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Abstract

Let G be a forest with six edges. We prove that G decomposes the
complete graph Kn if and only if n ≡ 0, 1, 4, or 9 (mod 12), unless n = 9
and G is one of nine exceptional forests.
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1. Introduction

For some graph G, a G-decomposition of a graph H is a set G = {G1, G2, . . . , Gt}
of pairwise edge-disjoint subgraphs of H, each of which is isomorphic to G, such
that E(H) =

⋃t
i=1E(Gi). The elements of G are called G-blocks.

Finding G-decompositions is a classical combinatorial problem that spans
the related fields of graph theory, design theory, and error-correcting codes. The
problem was given new life in the 1960s by Kotzig and Rosa who produced a new
method for decomposing graphs now known as graph labeling.

We only consider G-decompositions of the complete graph Kn, so from here
on, we refer to G-decompositions of Kn simply as G-decompositions. Determining
the set of all integers n such that a G-decomposition exists is known as the
decomposition spectrum for G. We are particularly interested in solving this
spectrum problem for all small graphs. The decomposition spectrum for graphs
with less than six edges is completely determined. In this article, we complete the
decomposition spectrum for graphs with six edges. An overview of the results for
graphs with a small number of edges is given in [9], and we reproduce an updated
version of it here.

https://doi.org/10.7151/dmgt.2554
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1.1. Graphs with at most four edges

For graphs with one or two edges, the cases are trivial. Graphs with three edges
are only K3, K1,3, P4, P2 ∪ P3, or 3K2. For K3 we have a Steiner Triple System,
and it has been solved by Kirkman [14]. K1,3 was classified by Cain [5], P4 was
settled by Bermond [2], P2∪P3 was solved by Bermond, Huang, Rosa and Sotteau
[3], and 3K2 was classified by de Werra [6].

There are five types of connected graphs with four edges. Kotzig covered the
C4 case [15], and Bermond and Schönheim the cases containing K3 (K3 with a
pendant edge and K3 ∪P2 [4]). The path P5 and the tree with a unique vertex of
degree three were settled by Huang and Rosa [12], and the star K1,4 by Yamamoto
et al. [18].

The forests with six vertices, that is, 2P3, P4∪P2 and K1,3∪K2 were classified
by Yin and Gong [19].

The case P3 ∪ 2P2 appears to be folklore, and follows from its σ+- or 1-
rotational σ+-labeling. The matching 4K2 was classified by de Werra [6].

1.2. Graphs with five edges

Graphs with five vertices were studied by Bermond, Huang, Rosa and Sotteau
[3]. Huang and Rosa [12] covered the cases for all trees with up to nine vertices.
Disconnected graphs containing a cycle were settled by Yin and Gong except for
K3 ∪ 2K2 [19]. The matching with five edges was solved by de Werra [6], while
the remaining forests are treated in [10].

1.3. Graphs with six edges

The only graph on four vertices with six edges is K4, which has been covered
by Hanani [11]. The graphs on five vertices have been completely settled by
Bermond, Huang, Rosa and Sotteau [3] except for P5. This case was solved by
Kang and Wang [13].

All graphs with six edges and six vertices decompose were settled by Yin and
Gong [19].

Graphs with six edges and more than six vertices are either trees (treated
in [12]) or disconnected. This leaves only disconnected unicyclic graphs with six
edges, which were settled in [1], and forests with six edges. As previously noted,
the matching with six edges was solved by de Werra in [6]. We settle the remaining
forests with six edges in this article by proving the following theorem.

Theorem 1. Let G be a forest with exactly six edges. There exists a G-decomposi-
tion of Kn if and only if n > 4 and n ≡ 0, 1, 4, or 9 (mod 12), unless n = 9 and
G is one of the nine exceptional forests listed below.
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• K1,5 ∪K2

• K1,4 ∪ 2K2

• K1,4 ∪ P3

• K1,3 ∪ 3K2

• P4 ∪ 3K2

• 2P3 ∪ 2K2

• P3 ∪ 4K2

• 6K2

• 2K1,3

fix

1.4. Catalog and necessary conditions

Suppose G is a graph with six edges and a G-decomposition exists. Then 6 must
divide |E(Kn)| =

(
n
2

)
. This implies n ≡ 0, 1, 4, or 9 (mod 12). We will prove

these conditions are sufficient, up to a few small exceptions, when G is a forest
by using labeling techniques based on Rosa’s in the sections that follow [17].

Rosa’s revolutionary approach to decomposing complete graphs is based on
assigning lengths to each edge of the complete graph K2m+1 as follows. Let
V (K2m+1) = {0, 1, . . . , 2m} and define the length of edge uv ∈ E(K2m+1) as
ℓ(uv) = min{|u−v|, 2m+1−|u−v|}. This length function partitions the m(2m+1)
edges of K2m+1 into 2m+ 1 edges of each length in {1, 2, . . . ,m}. If G is a graph
with m edges, the problem of finding a G-decomposition of K2m+1 now reduces
to finding an injective assignment of labels f : V (G) → {0, 1, . . . , 2m} such that
{ℓ(uv) : uv ∈ E(G)} = {1, 2, . . . ,m}. This is because once such an assignment of
labels is found, it may be cyclically increased by 1 modulo 2m + 1, to produce
2m + 1 edge-disjoint copies of G which uses m(2m + 1) edges of K2m+1. Since
this operation we call clicking preserves edge length, we see that no edge has been
repeated, and we have therefore constructed a G-design of K2m+1.

The forests with six edges and at least two components are cataloged in
Figures 1 and 2. We use the naming convention G(k; e1, e2, . . . ek)t to denote
the tth forest with k connected components and ei edges in the ith connected
component for 1 ≤ i ≤ k. To simplify the names, we will use exponential notation
for components of the same size.

2. Decompositions of K9

In this section, we characterize all forests with six edges that decompose K9.
There are nine such forests that do not decompose K9.

Lemma 2. Let G be a forest with exactly six edges. If G is isomorphic to one of
the graphs below, then G does not decompose K9.
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(a) G(2; 1, 5)1 (b) G(2; 1, 5)2 (c) G(2; 1, 5)3 (d) G(2; 1, 5)4

(e) G(2; 1, 5)5 (f) G(2; 1, 5)6 (g) G(2; 2, 4)1 (h) G(2; 2, 4)2

(i) G(2; 2, 4)3 (j) G(2; 32)1 (k) G(2; 32)2 (l) G(2; 32)3

Figure 1. Forests with six edges and two connected components.

• G(2; 1, 5)1

• G(2; 2, 4)1

• G(2; 3, 3)1

• G(3; 12, 4)1

• G(4; 13, 3)1

• G(4; 13, 3)2

• G(4; 12, 22)1

• G(5; 14, 2)1

• G(6; 16)1

fix

Proof. Suppose G = {G1, G2, . . . , G6} is a G(2, 1, 5)1-decomposition of K9. By
the pigeonhole principle, there exists a vertex v ∈ V (K9) such that v does not
appear as the center of the star K1,5 in any Gi for 1 ≤ i ≤ 6. But then, deg(v) ≤
6 since all other vertices have degree 1. But of course every vertex in V (K9)
has degree 8, so we have a contradiction. Essentially the same argument proves
that G(3; 12, 4)1 cannot decompose K9. If G ∼= G(2; 2, 4)1 or G(2; 3, 3)1, the
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(a) G(3; 12, 4)1 (b) G(3; 12, 4)2 (c) G(3; 12, 4)3 (d) G(3; 1, 2, 3)1

(e) G(3; 1, 2, 3)2 (f) G(3; 23)1 (g) G(4; 13, 3)1 (h) G(4; 13, 3)2

(i) G(4; 12, 22)1 (j) G(5; 14, 2)1 (k) G(6; 16)1

Figure 2. Forests with six edges and more than two connected components.

decomposition was shown not to exist by Meszka [16].
If G is isomorphic to one of the five remaining forests on the list, then G

contains 10 or more vertices, so of course a G-decomposition of any graph with 9
vertices cannot exist.

The next theorem shows that the nine forests from Lemma 2 are the only
ones that do not decompose K9.

Theorem 3. A forest with exactly six edges decomposes K9 if and only if it is
not isomorphic to one of the graphs below.

• G(2; 1, 5)1

• G(2; 2, 4)1

• G(2; 3, 3)1

• G(3; 12, 4)1

• G(4; 13, 3)1

• G(4; 13, 3)2
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• G(4; 12, 22)1

• G(5; 14, 2)1

• G(6; 16)1

fix

Proof. Let G be a forest with six edges. If G is isomorphic to one of the nine
graphs listed in the theorem statement, the decomposition does not exist by
Lemma 2. For the remaining forests, we construct a G-decomposition as follows.

Let V (K9) = {0, 1, . . . , 8} and assign each edge uv ∈ E(K9) a length

ℓ(uv) = min{|u− v|, 9− |u− v|}

and a color

c(uv) =


blue if u+ v ≡ 0 (mod 3),

red if u+ v ≡ 1 (mod 3),

green if u+ v ≡ 2 (mod 3).

Observe that K9 contains exactly nine edges of each of the lengths {1, 2, 3, 4}.
Furthermore, among the nine edges of each length, there are exactly three of each
color.

Let G1 and G2 be the blocks in the appropriate subfigure of Figure 3. Click
G1 by 3 to form blocks G3 and G5. Repeat this procedure with G2, forming blocks
G4 and G6. Notice that clicking by 3 preserves both length and color. Therefore,
it suffices for the reader to check that the edges in blocks G1 together with G2 fill
the color spectrum for each edge length 1, 2, 3 and 4.

3. Decompositions of Kn for n ≡ 0 or 1 (mod 12)

Freyberg and Tran introduced the following labeling in [8]. Let G be a bipartite
graph with m edges and bipartition V (G) = A ∪ B. A σ+−-labeling of G is an
injection f : V (G) → {0, 1, . . . , 2m− 2} which induces a bijective length function
ℓ : E(G) → {1, 2, . . . ,m} where ℓ(uv) = f(v) − f(u) for every edge uv ∈ E(G)
with u ∈ A and v ∈ B, and f has the additional property that f(u)− f(v) ̸= m
for all u ∈ A and v ∈ B.

Readers familar with the Rosa-type labelings may recognize that a σ+−-
labeling is a restricted ρ-labeling (see [7] for a nice overview). The usefulness of
a σ+−-labeling is punctuated by the following.

Theorem 4 (Freyberg and Tran, [8]). Let G be a bipartite graph with m edges
and a σ+−-labeling such that the edge of length m is a pendant edge e. Then there
exists a G-decomposition of K2mx and K2mx+1 for every positive integer x.
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Figure 3. Blocks for G-decompositions of K9.



684 B. Freyberg and R. Peters

8

34

4

7

4

1

1

0

1

22

5

3

1

46

3

8

4

2

7

0

2

33

2

1

(h) G(2; 3, 3)2

1

0

1

22

5

3

6

3

3

74

8

1

0

7

2

52

6

1

1

4

3

84

3

4

(i) G(2; 3, 3)3

1

4

3

1

0 3
3

5
2

7 8
1

2 6
4

2

7

4

2

6 5
1

8
3

0 4
4

1 3
2

(j) G(3; 1, 1, 4)2

0

1

1

4
3

6
2

2

4

3 5
2

7 8
1

0

3

3

2
1

5
3

7

2

4 8
4

6 1
4

(k) G(3; 1, 1, 4)3

1

52

4

0

1

1

3 6
3

8
2

4 7
3

5

87

3

0

2

4

1 6
4

4
2

2 3
1

(l) G(3; 1, 2, 3)1

0

3

3

21

5

3

6 7
1

8
1

1 4
3

1

3

2

52

7

2

0 4
4

8
4

2 6
4

(m) G(3; 1, 2, 3)2

1 0
1

8
1

5 3
2

6
3

2 4
2

7
3

0 4
4

6
2

1 5
4

2
3

3 8
4

7
1

(n) G(3; 2, 2, 2)3

Figure 3. (Cont.) Blocks for G-decompositions of K9.
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This leads to the main result of this section.

Theorem 5. Let G be a forest with exactly six edges. Then G decomposes Kn

whenever n ≡ 0 or 1 (mod 12).

Proof. If G is a matching, then the proof was given in [6]. If not, then the proof
is by Theorem 4 and the σ+− labeling of G given in Figures 4 and 5. Red-labeled
vertices belong to A while black-labeled vertices belong to B. The length of each
edge is displayed in blue.

4. Decompositions of Kn for n ≡ 4 or 9 (mod 12) and n > 9

If n is odd, we let V (Kn) = {0, 1, . . . , n − 1} and define the length of an edge
uv ∈ E(Kn) as ℓ(uv) = min{|u−v|, n−|u−v|}, just as in the proof of Theorem 3.
If ℓ(uv) = n− |u− v|, we call uv a wrap-around edge. It follows that Kn contains
exactly n edges of each length from the set {1, 2, . . . , n−1

2 }. On the other hand,
if n is even we let V (Kn) = {0, 1, . . . , n − 2} ∪ {∞} and for each uv ∈ E(Kn),
define ℓ(uv) = min{|u− v|, n− 1− |u− v|} whenever u, v ∈ {0, 1, . . . , n− 2}, and
ℓ(uv) = ∞ otherwise. In this case, Kn has exactly n − 1 edges of each length
from {1, 2, . . . , n−2

2 ,∞}. We prove the following theorems using this observation
of edge length distribution.

Theorem 6. Let G be a forest with six edges and an integer n = 12k+9 be given.
If k ≥ 1, then there exists a G-decomposition of Kn.

Proof. Let G ∼= G(2; 1, 5)1. Label blocks G1, G2, . . . , Gk+2 as in Figure 29. No-
tice the blocks have the following properties:

1. The blocks contain no wrap-around edges.

2. G1 contains exactly three edges of length 1.

3. G1 contains exactly three edges of length 7.

Let x0y0, x1y1, and x2y2 be any three edges of the same length in G1. Then
xi + yi ≡ i (mod 3) (see subscripts of the vertex labels in G1).

4.
⋃k+1

i=2 Gi contains exactly one edge of each length {∞, 2, 3, . . . , 6k + 1} \ {7}.

Clicking G1∪G2 by 3 and Gi by 1 for 3 ≤ i ≤ k+2 yields n edges of each length.
Property 1 preserves the length of the edges in G1 ∪ G2, for all i. Property 3
above ensures no edge repeats when clicking by 3. Hence, we have described a
G-decomposition of Kn.

The proof follows in the same way for the remaining forests. See Figures 30
through 51 for the labelings.
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Figure 4. σ+−-labeling of forests with two components.

The proof of the next theorem is very similar.

Theorem 7. Let G be a forest with six edges and an integer n = 12k+4 be given.
If k ≥ 1, then there exists a G-decomposition of Kn.

Proof. Let G be a forest with six edges and G ̸∼= G(2; 1, 5)1. Label blocks
G1, G2, . . . , Gk+1 as in the appropriate figure (see Figures 7 through 28). Notice
the blocks have the following properties.
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Figure 5. σ+−-labeling of forests with more than two components.

Clicking G1 by 3 and Gi by 1 for 2 ≤ i ≤ k + 1 yields n − 1 edges of each
length. Property 4 above ensures no edge has been repeated in clicking G1 by
3. Property 1 preserves the length of the edges G1 for all k. Hence, we have
described a G-decomposition of Kn.

The construction for the remaining forest G(2; 1, 5)1, follows in the same way
except that there are four starter blocks instead of two (see Figure 6). Click block
Gi by 3 for 1 ≤ i ≤ 4, and by 1 for 5 ≤ i ≤ k+3 to obtain the decomposition.
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5. Conclusion

The proof of Theorem 1 follows directly from Theorems 3, 5, 6, and 7. Therefore,
we have solved the Kn decomposition spectrum problem for forests with six edges.
As a result, we now have a complete answer for which n and G there exists a G-
decomposition of Kn where G is any graph with six or less edges.
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6. Appendix

6.1. Labelings for n ≡ 4 (mod 12)
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6.2. Labelings for n ≡ 9 (mod 12)

The vertex labels for some of the blocks in the figures in the next two subsections are of
the form ij . The subscript j indicates the modulo 3 equivalence class of i. For example,
if i = 7, then j = 1 since 7 ≡ 1 (mod 3).
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Figure 46. G(3; 23)
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Figure 47. G(4; 13, 3)1
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Figure 48. G(4; 13, 3)2
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Figure 49. G(4; 12, 22)1
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Figure 50. G(5; 14, 2)1
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