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Abstract

In this paper, factorizations of the complete symmetric digraph K∗

v
into

uniform factors consisting of directed even cycle factors are studied as a
generalization of the undirected Hamilton-Waterloo Problem. It is shown,
with a few possible exceptions, that K∗

v
can be factorized into two noniso-

morphic factors, where these factors are uniform factors of K∗

v
involving K∗

2

or directed m-cycles, and directed m-cycles or 2m-cycles for even m.
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1. Introduction

In this paper, edges and arcs are denoted by using curly braces and parentheses,
respectively. Throughout this paper, we denote by K(x:y) a complete equipar-
tite graph having y parts of size x each. Also, for a simple graph G, we use
G∗ to denote the symmetric digraph with vertex set V (G∗) = V (G) and arc set
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E(G∗) =
⋃

{x,y}∈E(G){(x, y), (y, x)}. Hence, K∗
v and K∗

(x:y) respectively denote
the complete symmetric digraph of order v and the complete symmetric equipar-
tite digraph with y parts of size x. We also use (x, y)∗ to denote the double arc
which consists of (x, y) and (y, x).

A k-factor of a graph G is a k-regular spanning subgraph of G. A k-
factorization of a graph G is a partition of the edge set of G into k-factors;
in other words, it is a partition (decomposition) of the edge set of G into edge-
disjoint k-factors. It is easy to see that a 2-factor consists of an Hamilton cycle,
which is a cycle that visits each vertex exactly, or union of vertex-disjoint cycles.
If a 2-factor consists only of cycles (directed cycles) of length m, it is called a
Cm-factor (

#»

Cm-factor). Furthermore, in the special case where m = 2, this fac-
tor becomes a K2-factor. There are two well-studied 2-factorization problems.
The Oberwolfach Problem asks for the existence of a decomposition of K2v+1 or
K2v − I (i.e., K2v with the edges of the 1-factor I removed) into copies of a given
2-factor F . The uniform version of the Oberwolfach Problem in which there is
only one type of cycle in the factor F has been mostly solved, see [4, 5, 24, 31]. In
the Hamilton-Waterloo Problem, there are two types of 2-factors. The uniform
version of the Hamilton-Waterloo Problem asks for a 2-factorization of Kv (or
for even v, 2-factorization of Kv − I) in which r of its 2-factors consist of only
m-cycles and the remaining s of its 2-factors consist of only n-cycles, and we
will denote it by HWP(v;mr, ns). Any of its solutions will be referred to as a
{Cr

m, Cs
n}-factorization of Kv (or Kv − I for even v).

Initially, small cases such as (m,n) ∈ {(4, 6), (4, 8), (4, 16), (8, 16), (3, 5),
(3, 15), (5, 15)} are studied and solved with a few exceptions by Adams et al.

[2], and later the cases where the cycle sizes are non-constant are investigated.
The Hamilton-Waterloo Problem is nearly completely solved when both m and
n are simultaneously either even or odd [10, 11, 15, 16]. When the parity of m
and n is different, one of the cycle sizes is usually fixed. For instance, the cases
(m,n) ∈ {(3, v), (3, 3x), (4, n)} have been studied, see [6, 20, 25, 29]. For more re-
cent results on this problem, we refer the reader to [12, 13, 14]. Also, there exists
an asymptotic solution (for sufficiently large v) [21] for the general form of the
Oberwolfach and the Hamilton-Waterloo Problems. However, this asymptotic
solution does not provide an explicit lower bound that guarantees the solvability
of the problem. In [34], Traetta constructs solutions to the Oberwolfach Problem
whenever F contains a cycle of length greater than an explicit lower bound.

The concept of factor and factorization can be applied to digraphs and one
can consider the directed version of the Oberwolfach and Hamilton-Waterloo
Problems. In the directed version of these problems, factorization of the com-
plete symmetric digraph K∗

v into directed cycle factors is studied. The Directed
Uniform Oberwolfach Problem is denoted by OP∗(mk) where each 2-factor is
composed of k directed m-cycles.



The Directed Uniform Hamilton-Waterloo Problem 617

The following theorem summarizes the previous results on the Directed Ober-
wolfach Problem that will be used in this paper.

Theorem 1 [1, 3, 7, 9, 17, 18, 26, 33]. Let m and k be nonnegative integers.

Then, OP∗(mk) has a solution if and only if (m, k) /∈ {(3, 2), (4, 1), (6, 1)}.

The directed Oberwolfach Problem for complete symmetric equipartite di-
graphs and uniform-length cycles was solved by Francetić and Šajna in [19].

When it comes to the Directed Hamilton-Waterloo Problem, here K∗
v is de-

composed into two types of directed 2-factors. If these factors consist of directed
cycles of sizes m and n, respectively, the notation HWP∗(v;mr, ns) is used to
denote the Directed Uniform Hamilton-Waterloo Problem.

In [35], the necessary conditions for the existence of a solution to the Directed
Hamilton-Waterloo Problem are given.

Lemma 2 [35]. If HWP∗(v;mr, ns) has a solution, then the following statements

hold:

(i) if r > 0, v ≡ 0 (mod m),

(ii) if s > 0, v ≡ 0 (mod n),

(iii) r + s = v − 1.

Additionally, the cases (m,n) ∈ {(3, 5), (3, 15), (5, 15), (4, 6), (4, 8), (4, 12),
(4, 16), (6, 12), (8, 16)} are solved with a few possibly exceptions in [35].

In [30], factorizations of Kv into K2-factors and Cm-factors are studied, and
also new solutions to HWP(2m; mr, (2m)s) are given. Here, the problem of
decomposing K∗

v into K∗
2 -factors and

#»

Cm-factors will be examined where
#»

Cm is
the directed cycle of order m. Since K∗

2 can be considered as
#»

C2, this problem
can be included in the HWP∗(v; 2r,ms). Afterwards, HWP∗(v;mr, (2m)s) will
be studied.

In Section 2, we give some basic definitions and present some preliminary
results that will be used in the next sections. In Section 3, we focus on finding
solutions to HWP∗(v; 2r,ms) for even m with r + s = v − 1. Also a solution is
denoted as a {(K∗

2 )
r,

#»

Cs
m}-factorization of K∗

v . In Section 4, we will concentrate
on solving HWP∗(v;mr, (2m)s) for even m with r+ s = v−1. Here are our main
results.

Theorem 3. Let r, s be nonnegative integers, and let m ≥ 4 be even. Then

HWP∗(v; 2r,ms) has a solution if m|v, r + s = v − 1, s 6= 1, (r, v) 6= (0, 6),
(m, r, v) 6= (4, 0, 4), and one of the following conditions holds:

(i) m > 4, s 6= 3 and m ≡ 0 (mod 4),

(ii) m > 4, m ≡ 2 (mod 4), and s 6= 3 when v
m

is odd,

(iii) m = 4 and v ≡ 0, 8, 16 (mod 24),
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(iv) m = 4, v ≡ 12 (mod 24) and s /∈ {3, 5},

(v) m = 4, v ≡ 4, 20 (mod 24) and r is odd.

Theorem 4. Let r, s be nonnegative integers, and let m ≥ 4 be even. Then

HWP∗(v;mr, (2m)s) has a solution if and only if m|v, r + s = v − 1 and v ≥ 4
except for (s, v,m) ∈ {(0, 4, 4), (0, 6, 3), (0, 6, 6)}, and except possibly when s ∈
{1, 3}.

2. Preliminary Results

First, let us start with some definitions and notations that we will use throughout
the paper.

Let G be a graph and G0, G1, . . . , Gk−1 be k vertex disjoint copies of G
with vi ∈ V (Gi) for each v ∈ V (G). Let G[k] denote the graph with ver-
tex set V (G[k]) = V (G0) ∪ V (G1) ∪ · · · ∪ V (Gk−1) and edge set E(G[k]) =
{{ui, vj} : {u, v} ∈ E(G) and 0 ≤ i, j ≤ k − 1}. It is easy see that there is
an H[k]-factorization of G[k] if the graph G has an H-factorization. Note that
K(x:y)

∼= Ky[x].

If G1 and G2 are two edge-disjoint graphs with V (G1) = V (G2), then we
use G1 ⊕ G2 to denote the graph on the same vertex set with E (G1 ⊕G2) =
E (G1) ∪ E (G2). We will denote the vertex disjoint union of α copies of G by
αG.

The above definitions can be extended to digraphs. Let D be a digraph and
D0, D1, . . . , Dk−1 be k vertex disjoint copies of D with vi ∈ V (Di) for each v ∈
V (D). Then D[k] has the vertex set V (D[k]) = V (D0)∪V (D1)∪ · · · ∪V (Dk−1)
and arc set E(D[k]) = {(ui, vj) : (u, v) ∈ E(D) and 0 ≤ i, j ≤ k − 1}.

Let G be a digraph and R(G) denote the digraph on the same vertex set as
G but the arcs are taken in opposite directions.

Let us define some special factors and cycles that will be used throughout this
article. Let Fm be a 1-factor of Km with edge set E (Fm) = {{0,m/2}, {i,m−i} :
1 ≤ i ≤ (m/2)−1} and let C = (0, 1, 2,m−1, 3,m−2, . . . , m2 −1, m2 +2, m

2 ,
m
2 +1)

be an m-cycle, which are the same as in Wlacki’s construction. Also, we define a
factor F ∗

m as a K∗
2 -factor of K

∗
m with E (F ∗

m) = {(0,m/2)∗, (i,m − i)∗ : 1 ≤ i ≤
(m/2)− 1} and C∗ is the symmetric version of the C.

Using the above factors and cycles, we can define Γm and Γ∗
m as C[2]⊕Fm[2]

and C∗[2]⊕ F ∗
m[2], respectively. We use these notations for the rest of the paper.

Let A be a finite additive group and let S be a subset of A, where S does
not contain the identity of A. The Directed Cayley graph

#»

X(A;S) on A with
connection set S is a digraph with V (

#»

X(A;S)) = A and E(
#»

X(A;S)) = {(x, y) :
x, y ∈ A, y − x ∈ S}.
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Let m be an even integer and the vertex set of K∗
2m be Z2m. Let I∗2m be a

K∗
2 -factor of K∗

2m with E (I∗2m) = {(i,m + i)∗ : 0 ≤ i ≤ m − 1} and define the
bijective function f : Z2m → Z2 × Zm with

f(i) =

{

(0, i) if i < m,

(1, i) if i ≥ m.

Then E (I∗2m) can be restated as a set
{(

(0, i), (1, i)
)∗

: 0 ≤ i ≤ m−1
}

on Z2×Zm

using this bijective function.

We will represent C∗
m[2] and C∗

m[2]⊕I∗2m as the directed Cayley graphs
#»

X
(

Z2×

Zm, S
)

and
#»

X
(

Z2 × Zm, S ∪ {(1, 0)}
)

where S = {(0, 1), (1, 1), (0,−1), (1,−1)}.

Also, the arc set of F ∗
m which is denoted by E (F ∗

m), can be expressed as
{(

(0, 0), (0,m/2)
)∗
,
(

(0, i), (0,m− i)
)∗

: 1 ≤ i ≤ (m/2)− 1
}

using above bijective
function. Thus, we can represent the vertex set and the edge set of Γ∗

m as V (Γ∗
m) =

Z2×Zm and E(Γ∗
m) =

⋃m−1
j=0

{(

(i, j), (i, j+1)
)∗
,
(

(i, j), (i+1, j+1)
)∗}

∪E (F ∗
m)

for i = 0, 1, respectively.

Häggkvist used G[2] to build 2-factorizations that include even cycles [22].

Lemma 5 (Häggkvist Lemma). Let G be a path or a cycle with n edges and

let H be a 2-regular graph on 2n vertices with all components even cycle. Then

G[2] ∼= G′ ⊕G′′ where G′ ∼= G′′ ∼= H. Therefore, G[2] has an H-decomposition.

The following proposition, which is useful for transferring the results of undi-
rected graphs to digraph and symmetric digraph, states that if we have an H-
factorization of the undirected graph G, then using this factorization an H∗-
factorization of G∗ can be obtained.

Proposition 6. Let G be a graph and let H be a subgraph of G. If G has an H-

factorization, then G∗ has an H∗-factorization.

It is known that K2x has a 1-factorization [32]. Therefore, as a natural
consequence of Proposition 6, the following proposition can be stated.

Proposition 7. The complete symmetric digraph K∗
2x has a K∗

2 -factorization for

every integer x ≥ 1.

The following result of Liu on equipartite graph has been helpful in solving
the Oberwolfach and Hamilton-Waterloo Problems. We will use this result to
obtain a

#»

Cm-factorization of K∗
(x:y).

Theorem 8 [27]. The complete equipartite graph K(x:y) has a Cm-factorization

for m ≥ 3 and x ≥ 2 if and only if m |xy, x(y − 1) is even, m is even if y = 2
and (x, y,m) 6= (2, 3, 3), (6, 3, 3), (2, 6, 3), (6, 2, 6).
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The necessary and sufficient condition for the existence of a 1-factorization
of a complete equipartite graph K(x:y) is given by Hoffman and Rodger [23].

Theorem 9 [23]. The complete equipartite graph K(x:y) has a 1-factorization if

and only if xy is even.

The following lemma is a straightforward consequence of Proposition 6 and
Theorem 9.

Lemma 10. The complete symmetric equipartite digraph K∗
(x:y) has a K∗

2 -factori-

zation if and only if even xy.

The following two well-known results of Walecki imply that Km (a 1-factor
removed graph of Km when m is even) decomposes into Hamilton cycles. We
will use these results and Proposition 6 to factorize K∗

m into symmetric Hamilton
cycles in Section 3.

Lemma 11 [28]. For all odd m ≥ 3, Km decomposes into
(

m−1
2

)

Hamilton cycles.

Lemma 12 [28]. For all even m ≥ 4,Km−Fm has an Hamilton cycle decomposi-

tion with prescribed cycles
{

C, σ (C), σ2 (C) , . . . , σ
m−4

2 (C)
}

for σ = (0)(1, 2, 3 . . . ,
m− 2,m− 1).

Lemmata 13 and 14 show the existence of the {Cr
m, Cs

2m}-factorization of the
Cm[2] and (C ⊕ Fm) [2] for r + s = 2 and r + s = 3, respectively. They will be
used to find a

{

(K∗
2 )

r,
#»

Cs
m

}

-factorization of the C∗
m[2] for r ∈ {0, 2, 4}, r + s = 4

and a
#»

C2m-factorization of Γ∗
m = C∗[2]⊕ F ∗

m[2].

Lemma 13 [30]. Let m be an integer with m ≥ 3. Then Cm[2] has a {Cr
m, Cs

2m}-
factorization for nonnegative integers r and s with r + s = 2 except when m is

odd and r = 2, and except possibly when m is even and r = 1.

Lemma 14 [30]. Let m ≥ 4 be an even integer and Γm = C[2]⊕Fm[2]. Then Γm

has a

(i) C2m-factorization,

(ii) Cm-factorization when m ≡ 0 (mod 4), and

(iii)
{

C2
m, C1

2m

}

-factorization when m ≡ 2 (mod 4).

Lemma 15 [18]. Let m ≥ 4 be an even integer and x be a positive integer. Then

K∗
(mx

2
:2) has a

#»

Cm-factorization.

Theorem 16 [8]. The complete symmetric equipartite digraph K∗
(x:y) has a

#»

C3-

factorization if and only if 3 |xy and (x, y) 6= (1, 6) with possible exceptions

(x, y) = (x, 6), where x /∈ {m : m is divisible by a prime less than 17}.
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Theorem 8 states that K(x:y) has a Cm-factorization with a few exceptions.

This result will be used to show that K∗
(x:y) has a

#»

Cm-factorization. However,
some of the exceptions in the undirected version do not exist in the symmetric
version. It is shown that there is actually a solution for these exceptions in the
symmetric version. Francetić and Šajna gave the following general result for the
#»

C t-factorization of K∗
(x:y). The necessity part of this theorem is a consequence of

Lemma 15, Proposition 6 and Theorems 8 and 16.

Theorem 17 [19]. Let x, y, and t be integers greater than 1, and let g = gcd(y, t).
Assume one of the following conditions holds:

(i) x(y − 1) is even; or

(ii) g /∈ {1, 3}; or

(iii) g = 1, and y ≡ 0 (mod 4) or y ≡ 0 (mod 6); or

(iv) g = 3, and if y = 6, then x is divisible by a prime p ≤ 37.

Then the complete symmetric equipartite digraph K∗
(x:y) has a

#»

C t-factorization if

and only if t | xy and t is even in case y = 2.

The following theorem presents a solution for the Directed Hamilton-Waterloo
Problem for small even cycle factors. It will also help us in solving HWP∗(v;mr,
2ms) in Section 4, when m = 4.

Theorem 18 [35]. For nonnegative integers r and s, HWP∗(v;mr, ns) has a

solution for (m,n) ∈ {(4, 6), (4, 8), (4, 12), (4, 16), (6, 12), (8, 16)} if and only if

r + s = v − 1 and lcm(m,n)|v.

Using Lemmata 11 and 12, Km

2

and Km

2

−Fm

2

factorize into
(

m−2
4

)

Cm

2

cycles

and
(

m−4
4

)

Cm

2

cycles, respectively. Also, Km is isomorphic toKm

2

[2]⊕Im. Hence,

using Proposition 6, Lemmata 11 and 12, we will obtain a
{

(

C∗
m

2

[2]
)

m−6

4 , C∗
m

2

[2] ⊕

I∗m

}

-factorization and a
{

(

C∗
m

2

[2]
)

m−12

4 , C∗
m

2

[2]⊕I∗m,Γ∗
m

2

}

-factorization of K∗
m de-

pending on whether m ≡ 0 or 2 (mod 4). Later, we will use these factorizations
to obtain a

{

(K∗
2 )

r,
#»

Cs
m

}

-factorization of K∗
mx. Furthermore, we will need to have

a
{

(K∗
2 )

r,
#»

Cs
2m

}

-factorization of C∗
m[2] in order to factorize K∗

mx into K∗
2 -factors

and
#»

Cm-factors.

Lemma 19. Let m ≥ 4 be an integer. Then C∗
m[2] has a

{

(K∗
2 )

r,
#»

Cs
2m

}

-factori-

zation for r ∈ {0, 2, 4} and r + s = 4.

Proof. First, note that Cm[2] has a decomposition into two C2m-factors by
Häggkvist Lemma and each C2m-factor has a decomposition into two 1-factors.

Case 1. (r = 4) Decompose Cm[2] into four 1-factors by using C2m-factors.
Then a K∗

2 -factorization of C∗
m[2] is obtained by Proposition 6.
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Case 2. (r = 2) Decompose Cm[2] into one C2m and two 1-factors. By Propo-
sition 6, we get a

{

(K∗
2 )

2, C∗
2m

}

-factorization of C∗
m[2] and also C∗

2m has a
#»

C2m-

factorization with two
#»

C2m-factors. So, we obtain a
{

(K∗
2 )

2,
#»

C2
2m

}

-factorization
of C∗

m[2].

Case 3. (r = 0) Obtain a C∗
2m-factorization of C∗

m[2] by Proposition 6.
Since C∗

2m has a
#»

C2m-factorization with two
#»

C2m-factors, C∗
m[2] has a

#»

C2m-
factorization.

Since I∗2m and F ∗
m are K∗

2 -factors, the following result can be derived from
Lemma 19.

Corollary 20. Let m ≥ 4 be an even integer. Then Γ∗
m has a

{

(K∗
2 )

r,
#»

Cs
2m

}

-

factorization for r ∈ {0, 2, 4, 6} with r + s = 6.

Proof. F ∗
m[2] decomposes into two K∗

2 -factors. Therefore, Γ∗
m has a

{

(K∗
2 )

r,
#»

Cs
2m

}

-factorization for r ∈ {2, 4, 6} with r + s = 6 by Lemma 19. Also, Γ∗
m has

a
#»

C2m-factorization by Lemma 14 and Proposition 6.

The following lemma is quite useful in solving the Directed Hamilton-Waterloo
Problem for n = 2 and even m when the values of r are even.

Lemma 21. Let m ≥ 5 be an integer. Then C∗
m[2] ⊕ I∗2m has a

{

(K∗
2 )

r,
#»

Cs
2m

}

-

factorization for r ∈ {0, 1, 3, 5} and r + s = 5.

Proof. The cases r ∈ {1, 3, 5} can be directly obtained from Lemma 19.

When r = 0, we will examine the problem in two cases: m is odd or even.

Case 1. (odd m ≥ 5) Define five directed 2m-cycles in C∗
m[2]⊕I∗2m as follows.

#»

C
(0)
2m = (v0, v1, . . . , v2m−1) where vi =

(⌊

i
m

⌋

, i
)

,
#»

C
(1)
2m = (u0, u1, . . . , u2m−1) where,

u2i =

{

(0, 2i) if 0 ≤ i ≤ m−1
2 ,

(0,−2i− 1) if m+1
2 ≤ i ≤ m− 1,

and

u2i+1 =

{

(1, 2i+ 1) if 0 ≤ i ≤ m−3
2 ,

(1,−2i− 2) if m−1
2 ≤ i ≤ m− 1,

C
(2)
2m = (x0,, x1, . . . , x2m−1) where

xi =

{

(

0,m−
⌊

i
2

⌋)

if i ≡ 0, 3 (mod 4),
(

1,m−
⌊

i
2

⌋)

if i ≡ 1, 2 (mod 4),
for 0 ≤ i ≤ 2m− 3,
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and x2m−2 = (1, 1), x2m−1 = (0, 1). Also, C
(3)
2m = (y0,, y1, . . . , y2m−1) where

yi = ui + (1, 2) for 0 ≤ i ≤ m− 3 and m+ 2 ≤ i ≤ 2m− 1,

ym−2 = (1, 0), ym−1 = (0, 1), ym = (1, 1), ym+1 = (0, 0).

Finally,
#»

C
(4)
2m = (z0, z1, . . . , z2m−1) where

zi = xi + (1, 0) for 3 ≤ i ≤ 2m− 4,

z0 = (2, 0), z1 = (0,m), z2 = (0, 0), z2m−1 = (1, 1), z2m−2 = (1, 2), z2m−3 =
(0, 1).

Then,
{ #»

C
(0)
2m,

#»

C
(1)
2m,

#»

C
(2)
2m,

#»

C
(3)
2m,

#»

C
(4)
2m

}

is a
#»

C2m-factorization of C∗
m[2]⊕ I∗2m.

Case 2. (even m ≥ 6) Let
#»

C
(0)
2m be the same as in Case 1 and define the

directed 2m-cycles in C∗
m[2]⊕ I∗2m as follows.

#»

C
(1)
2m = (x0, x1, . . . , x2m−1) where x0 = (0, 0) and

xi =

{
(

0,m−
⌊

i+2
2

⌋)

if i ≡ 1, 2 (mod 4),
(

1,m−
⌊

i+2
2

⌋

+ 1
)

if i ≡ 0, 3 (mod 4),
for 1 6 i 6 2m− 8,

and x2m−6+2i = (0, 3 − i) for 0 ≤ i ≤ 2 and x2m−7+2i = (1, 3 − i) for 0 6 i 6 3.

Also,
#»

C
(2)
2m = (u0, u1, . . . , u2m−1) where u0 = (0, 0), u1 = (1, 0), u2 = (0,m − 1)

and

ui =

{
(

0,m−
⌊

i−1
2

⌋

− 1
)

if i ≡ 0, 1 (mod 4),
(

1,m−
⌊

i−1
2

⌋)

if i ≡ 2, 3 (mod 4),
for 3 ≤ i ≤ 2m− 9,

u2m−8+j =

{ (

0, 4−
⌊

j
2

⌋)

if j ≡ 0, 2 (mod 4),
(

1, 4−
⌊

j
2

⌋)

if j ≡ 1, 3 (mod 4),
for 0 6 j 6 7, and when m = 6,

u3 = (1, 5) and we only use above piecewise function.
#»

C
(3)
2m = (y0, y1, . . . , y2m−1)

where y2i+2 = (0,m− i) for 1 ≤ i ≤ m− 4, y2i+1 = (1,m− i) for 1 ≤ i ≤ m− 3,
y0 = (0, 0), y1 = (1, 1), y2 = (1, 0), y2m−4 = (1, 2), y2m−3 = (0, 3), y2m−2 = (0, 2)

and y2m−1 = (0, 1).
#»

C
(4)
2m = (z0, z1 . . . , z2m−1) where z9+2i = (0, 4+ i) for 1 ≤ i ≤

m−5, z10+2i = (1, 4+i) for 0 ≤ i ≤ m−6, z0 = (0, 0), z1 = (1,m−1), z2 = (1, 0),
z3 = (0, 1), z4 = (1, 2), z5 = (1, 1), z6 = (0, 2), z7 = (1, 3), z8 = (0, 4), z9 = (0, 3).

Then
{

#»

C
(0)
2m,

#»

C
(1)
2m,

#»

C
(2)
2m,

#»

C
(3)
2m,

#»

C
(4)
2m

}

is a
#»

C2m-factorization of C∗
m[2]⊕ I∗2m.

By Lemma 13, we can decompose Cm[2] into two Cm-factors for even m.
So, we obtain the following lemma similar to Lemma 19. Also, the following
corollaries are obtained as a result of this lemma.
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Lemma 22. Let m ≥ 4 be an even integer. Then C∗
m[2] has a

{

(K∗
2 )

r,
#»

Cs
m

}

-

factorization for r ∈ {0, 2, 4} with r + s = 4.

Corollary 23. Let m ≥ 4 be an even integer. Then C∗
m[2]⊕ I∗2m has a

{

(K∗
2 )

r,
#»

Cs
m

}

-factorization for r ∈ {1, 3, 5} with r + s = 5.

Corollary 24. Let m ≥ 4 be an even integer. Then Γ∗
m has a

{

(K∗
2 )

r,
#»

Cs
m

}

-

factorization for r ∈ {2, 4, 6} with r + s = 6.

Recall that Γ∗
m is C∗[2]⊕ F ∗

m[2].

Lemma 25. Let m ≥ 4 be an even integer. Γ∗
m has a

{

(K∗
2 )

r,
#»

Cs
m

}

-factorization

for m ≡ 2 (mod 4) and r ∈ {1, 2, 3, 4, 6} with r + s = 6.

Proof. The cases r ∈ {2, 4, 6} are obtained by Corollary 24.

For r = 1, we define the following m-cycles.

#»

C
(0)
m = (v0, v1, . . . , vm−1) where vi = (0, i) for 0 6 i 6 m− 1,

#»

C
(1)
m = (u0, u1, . . . , um−1) where ui =

{

(0, i) if i is even,

(1, i) if i is odd,

#»

C
(2)
m = (x0, x1, . . . , xm−1) where x0 = (0, 0) and for 1 ≤ i ≤ m− 1

xi =







(

1−(−1)i

2 , m2 −
⌊

i
2

⌋

)

if i ≡ 1, 2 (mod 4),
(

1−(−1)i

2 , m2 +
⌊

i
2

⌋

)

if i = 0, 3 (mod 4),

#»

C
(3)
m = (z0, z1, . . . , zm−1) where zm = (1,m− 1), zm−1 = (0, 0) and

zi =



















(

0,
⌊

i
2

⌋

+ 1
)

if i ≡ 0 (mod 4),
(

1,
⌈

i
2

⌉

+ 1
)

if i ≡ 1 (mod 4),

(0,m− i) if i ≡ 2 (mod 4),

(1,m− i) if i ≡ 3 (mod 4),

for 0 ≤ i ≤
m

2
.

Let us choose the factor F0 as isomorphic to F ∗
m ⊕ (F ∗

m + (1, 0)), then F0

becomes a K∗
2 -factor. Using the above m-cycles, we obtain five m-cycle factors:

F1 =
#»

C
(0)
m ∪ (

#»

C
(0)
m + (1, 0)), F2 = R (F1), F3 =

#»

C
(1)
m ∪ R(

#»

C
(1)
m + (1, 0)), F4 =

#»

C
(2)
m ∪ R(

#»

C
(2)
m + (1, 0)), and F5 =

#»

C
(3)
m ∪ (

#»

C
(3)
m + (1, 0)). Then

{

F0, F1, F2, F3,

F4, F5

}

is a
{

(K∗
2 )

1,
#»

C5
m

}

-factorization of Γ∗
m.

For r = 3, F1 ⊕ F2 is a C∗
m-factor of Γ∗

m and has a factorization into two
K∗

2 -factors of Γ
∗
m say F

′

1 and F
′

2. Then
{

F0, F
′

1, F
′

2, F3, F4, F5

}

is a
{

(K∗
2 )

3,
#»

C3
m

}

-
factorization of Γ∗

m.
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3. Solutions to HWP∗(v; 2r,ms)

Now, we can give solutions to the Directed Hamilton-Waterloo Problem for K∗
2

and
#»

Cm when even m.

Theorem 26. Let r, s be nonnegative integers, and let m ≥ 6 be even. Then

HWP∗(v; 2r,ms) has a solution if and only if m|v, r+s = v−1 and v ≥ 6 except

for s = 1 or (r, v) = (0, 6), and except possibly when at least one of the following

conditions holds:

(i) s = 3 and m ≡ 0 (mod 4),

(ii) s = 3, m ≡ 2 (mod 4) and v
m

is odd.

Proof. Take (v−2) disjointK∗
2 -factors ofK

∗
v , sayH∗

1 , H
∗
2 , . . . , H

∗
v−2. It is obvious

that K∗
v − (H∗

1 ⊕ H∗
2 ⊕ · · · ⊕ H∗

v−2) is a K∗
2 -factor in K∗

v . Thus, there is no
{

(K∗
2 )

v−2,
#»

C1
m

}

-factorization of K∗
v . Therefore, we may assume s 6= 1.

Since HWP∗(v;nr,ms) has a solution for r = 0 except for (v,m) = (6, 6) by
Theorem 1, we may assume that r ≥ 1.

Let v = mx for a positive integer x. Partition the vertices of K∗
mx into 2x

sets of size m
2 , represent each part of m

2 vertices in K∗
mx with a single vertex and

represent all double arcs between sets of size m
2 as a single double arc, to get a

K∗
2x. By Proposition 7, K∗

2x has a decomposition into (2x− 1) K∗
2 -factors. Then

construct a K∗
m-factor of K∗

mx from one of the K∗
2 -factors, and a K∗

(m
2
:2)-factor of

K∗
mx from each of the remaining (2x−2) K∗

2 -factors. Then K∗
mx can be factorized

into a K∗
m-factor and (2x− 2) K∗

(m
2
:2)-factors.

By Lemmata 10 and 15, K∗
(m
2
:2) decomposes into m

2 K∗
2 -factors or m

2

#»

Cm-

factors, respectively. As a result, we must decompose K∗
m into K∗

2 -factors and
#»

Cm-factors.

Case 1. (odd r) By Lemma 12, factorize Km into an Fm-factor and
(

m−2
2

)

Cm-factors. So, K∗
m can be factorized into an F ∗

m-factor and
(

m−2
2

)

C∗
m-factors

by Proposition 6.
Since C∗

m can be decomposed into two K∗
2 -factors or two

#»

Cm-factors for even
m, K∗

m has a
{

(K∗
2 )

2r1+1,
#»

C2s1
m

}

-factorization where r1 + s1 =
m−2
2 .

SinceK∗
mx has a

{

K∗
m,

(

K∗
(m
2
:2)

)(2x−2)}

-factorization, placing aK∗
2 -factoriza-

tion on r0 of theK
∗
(m
2
:2) factors for r0 even and 0 ≤ r0 ≤ 2x−2, a

#»

Cm-factorization

on s0 of the K∗
(m
2
:2) where r0 + s0 = 2x − 2, and taking a

{

(K∗
2 )

2r1+1,
#»

C2s1
m

}

-

factorization of K∗
m give a

{

(K∗
2 )

r,
#»

Cs
m

}

-factorization of K∗
mx where r = m

2 r0 +
2r1+1 and s = m

2 s0+2s1 with r+s = m
2 (r0+s0)+2(r1+s1)+1 = mx−1 = v−1.

Since any nonnegative odd integer 1 ≤ r ≤ mx − 1 can be written as r =
m
2 r0 + 2r1 + 1 for integers 0 ≤ r0 ≤ 2x − 2 and 0 ≤ r1 ≤ m−2

2 , a solution to
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HWP∗(v; 2r,ms) exists for each odd r ≥ 1 and s ≥ 1 satisfying r+ s = mx− 1 =
v − 1.

Case 2. (even r)

(a) Assume m ≡ 0 (mod 4). Therefore, m
2 is even. Each K∗

(m
2
:2) decompose

into m
2 K∗

2 -factors or m
2

#»

Cm-factors. For this reason we need a {(K∗
2 )

r,
#»

Cs
m}-

factorization of K∗
m for even r.

Also, K∗
m

2

can be factorized as
⊕

m−4

4

i=1 C∗
i ⊕F ∗

m

2

where each C∗
i is isomorphic to

C∗
m

2

. Then, K∗
m

2

[2] ∼=
⊕

m−4

4

i=1 C∗
i [2]⊕F ∗

m

2

[2]. Also, K∗
m is isomorphic to K∗

m

2

[2]⊕I∗m.

Therefore, K∗
m has a

{

(

C∗
m

2

[2]
)

m−12

4 , C∗
m

2

⊕I∗m,Γ∗
m

2

}

-factorization. By Lemma 19,

each of m−12
4 C∗

m

2

[2]-factors has a
{

(K∗
2 )

r0 ,
#»

Cs0
m

}

-factorization for r0 ∈ {0, 2, 4}

and r0 + s0 = 4. By Lemma 21, C∗
m

2

[2] ⊕ I∗m has a {(K∗
2 )

r1 ,
#»

Cs1
m}-factorization

for r1 ∈ {0, 1, 3, 5} and r1 + s1 = 5. By Corollary 20, Γ∗
m

2

has a
{

(K∗
2 )

r2 ,
#»

Cs2
m

}

-

factorization for evenm and r2 ∈ {0, 2, 4, 6} with r2+s2 = 6. Those factorizations
give a

{

(K∗
2 )

r′ ,
#»

Cs′

m

}

-factorization of K∗
m where r′ =

(

m−12
4

)

r0 + r1 + r2 and
s′ = (m−12

4 )s0 + s1 + s2 satisfying r′ + s′ =
(

m−12
4

)

4 + 5 + 6 = m − 1 with

0 ≤ r′, s′ ≤ m− 1. If we choose r1 = 0 , we obtain a
{

(K∗
2 )

r′ ,
#»

Cs′

m

}

-factorization
of K∗

m for even r′. Since we cannot get r0 = 1, r1 = 2 or r2 = 3 from the above
factorizations, it can be seen that r′ = m− 4 cannot be obtained.

Placing a K∗
2 -factorization on r′′ of the K∗

(m
2
:2)-factors for 0 ≤ r′′ ≤ 2x − 2,

a
#»

Cm-factorization on s′′ of the K∗
(m
2
:2) for r′′ + s′′ = 2x − 2, and taking a

{

(K∗
2 )

r′ ,
#»

Cs′

m

}

-factorization of K∗
m give a

{

(K∗
2 )

m

2
r′′+r′ ,

#»

C
m

2
r′′+s′

m

}

-factorization

of K∗
mx where m

2 r
′′ + r′ is even.

Any even integer 1 ≤ r ≤ mx− 1 can be written as r = m
2 r

′′ + r′ for integers
r′ ∈ [0,m−1] and 0 ≤ r′′ ≤ 2x−2. Since r′ 6= m−4, a solution to HWP∗(v; 2r,ms)
exists for each even r ≥ 2 except possibly r = mx−4 = v−4 and s ≥ 1 satisfying
r + s = v − 1.

(b) Assume m ≡ 2 (mod 4). By Lemma 11, factorize Kn into
(

n−1
2

)

Cn-
factors for odd n, and get a C∗

n-factorization of K∗
n by Proposition 6. Also, K∗

m

can be factorized as K∗
m

2

[2]⊕ I∗m. Since m
2 is odd, K∗

m has a
{

(

C∗
m

2

[2]
)

m−2

4 , I∗m

}

-

factorization. By Lemma 19, each of C∗
m

2

[2]-factors has a
{

(K∗
2 )

r0 ,
#»

Cs0
m

}

-factori-

zation for r0 ∈ {0, 2, 4} and r0 + s0 = 4. By Lemma 21, C∗
m

2

[2] ⊕ I∗m has
{

(K∗
2 )

r1 ,
#»

Cs1
m

}

-factorization for r1 ∈ {0, 1, 3, 5} and r1 + s1 = 5.

Those factorizations give a {(K∗
2 )

r2 ,
#»

Cs2
m}-factorization of K∗

m for r2 = m−6
4

r0 + r1 and s2 = m−6
4 s0 + s1 with r2 + s2 = m − 1. Since we cannot get r0 = 1

or r1 = 2 from the above factorizations, it can be seen that r2 = m − 4 cannot
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be obtained.

Placing aK∗
2 -factorization on r′ of theK∗

(m
2
:2) factors for 0 ≤ r′ ≤ 2x−2 where

we choose r′ is even, a
#»

Cm-factorization on s′ of the K∗
(m
2
:2) with r′+ s′ = 2x− 2,

and taking a
{

(K∗
2 )

r2 ,
#»

Cs2
m

}

-factorization of K∗
m give a

{

(K∗
2 )

m

2
r′+r2 ,

#»

C
m

2
s′+s2

m

}

-

factorization of K∗
mx where r = m

2 r
′ + r2 and s = m

2 s
′ + s2. Also, we obtain the

requested even integer r ∈ [1,mx − 1], from the sum of m
2 r

′ and r2 for integers
0 ≤ r′ ≤ 2x−2 and r2 ∈ [0,m−1]. Since r2 6= m−4, a solution to HWP∗(v; 2r,ms)
exists for even r ≥ 2 except possibly r = mx−4 = v−4 and odd s ≥ 1 satisfying
r + s = v − 1.

If x is even, say x = 2t, factorize K∗
mx into a K∗

2m-factor and (2t− 2) K∗
(m:2)-

factors. K∗
(m:2) has a K∗

2 -factorization with m K∗
2 -factors and a

#»

Cm-factorization

with m
#»

Cm-factors by Lemmata 10 and 15, respectively. So, we must decompose
K∗

2m intoK∗
2 -factors and

#»

Cm-factors. As before,K∗
2m can be factorized asK∗

m[2]⊕

I∗2m. So, K∗
2m has a

{

(

C∗
m[2]

)
m−4

2 , I∗2m,Γ∗
m

}

-factorization. By Lemma 22, each of

C∗
m[2]-factors has a

{

(K∗
2 )

r0 ,
#»

Cs0
m

}

-factorization for r0 ∈ {0, 2, 4} and r0+ s0 = 4.

By Corollary 23, C∗
m[2]⊕ I∗2m has a

{

(K∗
2 )

r1 ,
#»

Cs1
m

}

-factorization for r1 ∈ {1, 3, 5}

and r1 + s1 = 5. By Lemma 25, Γ∗
m has a

{

(K∗
2 )

r2 ,
#»

Cs2
m

}

-factorization for m ≡ 2
(mod 4) and r2 ∈ {1, 2, 3, 4, 6} with r2 + s2 = 6. Using these factorizations, we
obtain a solution to the problem for r = 2mt− 4 = mx− 4 when m ≡ 2 (mod 4)
and even x. As a result, HWP∗(v; 2r,ms) has a solution for r = v − 4 and even
v
m

when m ≡ 2 (mod 4).

Lemma 27. C∗
4 [2]⊕I∗8 has a

{

(K∗
2 )

r,
#»

Cs
4

}

-factorization for r ∈ {0, 1, 2, 3, 5} with

r + s = 5.

Proof. We represent C∗
4 [2] ⊕ I∗8 as the directed Cayley graph

#»

X
(

Z8, S
)

with
connection set S =

{

± 1,±3, 4
}

.

For r = 0, we define a
#»

C4-factorization of C∗
4 [2]⊕ I∗8 :

F1=
{[

(0, 1, 2, 3), (4, 5, 6, 7)
]

,
[

(0, 3, 2, 1), (4, 7, 6, 5)
]

,
[

(0, 5, 1, 4), (2, 7, 3, 6)
]

,
[

(0, 4,
3, 7), (1, 5, 2, 6)

]

,
[

(0, 7, 2, 5), (1, 6, 3, 4)
]}

.

For r = 2, we define a {(K∗
2 )

2,
#»

C3
4}-factorization of C∗

4 [2]⊕ I∗8 :

F2 =
{[

(0, 4)∗, (1, 5)∗, (2, 6)∗, (3, 7)∗
]

,
[

(0, 7)∗, (1, 6)∗, (2, 5)∗, (3, 4)∗
]

,
[

(0, 1, 2, 3),
(4, 5, 6, 7))

]

,
[

(0, 3, 6, 5), (1, 4, 7, 2)
]

,
[

(0, 5, 4, 1), (2, 7, 6, 3)
]}

.

The remaining cases are obtained from Corollary 23 for m = 4.

Lemma 28. K∗
12 has a

{

(K∗
2 )

r,
#»

Cs
4

}

-factorization for r ∈ {0, 1, 2, 3, 4, 5, 7, 9, 11}
with r + s = 11.
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Proof. The cases r = 0 and r = 11 are obtained by Theorem 18 and Proposition
7, respectively. SinceK12−I has a C4-factorization where I is a 1-factor ofK12, by
Proposition 6, K∗

12 can be factorized into five C∗
4 -factors and one I∗-factor which

is a K∗
2 -factor of K

∗
12. Also, C

∗
4 has a

#»

C4-factorization and K∗
2 -factorization. So,

we obtain a
{

(K∗
2 )

r,
#»

Cs
4

}

-factorization of K∗
12 for r ∈ {1, 3, 5, 7, 9} with r+ s = 11.

We represent K∗
12 as the directed Cayley graphs

#»

X
(

Z12, S
)

with connection
set S = {±1,±2,±3,±4,±5, 6}, and define the following factorizations of K∗

12

for r = 2, 4, respectively.

F1 =
{

[(0, 6)∗, (1, 7)∗, (2, 8)∗, (3, 9)∗, (4, 10)∗, (5, 11)∗], [(0, 10)∗, (4, 6)∗, (1, 5)∗,
(7, 11)∗, (2, 9)∗, (3, 8)∗], [(0, 1, 2, 3), (4, 5, 6, 7), (8, 9, 10, 11)], [(0, 2, 1, 4), (3, 5, 7, 6),
(8, 11, 10, 9)], [(0, 3, 1, 8), (2, 4, 11, 6), (5, 9, 7, 10)], [(0, 4, 2, 11), (1, 6, 8, 10), (3, 7,
9, 5)], [(0, 5, 8, 7), (1, 3, 4, 9), (2, 10, 6, 11)], [(0, 7, 5, 2), (1, 10, 8, 4), (3, 6, 9, 11)],
[(0, 8, 6, 1), (2, 5, 10, 7), (3, 11, 9, 4)], [(0, 9, 6, 5), (1, 11, 4, 8), (2, 7, 3, 10)], [(0, 11,
1, 9), (2, 6, 10, 3), (4, 7, 8, 5)]

}

,

F2 =
{

[(0, 6)∗, (1, 7)∗, (2, 8)∗, (3, 9)∗, (4, 10)∗, (5, 11)∗], [(0, 10)∗, (4, 6)∗, (1, 5)∗,
(7, 11)∗, (2, 9)∗, (3, 8)∗], [(0, 8)∗, (2, 6)∗, (1, 10)∗, (4, 7)∗, (3, 11)∗, (5, 9)∗], [(0, 1)∗,
(2, 3)∗, (4, 5)∗, (6, 7)∗, (8, 9)∗, (10, 11)∗], [(0, 2, 1, 3), (4, 8, 11, 9), (5, 7, 10, 6)], [(0, 3,
10, 5), (1, 8, 6, 11), (2, 4, 9, 7)], [(0, 4, 11, 2), (1, 6, 10, 9), (3, 5, 8, 7)], [(0, 5, 6, 9), (1, 2,
11, 4), (3, 7, 8, 10)], [(0, 7, 9, 11), (1, 4, 3, 6), (2, 10, 8, 5)], [(0, 9, 10, 7), (1, 11, 6, 8),
(2, 5, 3, 4)], [(0, 11, 8, 4), (1, 9, 6, 3), (2, 7, 5, 10)]

}

.

Therefore, K∗
12 has a

{

(K∗
2 )

r,
#»

Cs
4

}

-factorization for r ∈ {0, 1, 2, 3, 4, 5, 7, 9, 11}
with r + s = 11.

Lemma 29. K∗
(4:3) has a

{

(K∗
2 )

r,
#»

Cs
4

}

-factorization for r ∈ {0, 1, 2, 4, 6, 8} with

r + s = 8.

Proof. The cases r = 0 and r = 8 are obtained by Theorem 17 and Lemma 10,
respectively. By Theorem 8, K(4:3) has a C4-factorization and so, K∗

(4:3) has a

C∗
4 -factorization by Proposition 6. Since C∗

4 has a K∗
2 -factorization and a

#»

C4-
factorization, K(4:3) can be factorized into two K∗

2 -factors and six
#»

C4-factors.

Similarly, a
{

(K∗
2 )

r,
#»

Cs
4

}

-factorization of K(4:3) is obtained for r ∈ {4, 6} with
r + s = 8.

Finally, let V
(

K∗
(4:3)

)

=
⋃2

i=0{4i, 4i+1, 4i+2, 4i+3} with the obvious vertex
partition, and define the following factorization of K∗

(4:3) for r = 1.

F1 =
{

[(0, 4, 2, 5), (1, 8, 3, 11), (6, 9, 7, 10)], [(0, 5, 1, 7), (2, 9, 4, 11), (3, 8, 6, 10)],
[(0, 7, 1, 9), (2, 4, 3, 10), (5, 11, 6, 8)], [(0, 8, 1, 10), (2, 7, 3, 5), (4, 9, 6, 11)], [(0, 9,
2, 11), (1, 5, 3, 6), (4, 10, 7, 8)], [(0, 10, 4, 8), (1, 11, 5, 9), (2, 6, 3, 7)], [(0, 11, 3, 4),
(1, 6, 2, 10), (5, 8, 7, 9)], [(0, 6)∗, (1, 4)∗, (2, 8)∗, (3, 9)∗, (5, 10)∗, (7, 11)∗]

}

.

In Theorem 26, we have given the necessary and sufficient conditions for the
existence of a solution for HWP∗(v; 2r,ms) for even m ≥ 6. The construction
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in Theorem 26 is not valid when m = 4, therefore we also examine the case of
m = 4 in the following theorem.

Theorem 30. Let r, s be nonnegative integers. Then HWP∗(v; 2r, 4s) has a

solution if and only if r+ s = v− 1 except for s = 1 or (r, v) = (0, 4), and except

possibly when at least one of the following conditions holds:

(i) r ≥ 2 even and v ≡ 4, 20 (mod 24),

(ii) s ∈ {3, 5} and v ≡ 12 (mod 24).

Proof. If you remove (v − 2) disjoint K∗
2 -factors from K∗

v , then the remaining
factor must be a K∗

2 -factor in K∗
v . Thus, there is no {(K∗

2 )
v−2,

#»

C1
4}-factorization

of K∗
v . So, we may assume s 6= 1.

Since HWP∗(v;nr,ms) has a solution for r = 0 except for (v,m) = (4, 4)
by Theorem 1, HWP∗(4; 2r, 4s) has no solution for r = 0. As a result, we may
assume that r ≥ 1.

Case 1. (v ≡ 0 (mod 8)) Let v = 8k for a positive integer k. Note that, K∗
8k

can be factorized as K∗
4k[2]⊕I∗8k. Also, K

∗
4k[2] can be factorized into C∗

4 [2]-factors
and aK∗

2 [2]-factor. The graph kC∗
4 [2]⊕I∗8k can be considered as (C∗

4 [2]⊕I∗8 )-factor

in K∗
8k. Therefore, K∗

8k has a
{(

C∗
4 [2]

)2k−1
, I∗8 ,K

∗
2 [2]

}

-factorization. Also, C∗
4 [2]

has a
{(

K∗
2

)r0 ,
#»

Cs0
4

}

-factorization for r0 ∈ {0, 2, 4} where r0 + s0 = 4 by Lemma

22. Since K∗
2 [2] = C∗

4 , K
∗
2 [2] has a

{(

K∗
2

)r1 ,
#»

Cs1
4

}

-factorization for r1 ∈ {0, 2}

and r1 + s1 = 2. By Lemma 27, C∗
4 [2]⊕ I∗8 has a {(K∗

2 )
r2 ,

#»

Cs2
4 }-factorization for

r2 ∈ {0, 1, 2, 3, 5} where r2 + s2 = 5. These factorizations give a
{(

K∗
2

)r
,

#»

Cs
4

}

-
factorization of K∗

8k for r 6= 8k − 2 with r + s = 8k − 1.

Then, HWP∗(v; 2r, 4s) has a solution for r + s = v − 1, s 6= 1 and v ≡ 0
(mod 8).

Case 2. (v ≡ 4 (mod 8)) Let v = 8k + 4 for a nonnegative integer k.

(a) Assume r is odd. Partition the vertices of K∗
8k+4 into 4k + 2 sets of size

2, represent each set of size 2 vertices in K∗
8k+4 with a single vertex and represent

all double arcs between sets of size 2 as a single double arc, to get a K∗
4k+2. By

Proposition 7, K∗
4k+2 has a decomposition into 4k+1K∗

2 -factors. Construct aK
∗
4 -

factor from one of the K∗
2 -factors and a K∗

(2:2)-factor from each of the remaining

4k K∗
2 -factors. Then, factorize K∗

8k+4 into a K∗
4 -factor and (4k) K∗

(2:2)-factors.

K∗
4 has a decomposition into one K∗

2 and two
#»

C4-factors or three K
∗
2 -factors, and

K∗
(2:2) has a

{

(K∗
2 )

r0 ,
#»

Cs0
4

}

-factorization for r0 ∈ {0, 2} satisfying r + s = 2. So,

K∗
8k+4 has a

{

(K∗
2 )

r,
#»

Cs
4

}

-factorization for odd r. Therefore, HWP∗(v; 2r, 4s) has
a solution for odd r and v ≡ 4 (mod 8).

(b) Assume r is even, and also let k ≡ 1 (mod 3). Then, we have v = 24l+12
for some nonnegative integer l.
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Representing each part of 4 vertices in K∗
24l+12 with a single vertex and all

double arcs between parts of size 4 as a single double arc, we have a K∗
6l+3. Since

a Kirkman triple system exists for orders 6l + 3, we have a C3-factorization of
K6l+3. Then a C∗

3 -factorization of K∗
6l+3 is obtained by Proposition 6.

Construct a K∗
12-factor from one of the C∗

3 -factors and K∗
(4:3)-factor from

each of the remaining 3l C∗
3 -factors. Then get a

{

K∗
12, (K

∗
(4:3))

3l
}

-factorization

of K∗
24l+12. By Lemma 28, K∗

12 has a
{

(K∗
2 )

r0 ,
#»

Cs0
m

}

-factorization for r0 ∈

{0, 1, 2, 3, 4, 5, 7, 9, 11} with r0 + s0 = 11. Also, K∗
(4:3) has a

{

(K∗
2 )

r1 ,
#»

Cs1
4

}

-

factorization by Lemma 29 for r1 ∈ {0, 1, 2, 4, 6, 8} with r1 + s1 = 8. Those
factorizations give a

{

(K∗
2 )

r,
#»

Cs
m

}

-factorization of K∗
24l+12 where r = r0 + ar1

and s = s0 + bs1 satisfying r + s = 24l + 11 = v − 1 with 1 ≤ r, s ≤ v − 1 and
a+ b = 3l. We obtain the requested even r ∈ [0, v − 1] except for r = v − 6 and
r = v − 4, from the sum of r0 and ar1. Then HWP∗(v; 2r, 4s) has a solution for
r + s = v − 1, s /∈ {3, 5} and v ≡ 12 (mod 24).

Proving Theorem 3 was accomplished by proving Theorems 26 and 30.

4. Solutions to HWP∗(v;mr, (2m)s)

In this section, we prove that for even m, a solution to HWP∗(v;mr, (2m)s) exists
for r + s = v − 1 and except possibly when s ∈ {1, 3}.

Firstly, factorize K∗
2mx into a K∗

2m-factor and (2x− 2) K∗
(m:2)-factors. K

∗
(m:2)

has a
{ #»

Cr
m,

#»

Cs
2m

}

-factorization for r ∈ {0,m} and r + s = m. Using Lemma

12 and Proposition 6, a
{

(C∗
m[2])

m−4

2 , I∗2m,Γ∗
m

}

-factorization of K∗
2m is also ob-

tained. Therefore, in order to factorize K∗
2mx into

#»

Cm-factors and
#»

C2m-factors,
Γ∗
m, C∗

m[2]⊕ I∗2m and C∗
m[2] must be factorized into

#»

Cm-factors and
#»

C2m-factors.
The following lemmata examine the existence of a

{ #»

Cr
m,

#»

Cs
2m

}

-factorization of
these graphs for r + s ∈ {4, 5, 6}.

Lemma 31. Let m ≥ 4 be an even integer. Then Γ∗
m has a

{ #»

Cr
m,

#»

Cs
2m

}

-factori-

zation for r ∈ {0, 6} and r + s = 6.

Proof. Case 1. (r = 0) By Lemma 14(i) and Proposition 6, Γ∗
m has a

#»

C2m-
factorization.

Case 2. (r = 6) By Lemma 14(ii) and Proposition 6, Γ∗
m has a

#»

Cm-factori-
zation for m ≡ 0 (mod 4).

When m ≡ 2 (mod 4), define the following m-cycles. Also, let
#»

C
(0)
m and

#»

C
(1)
m

be the cycles
#»

C
(0)
m and

#»

C
(2)
m respectively, as stated in Lemma 25.



The Directed Uniform Hamilton-Waterloo Problem 631

#»

C
(2)
m = (u0, u1, . . . , um−1) where ui =

{

(1,m− 1− i) if 0 ≤ i ≤ m
2 ,

(0,m− 1− i) if m
2 + 1 ≤ i ≤ m− 1.

#»

C
(3)
m = (y0, y1, . . . , ym−1) where y0 = (0, 0), y1 =

(

0, m2
)

, y2 =
(

1, m2 + 1
)

, y3 =
(

1, m2 − 1
)

and

yi =

{ (

1, m2 + (−1)i+1
⌊

i
2

⌋)

if i ≡ 0, 1 (mod 4),
(

0, m2 + (−1)i
⌊

i
2

⌋)

if i ≡ 2, 3 (mod 4),
for 4 ≤ i ≤ m− 1.

#»

C
(4)
m = (z0, z1, . . . , zm−1) where

zi =

{

ym−i + (1, 0) if 1 ≤ i ≤ m− 3,

ym−i if m− 2 ≤ i ≤ m.

Using the above m-cycles, we obtain the following m-cycle factors. F0 =
#»

C
(0)
m ∪

( #»

C
(0)
m + (1, 0)

)

, F1 =
#»

C
(1)
m ∪ R(

#»

C
(1)
m + (1, 0)), F2 = R (F1), F3 =

#»

C
(2)
m ⊕

( #»

C
(2)
m + (1, 0)

)

, F4 =
#»

C
(3)
m ∪

( #»

C
(3)
m + (1, 0)

)

and F5 =
#»

C
(4)
m ∪

( #»

C
(4)
m + (1, 0)

)

.

Then {F0, F1, F2, F3, F4, F5} is a
#»

Cm-factorization of Γ∗
m. So, Γ∗

m has a
#»

Cm-
factorization for even m ≥ 4.

Lemma 32. Let m ≥ 4 be an even integer. Then C∗
m[2]⊕I∗2m has a

{ #»

Cr
m,

#»

Cs
2m

}

-

factorization for r ∈ {1, 3} and r + s = 5.

Proof. Case 1. (r = 1) Let
#»

C
(0)
m = (v0, v1, . . . , vm−1) be a directed m-cycle

of C∗
m[2] ⊕ I∗2m, where vi = (0, i) for 0 ≤ i ≤ m − 1, and it can be checked

that F1 =
#»

C
(0)
m ∪

( #»

C
(0)
m + (1, 0)

)

is a directed m-cycle factor of C∗
m[2] ⊕ I∗2m.

Also, let
#»

C
(1)
2m = (u0, u1, . . . , u2m−1) be a directed 2m-cycle of C∗

m[2]⊕ I∗2m, where
u2i = (0, i), and u2i+1 = (1, i) for 0 ≤ i ≤ m − 1. Similarly, it can be checked

that F2 =
#»

C
(1)
2m and F3 =

#»

C
(1)
2m + (1, 0) are arc disjoint directed 2m-cycle factors

of C∗
m[2]⊕ I∗2m.

Let
#»

C
(2)
2m = (x0, x1, . . . , x2m−1) be a directed 2m-cycle of C∗

m[2]⊕ I∗2m, where
x0 = (0, 0), xm = (1, 0), xi+1 = (0,m − 1 − i) for 0 ≤ i ≤ m − 2 and xj+1+m =
(1,m− 1− j) for 0 ≤ j ≤ m− 2.

Let
#»

C
(3)
2m = (y0, y1, . . . , y2m−1) be a directed 2m-cycle of C∗

m[2]⊕ I∗2m, where
ym = (1, 0),

yi =

{

(0,m− i) if i is even,

(1,m− i) if i is odd,
for 0 ≤ i ≤ m− 1,

and

yi =

{

(1, 2m− i) if i is even,

(0, 2m− i) if i is odd,
for m+ 1 ≤ i ≤ 2m− 1.
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The factors F4 =
#»

C
(2)
2m and F5 =

#»

C
(3)
2m are arc disjoint directed 2m-cycle

factors of C∗
m[2]⊕ I∗2m. Then {F1, F2, F3, F4, F5} is a

{ #»

C1
m,

#»

C4
2m

}

-factorization of
C∗
m[2]⊕ I∗2m.

Case 2. (r = 3) Let F1, F2 and F3 be the same as in Case 1. Using the arcs
of F4 ∪ F5, we obtain two new

#»

Cm-factors.

The factor F
′

4 = R(F1) is a
#»

Cm-factor of C∗
m[2] ⊕ I∗2m. Let

#»

C = (y0, y1, . . . ,
ym−1) be a directed m-cycle of C∗

m[2]⊕ I∗2m, where

yi =

{

(0, i) if i is even,

(1, i) if i is odd,
for 0 ≤ i ≤ m− 1.

It can be checked that F
′

5 = R(
#»

C) ∪R(
#»

C + (1, 0)) is a directed m-cycle factor of
C∗
m[2]⊕ I∗2m.

So,
{

F1, F2, F3, F
′

4, F
′

5

}

is a
{ #»

C3
m,

#»

C2
2m

}

-factorization of C∗
m[2]⊕ I∗2m.

Lemma 33. Let m ≥ 4 be an even integer. Then C∗
m[2] has a

{ #»

Cr
m,

#»

Cs
2m

}

-

factorization for r ∈ {0, 2, 4} and r + s = 4.

Proof. The cases r ∈ {0, 4} are obtained by Lemmata 19 and 22. Let
#»

C
(1)
2m =

(u0, u1, . . . , u2m−1) be a directed 2m-cycle of C∗
m[2], where

ui =

{

(0, i) if 0 ≤ i ≤ m− 1,

(1, i) if m ≤ i ≤ 2m− 1.

And it can be checked that F1 =
#»

C
(1)
2m is a

#»

C2m-factor of C∗
m[2]. Let

#»

C
(2)
2m =

(v0, v1, . . . , v2m−1) be a directed 2m-cycle of C∗
m[2], where

vi =

{

ui if i is even,

ui + (1, 0) if i is odd.

The factor F2 =
#»

C
(2)
2m is a

#»

C2m-factor of C∗
m[2]. Let F

′

4 and F
′

5 be the same as in

Lemma 32. Then
{

F1, F2, F
′

4, F
′

5

}

is a
{ #»

C2
m,

#»

C2
2m

}

-factorization of C∗
m[2].

The proof of Theorem 4 can now be given.

Theorem 4. Let r, s be nonnegative integers, and let m ≥ 4 be even. Then

HWP∗(v;mr, (2m)s) has a solution if and only if m|v, r + s = v − 1 and v ≥ 4
except for (s, v,m) ∈ {(0, 4, 4), (0, 6, 3), (0, 6, 6)}, and except possibly when s ∈
{1, 3}.
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Proof. By Theorem 18, HWP∗(v; 4r, 8s) has a solution for r + s = v − 1, so
we may assume that m ≥ 6. Furthermore, by Theorem 1, a solution to the
HWP∗(v;mr, (2m)s) exists when r = 0 or s = 0 and except for (s, v,m) ∈
{(0, 4, 4), (0, 6, 3), (0, 6, 6)}.

Factorize K∗
2mx into a K∗

2m-factor and (2x− 2) K∗
(m:2)-factors. By Theorem

17, K∗
(m:2) decomposes into m

#»

Cm-factors or m
#»

C2m-factors. So, K∗
2m must be de-

composed into
#»

Cm-factors and
#»

C2m-factors. As before, K∗
2m can be factorized as

K∗
m[2]⊕ I∗2m. Consequently, K∗

2m has a
{(

C∗
m[2]

)
m−4

2 , I∗2m,Γ∗
m

}

-factorization. By

Lemma 33, each of C∗
m[2]-factors has a

{ #»

Cr0
m ,

#»

Cs0
2m

}

-factorization for r0 ∈ {0, 2, 4}

and r0 + s0 = 4. By Lemmata 32 and 21, C∗
m[2] ⊕ I∗2m has a

{ #»

Cr1
m ,

#»

Cs1
2m

}

-
factorization for r1 ∈ {0, 1, 3} and r1 + s1 = 5. By Lemma 31, Γ∗

m has a
{ #»

Cr2
m ,

#»

Cs2
2m

}

-factorization for r2 ∈ {0, 6} with r2 + s2 = 6. Those factoriza-

tions give a
{ #»

Cr
m,

#»

Cs
2m

}

-factorization of K∗
2m where r =

(

m−6
2

)

r0 + r1 + r2
and s =

(

m−6
2

)

s0 + s1 + s2 satisfying r + s =
(

m−6
2

)

4 + 5 + 6 = 2m − 1 with
0 ≤ r, s ≤ 2m− 1 and s /∈ {1, 3}.

Placing a
#»

Cm-factorization on r′ of the K∗
(m:2)-factors for 0 ≤ r′ ≤ 2x − 2,

a
#»

C2m-factorization on s′ of the K∗
(m:2) for r′ + s′ = 2x − 2, and taking a

{ #»

Cr
m,

#»

Cs
2m

}

-factorization of K∗
2m give a

{ #»

Cmr′+r
m ,

#»

Cms′+s
2m

}

-factorization of K∗
2mx. Then

HWP∗(v;mr, 2ms) has a solution except possibly when s ∈ {1, 3}.
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[21] S. Glock, F. Joos, J. Kim, D. Kühn and D. Osthus, Resolution of the Oberwolfach

problem, J. Eur. Math. Soc. JEMS 23 (2021) 2511–2547.
https://doi.org/10.4171/jems/1060
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