 1 ≤ s < t ≤ n/2, then ⌈n/3⌉ ≤ diss(C(n, {s, t})) ≤ ⌊n/2⌋,
and the upper bound is reached when 2 ∤ s and t = n/2.
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Proof. By the definition, every dissociation set D of C(n, {s, t}) must satisfy

(4)

{
|D ∩ {i, i+ t}| = 2 ⇒ |D ∩ {i+ s, i+ s+ t}| = 0,

|D ∩ {i+ s, i+ s+ t}| = 2 ⇒ |D ∩ {i, i+ t}| = 0,

which implies |D ∩ {i, i+ s, i+ t, i+ s+ t}| ≤ 2 for all i ∈ Zn. Thus

(5) 4|D| ≤
∑
i∈Zn

|D ∩ {i, i+ s, i+ t, i+ s+ t}| ≤ 2n,

where the first inequality holds because the sum counts every element of j ∈ D at
least four times (for i ∈ {j, j−s, j−t, j−s−t}). It follows that diss(C(n, {s, t}) ≤
⌊n/2⌋. Combining this with the lower bounds in (3) gives the desired result when
1 ≤ s < t < n/2.

Now suppose 1 ≤ s < t = n/2 and 2 ∤ s. It is not hard to explicitly
construct a maximum dissociation set for C(n, {s, t})). For instance, let D =
{2i : i = 0, 1, . . . , n/2−1}. Every vertex 2i ∈ D is adjacent to at most one vertex
2i+ t ≡ 2i− t (mod n) in D and its other two neighbors 2i± s are not in D since
2 ∤ (2i± s). Thus D is a dissociation set with |D| = n/2 = diss(C(n, {s, t})).

We next give another sufficient condition for diss(C(n, {s, t})) = n/2.

Theorem 6. If 2k | n, 1 ≤ s, t ≤ n/2, s ≡ k (mod 2k), t ≡ r (mod 2k) with
k/2 ≤ r ≤ 3k/2 and s ̸= t, then diss(C(n, {s, t})) = n/2.

Proof. By Proposition 5, it suffices to exhibit a dissociation set D of C(n, {s, t}))
with |D| = n/2. Let

D = {2ki+ 1, 2ki+ 2, . . . , 2ki+ k : i = 0, 1, . . . , (n/2k)− 1} .

Suppose, for the sake of contradiction, that some vertex 2ki+j ∈ D (1 ≤ j ≤ k) is
adjacent to two other vertices inD. We have 2ki+j±s /∈ D since 2ki+j±s ≡ j+k
(mod 2k) and k + 1 ≤ j + k ≤ 2k. Thus 2ki+ j ± t ∈ D, i.e.,

2ki+ j + t = 2ka+ b and 2ki+ j − t = 2kc+ d

for some integers a, b, c, d with 1 ≤ b, d ≤ k. It follows that

4ki+ 2j = 2k(a+ c) + b+ d and 2t = 2k(a− c) + b− d.

If a+ c is odd then the first equation reduces to 2j ≡ 2k+ b+d (mod 4k), which
is absurd since 1 ≤ j, b, d ≤ k. Thus a+ c is even, and so is a− c. Then

t = k(a− c) + (b− d)/2 ≡ (b− d)/2 (mod 2k), 1− k ≤ b− d ≤ k − 1.

This contradicts the hypothesis that t ≡ r (mod 2k) with k/2 ≤ r ≤ 3k/2.
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Example 7. If s and t are distinct odd numbers and n is even then C(n, {s, t})
has a dissociation set {2i : i = 0, 1, . . . , n2 − 1}. If 4 | n, s ≡ 2 (mod 4) and 2 ∤ t
then C(n, {s, t}) has a dissociation set {4i, 4i+ 1 : i = 0, 1, . . . , n4 − 1}. In either
case we have diss(C(n, {s, t})) = n/2.

Now we consider the double-loop network C(n, {1, s}), where 2 ≤ s ≤ n/2.

Lemma 8. Let D be a dissociation set of C(n, {1, s}), where 2 ≤ s < n/2. If s
is even, then there exists some j ∈ Zn such that |D ∩ {j, j + 1}| = 0.

Proof. Working toward a contradiction, we may assume |D ∩ {i, i + 1}| = 1
for all i ∈ Zn by (4). Then D = {0, 2, 4, . . . , n − 2} or D = {1, 3, 5, . . . , n − 1}
(in particular, n is even). In the former case we have a vertex s ∈ D with two
neighbors 0, 2s ∈ D and in the latter case we have a vertex s + 1 ∈ D with two
neighbors 1, 2s+ 1 ∈ D. Thus D cannot be a dissociation set.

Theorem 9. (i) If s is odd and 2 ≤ s ≤ n/2, then diss(C(n, {1, s})) = ⌊n/2⌋.
(ii) Suppose s is even and write n = 2sk + r ≥ 2s for some k ≥ 0 and some

r ∈ {0, 1, . . . , 2s− 1}. Then

diss(C(n, {1, s})) =

{
⌊n/2⌋ if r = 0, 2 ∤ r or (4 ∤ s and 4 | r),
n
2 − 1 if r > 0, 2 | r and (4 | r ⇒ 4 | s).

Proof. (i) Suppose that s is odd and 2 ≤ s < n/2 (the case s = n/2 is solved
by Proposition 5). It is routine to check that C(n, {1, s}) has a dissociation set
D = {0, 2, 4, . . . , 2(⌊n/2⌋ − 1)} whose cardinality is ⌊n/2⌋. Combining this with
Proposition 5, we have diss(C(n, {1, s})) = ⌊n/2⌋.

(ii) Suppose that s is even and 2 ≤ s ≤ n/2. We can write n = 2sk + r for
some k ≥ 0 and some r ∈ {0, 1, . . . , 2s−1}. It is routine to check that C(n, {1, s})
has a dissociation set

D(n, s)

:= {i+1, i+3, . . . , i+s−1, i+s, i+s+2, . . . , i+2s−2 : i = 0, 2s, 4s, . . . , 2(k−1)s}
∪ {2ks+1, 2ks+3, . . . , 2ks+2⌊(r+1)/4⌋ − 1, n− 2⌊(r− 1)/4⌋, . . . , n− 4, n− 2}

whose cardinality is

|D(n, s)| =

{
ks if r = 0,

ks+ ⌊(r + 1)/4⌋+ ⌊(r − 1)/4⌋ if r > 0.

If r = 0 or 2 ∤ r then |D(n, s)| = ⌊n/2⌋ and thus diss(C(n, {1, s})) = ⌊n/2⌋
by Proposition 5.

If 4 | r and 4 ∤ s then we also have diss(C(n, {1, s})) = ⌊n/2⌋ by Theorem 6
(the case k = 2 as discussed in Example 7).
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Assume now that r > 0, 2 | r and (4 | r ⇒ 4 | s). Then |D(n, s)| = n
2 − 1. It

suffices to show that every dissociation set D of C(n, {1, s}) must satisfy |D| ≤
n
2 − 1. We may assume |D ∩ {i, i+ 1, i+ s, i+ s+ 1}| = 2 for all i ∈ Zn by (5).
By Lemma 8, |D ∩ {j, j + 1}| = 0 for some j ∈ Zn. Let j = 0, without loss of
generality. Then

|D ∩ {s, s+ 1}| = 2, |D ∩ {2s, 2s+ 1} = 0, |D ∩ {3s, 3s+ 1}| = 2, . . .

It follows that

D = {i+ 2, i+ 3 : i = 0, 4, 8, . . . , n/4− 1}

and in particular, 4 | n (which implies 4 | r) and 4 ∤ s (otherwise 3 ∈ D is adjacent
to 2, s+ 2 ∈ D). But this contradicts to the hypothesis on r and s.

Example 10. We can use a diagram to represent D(n, s), where □ and × cor-
respond to integers inside and outside D(n, s), respectively, with vertical bars
dividing integers into blocks. Let s = 4 and n = 8k + r, where r ∈ {0, 1, . . . , 7}.
If r ∈ {0, 1, 2} we have the following diagrams forD(n, 2) = {i+1, i+3, i+4, i+6 :
i = 0, 8, . . . , k − 1}.

· · · | ×□×□□×□× |×□×□□×□× |×□×□□×□× |×□×□□×□× | · · ·

· · · |×□×□□×□×|×□×□□×□×|× |×□×□□×□×|×□×□□×□×| · · ·

· · · |×□×□□×□×|×□×□□×□×|××|×□×□□×□×|×□×□□×□×| · · · .

If r ∈ {3, 4} then we have D(n, 2) = {i+1, i+3, i+4, i+6 : i = 0, 8, . . . , k− 1}∪
{8k + 1}:

· · · |×□×□□×□×|×□×□□×□×|×□×|×□×□□×□×|×□×□□×□×| · · ·

· · · |×□×□□×□×|×□×□□×□×|×□××|×□×□□×□×|×□×□□×□×| · · ·

If r ∈ {5, 6} then D(n, 2) = {i+ 1, i+ 3, i+ 4, i+ 6 : i = 0, 8, . . . , k − 1} ∪ {8k +
1, n− 2}:

· · · |×□×□□×□×|×□×□□×□×|×□×□×|×□×□□×□×|×□×□□×□×| · · ·

· · · |×□×□□×□×|×□×□□×□×|×□××□×|×□×□□×□×|×□×□□×□×| · · ·

If r = 7 then D(n, 2) = {i+1, i+3, i+4, i+6 : i = 0, 8, . . . , k−1}∪{8k+1, 8k+
3, n− 2}:

· · · |×□×□□×□×|×□×□□×□×|×□×□×□×|×□×□□×□×|×□×□□×□×| · · ·
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Corollary 11. The following results hold.

(i) For n ≥ 4 we have

diss(C(n, {1, 2}) =

{
2k if n ∈ {4k, 4k + 1, 4k + 2},
2k + 1 if n = 4k + 3.

(ii) For n ≥ 8 we have

diss(C(n, {1, 4}) =


4k if n ∈ {8k, 8k + 1, 8k + 2},
4k + 1 if n ∈ {8k + 3, 8k + 4},
4k + 2 if n ∈ {8k + 5, 8k + 6},
4k + 3 if n = 8k + 7.

(iii) For n ≥ 12 we have

diss(C(n, {1, 6}) =



6k if n ∈ {12k, 12k + 1, 12k + 2},
6k + 1 if n = 12k + 3,

6k + 2 if n ∈ {12k + 4, 12k + 5, 12k + 6},
6k + 3 if n = 12k + 7,

6k + 4 if n ∈ {12k + 8, 12k + 9, 12k + 10},
6k + 5 if n = 12k + 11.

3. Dissociation Ratio of Integer Distance Graphs

Recall that an integer distance graph Z(S) is the Cayley graph with vertex set Z
and edge set {ij : i, j ∈ Z, |i− j| ∈ S}, where S is a finite set of positive integers.
In this section we study the dissociation ratio diss(Z(S)), which is defined as the
supremum of the (upper) density

δ(D) := lim sup
n→∞

|D ∩ [−n, n]|
2n+ 1

over all dissociation sets D of Z(S). We start with the case |S| = 1.

Proposition 12. For any positive integer s we have diss(Z({s})) = 2/3.

Proof. We may assume s = 1 since diss(Z({s})) = diss(Z({1})) by (2). Every
dissociation set D of Z({1}) must satisfy |D ∩ {i, i + 1, i + 2}| ≤ 2 for all i ∈ Z
by its definition. Thus

3|D ∩ [−n, n]| ≤
n∑

i=−n−2

|D ∩ {i, i+ 1, i+ 2}| ≤ 2(2n+ 3).
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It follows that

δ(D) = lim sup
n→∞

|D ∩ [−n, n]|
2n+ 1

≤ lim sup
n→∞

2(2n+ 3)

3(2n+ 1)
=

2

3
.

On the other hand, {3i, 3i+1 : i ∈ Z} is a dissociation set of Z({1}) with density
2/3. Hence diss(Z({1})) = 2/3.

Next, we determine diss(Z(S)) for |S| = 2. Recall that the hypercube Qd

has vertex set consisting of binary strings of length d and edge set consisting of
unordered pairs of binary strings differing in exactly one position. Given T ⊆ Z,
let ||T || denote the sum of all elements of T .

Lemma 13. Let S be a finite set of d positive integers such that ||T || ≠ ||T ′|| for
all distinct subsets T, T ′ of S. Then diss(Z(S)) ≤ diss(Qd)/2

d.

Proof. By the hypothesis on S, for any i ∈ Z there are exactly 2d distinct
elements in the set

Si := {i+ ||T || : T ⊆ S} .

This set induces a subgraph of Z(S), which contains a copy of the hypercube Qd

as a spanning subgraph. Thus any dissociation set D of Z(S) can intersect Si at
most diss(Qd) times. Then

2d|D ∩ [−n, n]| ≤
n∑

i=−n−||S||

|D ∩ Si| ≤ diss(Qd)(2n+ 1 + ||S||)

which implies

δ(D) = lim sup
n→∞

|D ∩ [−n, n]|
2n+ 1

≤ lim sup
n→∞

diss(Qd)(2n+ 1 + ||S||)
2d(2n+ 1)

=
diss(Qd)

2d
.

The result follows.

One can check that ||T || ≠ ||T ′|| for all distinct subsets T, T ′ of S whenever
|S| = 2 but it may not hold when |S| ≥ 3 (e.g., S = {1, 2, 3}). Using Lemma 13
we establish more upper bounds.

Theorem 14. Let S be a finite set of positive integers. If |S| = 2 or if |S| = 3
and ||T || ≠ ||T ′|| for all distinct subsets T, T ′ of S, then diss(Z(S)) ≤ 1/2.

Proof. It follows from work of Brešar, Jakovac, Katrenič, Semanǐsin and Tara-
nenko [2] that

2d−1 ≤ diss(Qd) ≤ 2d · d/(2d− 1)

where d = |S|. For d = 2, 3, taking the floor of the above upper bound of diss(Qd)
and applying Lemma 13 we have the desired result.
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Proposition 15. Let S be a finite set of odd positive integers. Then diss(Z(S)) ≥
1/2 and the equality holds if |S| = 2 or if |S| = 3 and ||T || ≠ ||T ′|| for all distinct
T, T ′ ⊆ S.

Proof. One sees that D = {2i : i ∈ Z} is a dissociation set of Z(S) since S has
no even element. Thus diss(Z(S)) ≥ δ(D) = 1/2. If |S| = 2 or if |S| = 3 and
||T || ≠ ||T ′|| for all distinct T, T ′ ⊆ S then diss(Z(S)) = 1/2 by Theorem 14.

Proposition 16. We have diss(Z({1, s})) = 1/2 for any s ≥ 2.

Proof. We may assume 2 | s by Proposition 15. One sees that Z({1, s}) has a
dissociation set D = {4i, 4i+ 1 : i ∈ Z} if 4 ∤ s or

D = {2si, 2si+2, . . . , 2si+ s− 2, 2si+ s+1, 2si+ s+3, . . . , 2si+2s− 1 : i ∈ Z}

if 4 | s. Thus diss(Z({1, s})) = δ(D) = 1/2 by Theorem 14.

We generalize the above proposition to Z({s, t}).

Theorem 17. If s and t are distinct positive integers, then diss(Z({s, t})) = 1/2.

Proof. Since S = {s, t} satisfies the hypothesis of Theorem 14, we must have
diss(Z, {s, t}) ≤ 1/2. Thus it suffices to construct a dissociation setD for Z({s, t})
with density δ(D) = 1/2. We may assume s is even and t is odd with gcd(s, t) = 1
by (2) and Proposition 15.

There must exist a positive integer m such that 2m | s and 2m+1 ∤ s. If
t ≡ ±1,±3, . . . ,±(2m − 3) (mod 2m+1) then Z({s, t}) has a dissociation set

D =
{
2m+1 · i+ r : i ∈ Z, r = 0, 2, 4, . . . , 2m − 2, 2m + 1, 2m + 3, . . . , 2m+1 − 1

}
.

If t ≡ ±(2m − 1) (mod 2m+1) then Z({s, t}) has a dissociation set

D =
{
2m+1 · i+ r : i ∈ Z, r = 0, 1, . . . , 2m − 1

}
.

In either of the above cases, we have δ(D) = 1/2.

Example 18. Assume s is even and t is odd. We give some examples for the
construction of a dissociation set with density 1/2 in the above proof.

If s ≡ 2 (mod 4), then t ≡ ±1 (mod 4) and D = {4i, 4i + 1 : i ∈ Z} is a
dissociation set for Z({s, t}) with δ(D) = 1/2. If 4 | s then we distinguish two
cases below.

If s ≡ 4 (mod 8) and t ≡ ±1 (mod 8) then D = {8i, 8i+2, 8i+5, 8i+7 : i ∈
Z} is a dissociation set for Z({s, t}).

If s ≡ 4 (mod 8) and t ≡ ±3 (mod 8) then D = {8i, 8i+1, 8i+2, 8i+3 : i ∈
Z} is a dissociation set for Z({s, t}).
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It remains to consider the case 8 | s.
If s ≡ 8 (mod 16) and t ≡ ±1,±3,±5 (mod 16) then Z({s, t}) has a dissoci-

ation set
D = {16i+ r : i ∈ Z, r = 0, 2, 4, 6, 9, 11, 13, 15}.

If s ≡ 8 (mod 16) and t ≡ ±7 (mod 16) then Z({s, t}) has a dissociation set

D = {16i+ r : i ∈ Z, r = 0, 1, . . . , 7}.

We can repeat the above process to handle the remaining case.

Remark 19. If 4 | s and t = 1 then Z({1, s}) has another dissociation set with
density 1/2:

{2si, 2si+ 2, . . . , 2si+ s− 2, 2si+ s+ 1, 2si+ s+ 3, . . . , 2si+ 2s− 1 : i ∈ Z}.

For each of the integer distance graphs discussed so far, the dissociation
ratio is achieved by a periodic dissociation set. We will show that this is not an
coincidence. Here a set U ⊆ Z is periodic if there exists a positive integer m such
that

U ∩ [im+ 1, im+m] = {im+ j : j ∈ U ∩ [1,m]}, ∀i ∈ Z.

The smallest such integer m is the period of U . It is easy to calculate the density
of a periodic set.

Lemma 20 [8]. If U is a periodic subset of Z with period m then we have δ(U) =
|U ∩ [1,m]|/m.

Suppose that S is a finite set of positive integers. Let

a := maxS ∪ {0}, b := −minS ∪ {0}, and c := a+ b.

Also let [m,n] denote the set {x ∈ Z : m ≤ x ≤ n}. A state is a subset
of [1, c]. A state T is admissible if there exists a dissociation set D of Z(S)
such that D ∩ [ic + 1, (i + 1)c] = T + ic for some i ∈ Z. A transition occurs
between two states T and T ′ if there exists a dissociation set D of Z(S) such that
D ∩ [ic + 1, (i + 1)c] = T + ic and D ∩ [(i + 1)c + 1, (i + 2)c] = T ′ + (i + 1)c for
some i ∈ Z. The state graph associated with Z(S) is a graph whose vertices are
the admissible states and whose edges are transitions. The weight of a state T
is |T |/c. A doubly infinite walk in the state graph is a sequence (Ti : i ∈ Z) of
states such that there is an edge between Ti and Ti+1 for all i ∈ Z. The upper
average weight of this walk is

lim sup
m→∞

∑
i∈[−m,m]

|Ti|
(2m+ 1)c

.
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Proposition 21. Let S be a finite set of positive integers. Let a := maxS ∪{0},
b := −minS∪{0}, and c := a+b. Then the dissociation ratio of Z(S) is achieved
by some periodic dissociation set with period at most c2c.

Proof. Any doubly infinite walk (Ti : i ∈ Z) in the state graph of Z(S) gives a
set

D :=
⋃
i∈Z

(Ti + ic).

We show that D is a dissociation set of Z(S). Suppose some integer j ∈ D is
adjacent to two other integers j + s and j + t in D, where s, t ∈ S.

Since |j + s− (j + t)| = |s− t| ≤ a+ b = c, we must have {j, j + s, j + t} ⊆
[ic+1, (i+2)c] for some i ∈ Z. Since there is an edge between Ti and Ti+1 in the
state graph, there exists a dissociation set D′ such that

D′ ∩ [ic+ 1, (i+ 1)c] = Ti + ic,

D′ ∩ [(i+ 1)c+ 1, (i+ 2)c] = Ti+1 + (i+ 1)c.

Thus {j, j + s, j + t} ̸⊆ D′ ∩ [ic + 1, (i + 2)c] = (Ti + ic) ∪ (Ti+1 + (i+ 1)c) =
D ∩ [ic+ 1, (i+ 2)c]. It follows that D is a dissociation set of Z(S).

Conversely, a dissociation set D of Z(S) corresponds to a doubly infinite walk
(Ti : i ∈ Z) in the state graph, where Ti := D∩[ic+1, (i+1)c]. The upper average
weight of this walk equals

lim sup
m→∞

∑
i∈[−m,m]

|Ti|
(2m+ 1)c

= lim sup
m→∞

|D ∩ [−mc+ 1,mc+ c]|
(2m+ 1)c

= δ(D),

where the last equality follows from a result in previous work [8, Lemma 2.1].
We know that the supremum of the upper average weights of doubly infinite

walks is achieved by repeating some simple cycle in the state graph [6, Lemma 3].
Since the length of this cycle is at most 2c, the dissociation ratio of Z(S) can be
achieved by some periodic dominating set with period at most c2c.

Proposition 21 shows that the dissociation ratio of the integer distance graph
Z(S) is achieved by some periodic dominating set of period m. Let Zm :=
{1, 2, . . . ,m} be the cyclic group of order m under addition modulo m. Let
Sm be the subset of Zm consisting of all least positive residues of elements in S
modulo m. We conclude this section by relating the dissociation ratio of the in-
teger distance digraph Z(S) and the dissociation number of the circulant digraph
C(m,Sm).

Proposition 22. Assume S is a finite set of positive integers. Let D be a disso-
ciation set of Z(S) with period m such that diss(Z(S)) = δ(D) = |D ∩ [1,m]|/m.
Then D∩[1,m] is a maximum dissociation set of C(m,Sm) and diss(C(m,Sm)) =
|D ∩ [1,m]| = m · diss(Z(S)).
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Proof. We first show that D∩ [1,m] is a dissociation set of C(m,Sm). Suppose,
for the sake of contradiction, that some i ∈ D ∩ [1,m] has two neighbors in
D ∩ [1,m], which can be written as i + s and i + t for some distinct s, t ∈ Sm.
Then there must exist distinct s′, t′ ∈ S such that s ≡ s′ (mod m) and t ≡ t′

(mod m). Thus i+ s′, i+ t′ ∈ D since i+ s, i+ t ∈ D ∩ [1,m] and D has period
m, and i is adjacent to both i+ s′ and i+ t′ in Z(S). This gives a contradiction
to the hypothesis that D is a dissociation set of Z(S).

Now let E be a maximum dissociation set of C(m,Sm). We show that E :=
∪k∈Z(E + km) is a dissociation set of Z(S). Suppose a vertex i ∈ E has two
neighbors in E, which can be written as i+s and i+t for some distinct s, t ∈ S. Let
i0, s0, t0 be the least positive residue of i, s, tmodulom. Then i0, i0+s0, i0+t0 ∈ E
and i0 is adjacent to i0 + s0 and i0 + t0 in C(m,Sm) since s0, t0 ∈ Sm. This
contradicts the hypothesis that E is a dissociation set of C(m,Sm).

Combining the above two paragraphs we have

diss(Z(S)) ≥ δ(E) = |E|/m = diss(C(m,Sm))/m ≥ |D ∩ [1,m]|/m = diss(Z(S)),

where the two inequalities must both be equalities. The result follows.

We can apply Proposition 22 to the periodic dissociation sets constructed
in this section and recover the following results, which are special cases of the
results in Section 2:

1. diss(C(2, {1})) = diss(C(3, {1})) = 2,

2. diss(C(4, {1, 2})) = 2,

3. diss(C(2s, {1, s})) = s, and

4. diss(C(2m+1, {2m, t})) = 2m if 1 ≤ t < 2m is odd.

We can also use Proposition 22 to establish a general upper bound for
diss(Z(S)).

Theorem 23. Let S be a set of positive integers with |S| = d <∞. Then

diss(Z(S)) ≤ 2d/(4d− 1).

Proof. By Proposition 21, the graph Z(S) has a dissociation set D with period
m such that diss(Z(S)) = δ(D). We may assume that m > maxS −minS, since
we can replace the period of D with any of its positive multiples. This guarantees
that |Sm| = |S| = d. It follows from Proposition 22 and Theorem 1 that

diss(Z(S)) = |D ∩ [1,m]|/m = diss(C(m,Sm))/m ≤ 2d/(4d− 1).

Remark 24. The upper bound Theorem 23 is achieved when |S| = 1 by Proposi-
tion 12 but not as good as Theorem 14 when |S| = 2, 3. The proof of Theorem 14
can be used to show that diss(Z(S)) ≤ 9/16 if |S| = 4 and diss(Z(S)) ≤ 17/32 if
|S| = 5, 6, 7, 8, but these upper bounds are worse than Theorem 23.
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4. Conclusion

In this paper we focus on the dissociation number of some single-loop and double-
loop networks and extend it to the dissociation ratio of the integer distance
graphs. In particular, the dissociation ratio of any integer distance graph Z(S)
with |S| = 2 equals 1/2 by Theorem 17. This suggests that the dissociation
number of a double-loop network should be equal or very close to n/2 at least
when n is large. We have some partial results in Section 2 and one can try to
complete this in the future.

It would also be nice to find the dissociation number of C(n, S) and the
dissociation ratio of Z(S) when |S| ≥ 3; we only have some upper bounds for the
latter in Section 3. Our proof in one case involves the well-known hypercube and
its dissociation number is yet to be determined.

For any integer distance graph, the domination ratio turns out to be equiva-
lent to the minimal covering density, which was studied by Newman [12], Schmidt
and Tuller [15, 16], Frankl, Kupavskii, and Sagdeev [7], and others. It would be
interesting to see whether the techniques used to study covering density could be
adapted for dissociation.
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k-path cover , Discrete Appl. Math. 161 (2013) 1943–1949.
https://doi.org/10.1016/j.dam.2013.02.024
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