
Discussiones Mathematicae
Graph Theory 45 (2025) 755–762
https://doi.org/10.7151/dmgt.2550

STAR-CRITICAL RAMSEY NUMBERS AND REGULAR
RAMSEY NUMBERS FOR STARS

Zhidan Luo

School of Mathematics and Statistics
Hainan University

Haikou, Hainan 570228, P.R. China

e-mail: luodan@hainanu.edu.cn

Abstract

Let G be a graph, H be a subgraph of G, and let G − H be the
graph obtained from G by removing a copy of H. Let K1,n be the star
on n+ 1 vertices. Let t ≥ 2 be an integer and H1, . . . ,Ht and H be graphs,
and let H → (H1, . . . ,Ht) denote that every t coloring of E(H) yields a
monochromatic copy of Hi in color i for some i ∈ [t]. The Ramsey num-
ber r(H1, . . . ,Ht) is the minimum integer N such that KN → (H1, . . . ,Ht).
The star-critical Ramsey number r∗(H1, . . . ,Ht) is the minimum integer k
such that KN − K1,N−1−k → (H1, . . . ,Ht) where N = r(H1, . . . ,Ht). Let
rr(H1, . . . ,Ht) be the regular Ramsey number for H1, . . . ,Ht, which is the
minimum integer r such that if G is an r-regular graph on r(H1, . . . ,Ht)
vertices, then G → (H1, . . . ,Ht). Let m1, . . . ,mt be integers larger than
one, exactly k of which are even. In this paper, we prove that if k ≥ 2 is
even, then r∗(K1,m1 , . . . ,K1,mt) =

∑t
i=1 mi − t + 1 − k

2 which disproves a
conjecture of Budden and DeJonge in 2022. Furthermore, we prove that

rr(K1,m1
, . . . ,K1,mt

) =

{∑t
i=1 mi − t, k ≥ 2 is even,∑t
i=1 mi − t+ 1, otherwise.
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1. Introduction

Let V (G) and E(G) be the vertex set and the edge set of G, respectively. Let
K1,n be the star on n+ 1 vertices. Let t ≥ 2 be an integer and H,H1, . . . ,Ht be
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graphs, and let H → (H1, . . . ,Ht) denote that every t coloring of E(H) yields
a monochromatic copy of Hi in color i for some i ∈ [t]. The Ramsey num-
ber r(H1, . . . ,Ht) is the minimum integer N such that KN → (H1, . . . ,Ht). In
1972, Harary [5] determined the value of r(K1,n,K1,m). And Burr and Roberts
extended it.

Theorem 1 (Burr and Roberts [3]). If m1, . . . ,mt are integers larger than one,
exactly k of which are even, then

r(K1,m1 , . . . ,K1,mt) =

{∑t
i=1mi − t+ 1, k ≥ 2 is even,∑t
i=1mi − t+ 2, otherwise.

Let G be a graph, H be a subgraph of G, and G−H be the graph obtained
from G by removing a copy of H, i.e., V (G−H) = V (G) and E(G−H) = E(G)−
E(H). In 2011, Hook and Isaak [6] introduced the star-critical Ramsey number
r∗(H1, . . . ,Ht) which is the minimum integer k such that KN − K1,N−1−k →
(H1, . . . ,Ht) where N = r(H1, . . . ,Ht). In 2022, Budden and DeJonge considered
the star-critical Ramsey number for stars and conjectured the following.

Conjecture 2 (Budden and DeJonge [2]). If m1, . . . ,mt are integers larger than
one, exactly k of which are even, then

r∗(K1,m1 , . . . ,K1,mt) =

{∑t
i=1mi − t, k ≥ 2 is even,

1, otherwise.

They proved their conjecture for all cases except that k > 2 is even.

For a positive integer r, call a graph G r-regular graph if every vertex of
V (G) has degree exactly r. Let rr(H1, . . . ,Ht) be the regular Ramsey number for
H1, . . . ,Ht, which is the minimum integer r such that if G is an r-regular graph
on N = r(H1, . . . ,Ht) vertices, then G → (H1, . . . ,Ht). The following holds
by the definition of Ramsey number, star-critical Ramsey number and regular
Ramsey number.

Fact 3. 1 ≤ r∗(H1, . . . ,Ht) ≤ rr(H1, . . . ,Ht) ≤ r(H1, . . . ,Ht)− 1.

In this paper, we first disprove Conjecture 2 for the remaining cases by prov-
ing the following.

Theorem 4. Let m1, . . . ,mk be even integers and let mk+1, . . . ,mt be odd inte-
gers larger than one. If k ≥ 2 is even, then

r∗(K1,m1 , . . . ,K1,mt) =

t∑
i=1

mi − t+ 1− k

2
.
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Then we consider the regular Ramsey number for stars.

Theorem 5. Let m1, . . . ,mt be integers larger than one, exactly k of which are
even. Then

rr(K1,m1 , . . . ,K1,mt) =

{∑t
i=1mi − t, k ≥ 2 is even,∑t
i=1mi − t+ 1, otherwise.

Notations and definitions. Let G ∪H be the union of vertex-disjoint copies
of G and H. A matching of G is a 1-regular subgraph of G, and a maximum
matching of G is a matching with the maximum size taken over all matching of
G. For a positive integer f , an f -factor of graph G is an f -regular subgraph of
G on V (G).

2. Star-Critical Ramsey Number for Stars

We first introduce a decomposition of a complete graph by Harary in 1969.

Theorem 6 (Harary [4]). K2n can be decomposed into (2n − 1) edge-disjoint
1-factors, and K2n+1 can be decomposed into n edge-disjoint 2-factors.

There is a stronger result for the complete graph on odd vertices.

Theorem 7 (Lucas [7], Bollabás [1]). K2n+1 can be decomposed into n edge-
disjoint Hamiltonian cycles.

Corollary 8. Let n be a positive integer. If n is even, then for all r ∈ [n − 1],
there is an r-regular graph on n vertices. If n is odd, then for all even r ∈ [n−1],
there is an r-regular graph on n vertices.

Corollary 9. Let n be a positive integer, s ≤ n−1 be a positive integer, and G be
a graph on n vertices without K1,s. Then the following holds. If n is odd and s is
even, then e(G) ≤ 1

2 [(s− 1)n− 1]. Otherwise, e(G) ≤ 1
2(s − 1)n. Furthermore,

the upper bound is the best.

Proof. Since G is K1,s-free, every vertex has degree at most s − 1. And thus,
e(G) ≤ 1

2(s−1)n. If n is odd and s is even, then there is no (s−1)-regular graph
on n vertices since the sum of the degree of each graph is even. By Corollary
8, there exists an (s − 2)-regular graph on n vertices. Thus, at most n − 1
vertices have degree s−1 and at least one vertex has degree s−2. Consequently,
e(G) ≤ 1

2 [(s− 1)(n− 1) + s− 2].
If n is odd and s is even, then by Theorem 7, let C be a Hamiltonian cycle on

n vertices and, let H ′ be an (s− 2)-regular graph on n vertices such that C and
H ′ are edge-disjoint. Let C ′ be a maximum matching of C and let H = H ′ ∪C ′.
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Note that H is a graph on n vertices containing n− 1 vertices with degree s− 1
and one vertex with degree s− 2. Thus, e(H) = 1

2 [(s− 1)(n− 1) + s− 2].

If either n is even or s is odd, then by Corollary 8, there exists an (s − 1)-
regular graph H on n vertices. Thus, e(H) = 1

2(s− 1)n.

Now, we are ready to prove our first result.

Theorem 4. Let m1, . . . ,mk be even integers and let mk+1, . . . ,mt be odd inte-
gers larger than one. If k ≥ 2 is even, then

r∗(K1,m1 , . . . ,K1,mt) =

t∑
i=1

mi − t+ 1− k

2
.

Proof. Let N =
∑t

i=1mi − t + 1 and r∗ = r∗(K1,m1 , . . . ,K1,mt). Let V =
V (KN−1) and let v be a vertex. Let H be the graph obtained by joining v and r∗
vertices of V . Color E(H) with t colors arbitrarily. Let Hi be the graph induced
by all edges with color i in H for every i ∈ [t].

Note that N is odd. If Hi does not contain K1,mi for every i ∈ [t], then by
Corollary 9,

e(H) =

k∑
i=1

e(Gi) +

t∑
i=k+1

e(Gi)

≤
k∑

i=1

1

2
[(mi − 1)N − 1] +

t∑
i=k+1

1

2
(mi − 1)N

=
1

2
N(N − 1)− k

2
.

Thus, if e(H) ≥ 1
2N(N − 1) − k

2 + 1, then by the pigeonhole principle, there is
either i0 ∈ [k] such that e(Hi0) ≥ 1

2 [(mi − 1)N + 1] or i0 ∈ [t]\[k] such that
e(Hi0) ≥ 1

2(mi − 1)N + 1. By Corollary 9 again, Hi0 contains a copy of K1,mi0
.

Consequently,

r∗ ≤
1

2
N(N − 1)− k

2
+ 1−

(
N − 1

2

)
= N − k

2
.

Let G be the graph obtained by joining v and N − k
2 − 1 vertices of V , which

will be chosen later. Let Gi be the graph induced by all edges with color i in G.
We will color E(G) with t colors such that Gi does not contain K1,mi for every
i ∈ [t].

By Theorem 7, KN can be decomposed into N−1
2 edge-disjoint Hamiltonian

cycles and denote them by Ci,j where i ∈ [t] and j satisfies the following: if i ∈ [k2 ],
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then j ∈ [mi
2 ]; if i ∈ [k]\[k2 ], then j ∈ [mi

2 ]\[1]; if i ∈ [t]\[k], then j ∈ [mi−1
2 ]. For

every i ∈ [k2 ], let uiv ∈ E(Ci,1) and let Pi,1 be the graph obtained from Ci,1

by removing uiv. Since Ci,1 is a Hamiltonian cycle, Pi,1 is a Hamiltonian path.
Furthermore, since N is odd, there are two edge-disjoint maximum matchings
in Pi,1 covering all but one vertex. Denote them by Mi and Mi+ k

2
, and we

may assume that v ∈ V (Mi) and ui ∈ V (Mi+ k
2
). Finally, for every i ∈ [k], let

Gi = Mi ∪
⋃mi/2

j=2 Ci,j , and for every i ∈ [t]\[k], let Gi =
⋃(mi−1)/2

j=1 Ci,j .

Note that for every i ∈
[
k
2

]
, all vertices of Gi have degree mi − 1 except that

ui has degree mi − 2; for every i ∈ [k]\
[
k
2

]
, all vertices of Gi have degree mi − 1

except that v has degree mi−2; for every i ∈ [t]\[k], all vertices of Gi have degree
mi − 1. Thus, for every i ∈ [t], Gi does not contain K1,mi .

Note that dG(v) = N − 1− k
2 and G[V ] = KN−1. Thus, r∗ ≥ N − k

2 and we
finish the proof.

3. Regular Ramsey Number for Stars

In this section, we will prove a more general result, and Theorem 5 is a direct
corollary.

Theorem 10. Let m1, . . . ,mk be even integers, mk+1, . . . ,mt be odd integers
larger than one, and let n ≥ r(K1,m1 , . . . ,K1,mt) be an integer. Let g(n) be
the minimum integer such that if G is a g(n)-regular graph on n vertices, then
G → (K1,m1 , . . . ,K1,mt). If n is odd and k ≥ 2 is even, then g(n) =

∑t
i=1mi− t.

Otherwise, g(n) =
∑t

i=1mi − t+ 1.

Proof. Note that if ∆(G) ≥
∑t

i=1mi − t+ 1, then by the pigeonhole principle,
there is a monochromatic copy of K1,mi in color i for some i ∈ [t]. Thus, g(n) ≤∑t

i=1mi − t+ 1.

If n is even or n is odd and k = 0, then by Corollary 8 and Theorem 6, for
every i ∈ [t], there exists an (mi − 1)-regular graph Hi on n vertices such that
they are edge-disjoint. Note that

⋃t
i=1Hi is a

(∑t
i=1mi − t

)
-regular graph such

that Hi does not contain K1,mi for every i ∈ [t]. Thus, g(n) ≥
∑t

i=1mi − t+ 1.

In the following, assume that n is odd and k > 0.

Case 1. k is odd. By Theorem 7, Kn can be decomposed into n−1
2 edge-

disjoint Hamiltonian cycles and denote them by Ci,j where i ∈ [t] and j satisfies
the following: if i ∈ [k−1

2 ], then j ∈ [mi
2 ]; if i ∈ [k]\[k−1

2 ], then j ∈ [mi
2 ]\[1]; if

i ∈ [t]\[k], then j ∈ [mi−1
2 ]. For every i ∈ [k−1

2 ], let Pi,1 be the graph obtained

from Ci,1 by removing an edge uiuk−i such that
∣∣∣⋃(k−1)/2

l=1 {ul, uk−l}
∣∣∣ = k−1. Since

Ci,1 is a Hamiltonian cycle, Pi,1 is a Hamiltonian path. Furthermore, since n is
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odd, there are two edge-disjoint maximum matchings in Pi,1 covering all but one
vertex. Denote them by Mi and Mk−i, and we may assume that uk−i ∈ V (Mi)

and ui ∈ V (Mk−i). Finally, for every i ∈ [k − 1], let Gi = Mi ∪
⋃mi/2

j=2 Ci,j , Gk =(⋃ k−1
2

l=1 uluk−l

)
∪
⋃mk/2

j=2 Ck,j , and for every i ∈ [t]\[k], let Gi =
⋃(mi−1)/2

j=1 Ci,j .

Note that for every i ∈ [k − 1], all vertices of Gi have degree mi − 1 except
that ui has degree mi − 2; all vertices of Gk have degree mk − 2 except that uj
has degree mk − 1 for every j ∈ [k − 1]; for every i ∈ [t]\[k], all vertices of Gi

have degree mi − 1. Thus, for every i ∈ [t], Gi does not contain K1,mi .

Consequently,
⋃t

i=1Gi is a (
∑t

i=1mi − t − 1)-regular graph on n vertices
such that

⋃t
i=1Gi ̸→ (K1,m1 , . . . ,K1,mt). Note that

∑t
i=1mi − t is odd, and by

Corollary 8, there does not exist a (
∑t

i=1mi−t)-regular graph on n vertices since
n is odd. Consequently, g(n) ≥

∑t
i=1mi − t+ 1.

Case 2. k is even. Firstly, we improve the upper bound. Otherwise, note
that

∑t
i=1mi− t is even, and by Corollary 8, there exists a (

∑t
i=1mi− t)-regular

graph H on n vertices such that H ̸→ (K1,m1 , . . . ,K1,mt). Note that m1 is
even. By Corollary 8 again and the fact that n is odd, there exists a vertex
u ∈ V (H) such that there are at most m1 − 2 edges adjacent to u in color 1.
Thus, at least

∑t−1
i=1 mi − t + 2 edges are adjacent to u in the remaining t − 1

colors. By the pigeonhole principle, there exists i0 ∈ [t]\[1] such that at least mi0

edges are adjacent to u in color i0. A contradiction to H ̸→ (K1,m1 , . . . ,K1,mt).
Consequently, g(n) ≤

∑t
i=1mi − t.

In the following, we will prove that the equality holds. By Theorem 7, Kn

can be decomposed into n−1
2 edge-disjoint Hamiltonian cycles and denote them

by Ci,j where i ∈ [k] and j satisfies the following: if i ∈ [k2 ], then j ∈ [mi
2 ]; if

i ∈ [k − 1]\[k2 ], then j ∈ [mi
2 ]\[1]; if i = k, then j ∈ [mk

2 ]\[2]; if i ∈ [t]\[k], then
j ∈ [mi−1

2 ]. For every i ∈ [k2 ], let Pi,1 be the graph obtained from Ci,1 by removing

an edge uiui+ k
2
such that

∣∣∣⋃k/2
l=1{ul, ul+ k

2
}
∣∣∣ = k. Since Ci,1 is a Hamiltonian cycle,

Pi,1 is a Hamiltonian path. Furthermore, since n is odd, there are two maximum
matchings in Pi,1 covering all but one vertex. Denote them by Mi and Mi+ k

2
,

and we may assume that ui+ k
2
∈ V (Mi) and ui ∈ V (Mi+ k

2
). Finally, for every

i ∈ [k − 1], let Gi = Mi ∪
⋃mi/2

j=2 Ci,j , Gk =
(⋃k/2

l=1 ulul+ k
2

)
∪ Mk ∪

⋃mk/2
j=3 Ck,j ,

and for every i ∈ [t]\[k], let Gi =
⋃(mi−1)/2

j=1 Ci,j .

Note that for every i ∈ [k − 1], all vertices of Gi have degree mi − 1 except
that ui has degree mi − 2; all vertices of Gk have degree mk − 3 except that uj
has degree mk − 2 for every j ∈ [k − 1]; for every i ∈ [t]\[k], all vertices of Gi

have degree mi − 1. Thus, for every i ∈ [t], Gi does not contain K1,mi .

Consequently,
⋃t

i=1Gi is a (
∑t

i=1mi− t−2)-regular graph on n vertices such
that

⋃t
i=1Gi ̸→ (K1,m1 , . . . ,K1,mt). Note that

∑t
i=1mi − t − 1 is odd, and by
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Corollary 8, there does not exist a (
∑t

i=1mi − t− 1)-regular graph on n vertices
since n is odd. Consequently, g(n) ≥

∑t
i=1mi − t.

All cases have been discussed and we finish the proof.

4. Remark

In [8], Schelp asked that for graphs H1, . . . ,Ht, if G is a graph on n vertices with
δ(G) ≥ cn such that G → (H1, . . . ,Ht), then how large should c be? Let f(n) be
the minimum integer such that if G is a graph on n vertices with δ(G) ≥ f(n),
then G → (H1, . . . ,Ht).

Theorem 11. Let m1, . . . ,mk be even integers, and let mk+1, . . . ,mt be odd
integers larger than one. If n ≥ r(K1,m1 ,K1,m2 , . . . ,K1,mt), then

f(n) =

{∑t
i=1mi − t+ 1, k = 0 or n is even,∑t
i=1mi − t, otherwise.

The proof of Theorem 11 is the same as the proof of Theorem 10, and we
remove it.

The motivation to study regular Ramsey numbers is the following. Let us
think of edges in a graph as the resources we need. A complete graph (Ramsey
number) is easy to construct but needs many resources. A graph with minimum
degree condition (Schelp’s problem) needs fewer resources but difficult to con-
struct. And a regular graph (regular Ramsey number) is easier to construct than
a graph with minimum degree condition since we can construct by Theorem 6
and Theorem 7, and the resource is less than a complete graph. Thus, the regular
Ramsey number has vast potential applications, such as coding or other fields.
Under the limitation of knowledge, we are not able to apply it.
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