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Abstract

A vertex colored graph G is P vertex-connected if every two vertices
of G are connected by a path having property P. The problem is to find
the minimum integer k for which there exists a vertex k-coloring of G that
makes it P vertex-connected. In this note we introduce some modifications
of this problem and determine upper bounds for the corresponding graph
parameters. We deal with four properties, namely with property to be zig-
zag, to be dynamic, to be nonrepetitive, and to be conflict-free.
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1. Introduction

In the last years, connection concepts such as rainbow connection, monochromatic
connection, proper connection, conflict-free connection appeared in graph theory
and obtained a lot of attention.

A path in an edge colored graph G is a rainbow path if its edges have different
colors. An edge colored graph G is rainbow connected, if every two vertices are
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connected by at least one rainbow path in G. For a connected graph G, the
rainbow connection number of G is defined as the smallest number of colors
required to make it rainbow connected. The concept of rainbow connection in
graphs was introduced by Chartrand et al. [7] in 2008. Since then, a lot of results
on this concept have been obtained, see e.g. [17].

The opposite of the rainbow connection was introduced by Caro and Yuster [6]
in 2011. A path in an edge colored graph G is a monochromatic path if all the
edges of the path are colored with the same color. An edge colored graph G

is monochromatically connected, if any two vertices of G are connected by a
monochromatic path. For a connected graph G, the monochromatic connection
number of G is defined as the largest number of colors used in an edge color-
ing that makes G monochromatically connected. For results on monochromatic
connection of graphs we refer to a recent survey paper [19].

In 2012, Borozan et al. [2] introduced the concept of proper connection as a
natural extension of the rainbow connection. A path in an edge colored graph G
is a proper path if any two adjacent edges receive distinct colors. An edge colored
graph G is properly connected, if every two vertices are connected by at least one
proper path in G. For a connected graph G, the proper connection number of G is
defined as the smallest number of colors required to make it properly connected.
Readers who are interested in this topic are referred to [16].

Motivated by the above mentioned concepts and by conflict-free colorings of
graphs, in 2018, Czap et al. [9] introduced the concept of conflict-free connection.
A path in an edge colored graph G is called conflict-free, if there is a color used
on exactly one of its edges. An edge colored graph G is said to be conflict-free
connected if any two vertices are connected by at least one conflict-free path. The
conflict-free connection number of a connected graph G is defined as the smallest
number of colors in order to make it conflict-free connected.

As a natural counterpart of the concepts of rainbow connection, monochro-
matic connection, proper connection, and conflict-free connection, the concepts
of rainbow vertex-connection [15], monochromatic vertex-connection [5], proper
vertex-connection [8], and conflict-free vertex-connection [18] were introduced,
respectively.

The above mentioned connection concepts can be seen as a particular case
of the more general one, so called P connection, which was introduced by Brause
et al. [3] in 2018 as follows.

Let A = {a, b, c, . . .} be an alphabet, i.e., a set of colors, digits, symbols, etc.,
whose elements are called letters. A word W of length t over A is a sequence of
letters, say ℓ1ℓ2 · · · ℓt where ℓi ∈ A for i ∈ {1, 2, . . . , t}. A property P is a set of
words. If a word W belongs to P, then we say that W has property P.

Let G be a simple, connected, finite, and undirected graph with vertex set
V (G) and edge set E(G). Let P = v1v2 · · · vt be a path in G with vi ∈ V (G) for
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i ∈ {1, 2, . . . , t} and vivi+1 ∈ E(G) for i ∈ {1, 2, . . . , t− 1}. Let P be a property
over the alphabet A. Considering an edge coloring ϕ : E(G) → A (or a vertex
coloring ψ : V (G) → A), we say that P has property P if the associated word
ϕ(v1v2)ϕ(v2v3) · · ·ϕ(vt−1vt) (or ψ(v1)ψ(v2) · · ·ψ(vt)) has property P. Now, let
G be a connected graph, A be an alphabet with k letters, P be a property, and
ϕ : E(G) → A be an edge coloring (ψ : V (G) → A be a vertex coloring) of G. The
edge coloring ϕ makes G P connected (the vertex coloring ψ makes G P vertex-
connected) if every two vertices of G are connected by a path having property P.
The problem is to find the minimum/maximum integer k = |A| for which there
exists an edge coloring ϕ : E(G) → A (a vertex coloring ψ : V (G) → A) that
makes G P connected (P vertex-connected).

For instance, if P is the set of all words which does not contain identical
letters, then we obtain a rainbow connection; if P is the set of all words in which
consecutive letters are not identical, then we obtain a proper connection. Note
that for a fixed graph G it suffices to consider only words of length at most
|V (G)|.

As it is noted in [3], P connections of graphs play an important role for
security and accessibility in communication networks.

In this note we deal with four classes of properties and we focus on vertex
colorings.

2. Four Classes of Properties

Let A = {1, 2, 3, . . .}. We say that a property P is:

• E-property if every connected graph has a vertex coloring that makes it P
vertex-connected,

• A-property if every connected graph has a vertex coloring such that all paths
have property P,

• E∗-property if every connected graph has a proper vertex coloring that makes
it P vertex-connected,

• A∗-property if every connected graph has a proper vertex coloring such that
all paths have property P.

Let E , A, E∗, A∗ denote the set of all E-properties, A-properties, E∗-proper-
ties, A∗-properties, respectively. In general, it is not easy to decide to which
set(s) a given property P belongs.

First, we describe the relations between these four sets. The following two
properties will be very useful. Let W = ℓ1 · · · ℓt be a word. We say that W is:

• monochromatic if ℓ1 = · · · = ℓt,
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• zig-zag if one of the following holds

(i) t = 1,

(ii) t = 2 and ℓ1 6= ℓ2,

(iii) ℓi > max{ℓi−1, ℓi+1} or ℓi < min{ℓi−1, ℓi+1} for any subword ℓi−1ℓiℓi+1

of W .

The property monochromatic, zig-zag consists of all monochromatic, zig-zag
words, respectively.

Claim 1. The property zig-zag is E-property.

Proof. Let G be a connected graph and let S be its spanning tree. Clearly, S
has a proper vertex coloring with two colors, say 1, 2. Any such coloring induces
a coloring of G which makes it zig-zag vertex-connected.

Claim 2. The property zig-zag is E∗-property.

Proof. Let G be a connected graph and let S be its spanning tree. S has a
proper vertex coloring with two colors, say 1, 2. Let a and b be the number of
vertices colored with color 1 and 2, respectively. If we recolor the vertices colored
by 1 with different colors from the set {1, 2, . . . , a} and the vertices colored by 2
with different colors from the set {a+1, a+2, . . . , a+b}, then we obtain a proper
vertex coloring of G which makes it zig-zag vertex-connected. Any two vertices
are connected by a zig-zag path in G, since they are connected by such a path
in S.

Claim 3. The property zig-zag is not A-property.

Proof. For instance, odd cycles have no vertex coloring such that all paths are
zig-zag.

Claim 4. Let E, A, E∗, A∗ denote the set of all E-properties, A-properties, E∗-

properties, A∗-properties, respectively. Then

(a) E∗ ⊂ E;

(b) A∗ ⊂ A;

(c) A∗ ⊂ E;

(d) A ⊂ E;

(e) A∗ ⊂ E∗;

(f) A 6⊆ E∗ and E∗ 6⊆ A.
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Proof. E∗ ⊆ E , A∗ ⊆ A, A∗ ⊆ E , A ⊆ E , A∗ ⊆ E∗ by the definition. E∗ 6= E ,
A∗ 6= A, A∗ 6= E , since the property monochromatic belongs to A but does not
belong to E∗. A 6= E , A∗ 6= E∗, because the property zig-zag belongs to E∗ and
does not belong to A. Finally, the properties monochromatic and zig-zag show
that A 6⊆ E∗ and E∗ 6⊆ A.

Let G be a connected graph. If P is an E-property (E∗-property), then
the minimum integer k = |A| for which there exists a (proper) vertex coloring
ψ : V (G) → A that makes G P vertex-connected is denoted by πP(G) (π∗

P
(G)).

If P is an A-property (A∗-property), then the minimum k = |A|, for which there
exists a (proper) vertex coloring ψ : V (G) → A such that all paths of G have
property P is denoted by χP(G) (χ∗

P
(G)).

Evidently, π∗
P

(G) ≥ χ(G) and χ∗
P

(G) ≥ χ(G), where χ(G) denotes the chro-
matic number of G.

In the case when P contains all monochromatic words it is meaningful to
consider vertex colorings which make G P vertex-connected and maximize the
number of used colors.

3. Flexible Properties

Let A be an alphabet. Let P be a property over A. We say that P is flexible if it
is closed in the following sense. If a1a2 · · · ak ∈ P and b1b2 · · · bk is obtained from
a1a2 · · · ak by replacing ai with bi ∈ A in such a way that ai 6= aj implies bi 6= bj ,
then b1b2 · · · bk ∈ P.

Theorem 5. Let G be a connected graph and let S be its spanning tree. If P is

a flexible E-property, then

π∗P(G) ≤ πP(S) · χ(G).

Proof. Since P is an E-property, S has a vertex coloring ψ with πP(S) colors
that makes it P vertex-connected. Let φ be a proper vertex coloring of G with
χ(G) colors. We associate the ordered pair (ψ(v), φ(v)) to every vertex v of G.
Now, we define a new vertex coloring ρ of G in the following way. Two vertices
u, v of G receive the same color if and only if (ψ(u), φ(u)) = (ψ(v), φ(v)). The
obtained coloring uses πP(S) ·χ(G) colors, moreover it is a proper coloring, since
ρ(u) = ρ(v) implies φ(u) = φ(v).

Observe that, for any two vertices u and v of G there is a unique u− v path
in S. In S all paths have property P under the coloring ψ. Since P is flexible, all
of these paths have property P under the coloring ρ of G (ψ(u) 6= ψ(v) implies
ρ(u) 6= ρ(v)).
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Theorem 6. Let G be a connected graph, S be its spanning tree, and let P be a

flexible E-property. If S admits a proper vertex coloring with πP(S) colors that

makes it P vertex-connected, then

π∗P(G) ≤ πP(S) · χ(G \ E(S)).

Proof. We can proceed as in the proof of Theorem 5, with such a modification
that φ is a proper vertex coloring of G \ E(S) with χ(G \ E(S)) colors.

4. Zig-Zag Vertex-Connection

As it was shown (Claim 2 and Claim 3), the property zig-zag is E∗-property but
not A-property.

The smallest integer k, for which a connected graph G has a (proper) ver-
tex coloring ψ : V (G) → {1, 2, . . . , k} that makes G zig-zag vertex-connected
is denoted by πzz(G) (π∗zz(G)). Recall that a vertex colored graph G is zig-zag

vertex-connected if any two distinct vertices are connected by a zig-zag path, i.e.,
by a path whose associated word is zig-zag.

From the proof of Claim 1 we immediately have

Theorem 7. If G is a nontrivial connected graph, then πzz(G) = 2.

Since for any connected graph G it holds π∗zz(G) ≥ χ(G), we obtain

Corollary 8. Let G be a nontrivial connected graph. Then π∗zz(G) = 2 if and

only if G is bipartite.

Theorem 9. If G is a connected graph and S is its spanning tree, then

χ(G) ≤ π∗zz(G) ≤ 2 · χ(G \ E(S)).

Proof. Let ψ be a proper vertex coloring of S with colors 1 and 2. Let φ be a
proper vertex coloring of G \ E(S) with colors 1, 2, . . . , χ(G \ E(S)). Now, we
associate the ordered pair (ψ(v), φ(v)) to every vertex v of G. Observe that if
we assign the color k to vertices with associated pair (1, k) and assign the color
k + χ(G \ E(S)) to vertices with associated pair (2, k), then we obtain a proper
vertex coloring. Moreover, this coloring makes G zig-zag vertex-connected, since
S is zig-zag vertex-connected.

Note that Theorem 9 does not follow from Theorem 6, since the property
zig-zag is not flexible (for example, 3, 2, 4 is a zig-zag word but if we replace 4
with 1, then the obtained word 3, 2, 1 is not zig-zag).
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Corollary 10. If G is a connected graph, then

χ(G) ≤ π∗zz(G) ≤ 2 · χ(G).

Theorem 9 can be strengthen as follows.

Theorem 11. Let G be a connected graph and let S be its spanning tree with

bipartition (V1, V2). Then

π∗zz(G) ≤ χ(G[V1]) + χ(G[V2]),

where G[Vi] is the induced subgraph of G for i ∈ {1, 2}.

Proof. Let ψ be a proper vertex coloring of G[V1] with colors 1, 2, . . . , χ(G[V1])
and let φ be a proper vertex coloring of G[V2] with colors χ(G[V1])+1, χ(G[V1])+
2, . . . , χ(G[V1])+χ(G[V2]). Clearly, these colorings induce a proper vertex coloring
of G. Moreover, for any two vertices u and v of G there is a unique u − v path
in S, which is evidently a zig-zag path.

Problem 12. Is it true that π∗zz(G) = χ(G) for any connected graph G?

If G is a graph with maximum degree ∆, then it has a proper vertex coloring
with at most ∆+1 colors (this bound is tight for odd cycles and complete graphs,
moreover, Brooks proved that these are the only graphs for which we need ∆ + 1
colors). In the following we prove that any connected graph admits a proper
vertex coloring with at most ∆ + 1 colors such that any two vertices of G are
connected by a zig-zag path.

Theorem 13. If G is a connected graph with maximum degree ∆, then

π∗zz(G) ≤ ∆ + 1.

Proof. We prove a slightly stronger assertion. We show that every connected
graph G has a proper vertex coloring such that it uses at most ∆ + 1 colors and
it makes at least one spanning tree of G zig-zag vertex-connected.

Suppose to the contrary that H is a counterexample with minimum number
of vertices. Let v be a vertex of H such that H−v is connected. The graph H−v
has fewer vertices than H, therefore it has a required coloring ψ. We show that
the coloring ψ can be extended to a required one of H, which is a contradiction
to H being a counterexample.

Let N(v) be the set of all neighbors of v in H. Let T be a spanning tree of
H − v that is zig-zag vertex-connected.

If there is a vertex u ∈ N(v) such that ψ(u) = 1, then it is sufficient to
color the vertex v with a color which does not appear on its neighbors. In T any
two vertices are connected by a unique path. Therefore, ψ(u) = 1 implies that
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ψ(y) > ψ(u) holds for every edge yu of T with u ∈ N(v). Consequently, we can
extend the zig-zag vertex-connected spanning tree T by adding the vertex v and
the edge uv.

So we can assume that no vertex in N(v) has color 1. If there is an edge xu of
T with u ∈ N(v) such that ψ(x) < ψ(u), then it is sufficient to color the vertex v
with color 1. In such a way we obtain a proper vertex coloring of H. Similarly as
above, in T any two vertices are connected by a unique path, hence, ψ(x) < ψ(u)
implies that ψ(y) < ψ(u) holds for every edge yu of T with u ∈ N(v). So, we
can extend the zig-zag vertex-connected spanning tree T by adding the vertex
v and the edge uv. Finally, if for every edge xu of T with u ∈ N(v) it holds
ψ(x) > ψ(u), then no vertex u ∈ N(v) has color ∆ + 1. Observe if we color v
with ∆ + 1, then we obtain a proper vertex coloring of H and T can be extended
by adding the vertex v and an arbitrary edge uv with u ∈ N(v).

5. Dynamic Vertex-Connection

Let W = ℓ1 · · · ℓt be a word. We say that W is dynamic if one of the following
holds.

(i) t = 1,

(ii) t = 2 and ℓ1 6= ℓ2,

(iii) W contains at least three different letters.

The property dynamic consists of all dynamic words. Clearly, dynamic is A∗-
property, since if we color the vertices of a connected n-vertex graph with n

different colors, then every path is dynamic.
The smallest integer k, for which a connected graph G has a (proper) vertex

coloring ψ : V (G) → {1, 2, . . . , k} that makes G dynamic vertex-connected is
denoted by πd(G) (π∗d(G)). The minimum k for which there exists a (proper)
vertex coloring ψ : V (G) → {1, 2, . . . , k} such that all paths of G are dynamic is
denoted by χd(G) (χ∗

d(G)).

In the following the next two lemmas will be very useful.

Lemma 14 [18]. If G is a 2-connected graph and w is a vertex of G, then for

any two vertices u and v in G, there is a u− v path containing w.

Lemma 15 [9]. If G is a 2-connected graph and e is an edge of G, then for any

two vertices u and v in G, there is a u− v path containing e.

Theorem 16. If G is a 2-connected graph, then

πd(G) = 3.
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Proof. To obtain a required coloring of a 2-connected graph G we choose an
edge e = xy of G, then we color the endvertices of xy with different colors and
color all the remaining vertices with a third color.

By Lemma 15, for any two vertices u and v in G, there is a u − v path
containing the edge xy.

Let u, v be two vertices in G. If {u, v} ∩ {x, y} = ∅, then any u − v path
containing the edge xy is dynamic. If {u, v} = {x, y}, then any u − v path is
dynamic. Finally, without loss of generality assume that u = x and v 6= y. In
this case, 2-connectedness of G implies that G contains a u − v path containing
y (see Lemma 14), which is evidently dynamic.

Theorem 17. Let G be a connected graph on at least three vertices and let m

denote the maximum number of cut-edges incident with a vertex of G. Then

πd(G) = max{3,m+ 1}.

Proof. G has at least three vertices, so trivially πd(G) ≥ 3. Now assume that v
is a vertex of G incident with m cut-edges. In this case πd(G) ≥ m+ 1, since any
two of the neighbors of v are connected by a unique path (through v).

Now we prove that πd(G) ≤ max{3,m + 1}. We proceed by induction on
the number of blocks of G. If G has only one block, then it is 2-connected,
so the result follows from Theorem 16. Now assume that G has at least two
blocks. Let H be a block of G incident with exactly one cut-vertex u of G. Let
G′ = G− (H−u) be a graph obtained from G by removing all edges and vertices
incident with H except for u. Let ψ be a coloring of G′ with πd(G′) colors that
makes G′ dynamic vertex-connected. We extend this coloring of G′ to a coloring
of G in the following way. There are two possibilities: either H is 2-connected or
it is a complete graph on two vertices. In the former case we choose two adjacent
vertices x, y of H−u, we color all the vertices of H except for x, y with color ψ(u)
and then we color x, y with two different colors distinct from ψ(u). By Lemma 14
and Lemma 15, this coloring makes G dynamic vertex-connected. Now assume
that H is a complete graph on two vertices. In this case we color the uncolored
vertex of H with a color which appears neither on u nor on a neighbor w of u
such that uw is a cut-edge in G′.

Corollary 18. If T is a tree with maximum degree ∆, then

πd(T ) = ∆ + 1.

Theorem 19. If G is a 2-connected nonbipartite graph, then

π∗d(G) = χ(G).
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Proof. Let ψ be a proper vertex coloring of G with χ(G) colors. G is nonbipar-
tite, therefore χ(G) ≥ 3. The coloring ψ uses χ(G) colors, hence for any two used
colors a, b there is an edge in G whose endvertices are colored with a and b.

Let u, v be two vertices in G. If ψ(u) = ψ(v), then we find an edge e with no
endvertex of color ψ(u). G is 2-connected, so there is a u−v path in G containing
the edge e; such a path exists by Lemma 15. If ψ(u) 6= ψ(v), then we choose
a third vertex w whose color is distinct from ψ(u), ψ(v) and find a u − v path
containing w; such a path exists by Lemma 14. The obtained u − v paths are
dynamic, so π∗d(G) ≤ χ(G).

The inequality π∗d(G) ≥ χ(G) trivially holds.

It is easy to see that for the cycle on four vertices C4 it holds π∗d(C4) = 4.
For the other 2-connected bipartite graphs three colors are sufficient.

Theorem 20. If G 6= C4 is a 2-connected bipartite graph, then

π∗d(G) = 3.

Proof. Let G 6= C4 be a 2-connected bipartite graph with partite sets V1 and
V2, i.e., each edge of G has one endvertex in V1 and one in V2. Assume that
|V1| ≥ |V2|. Clearly, |V1| ≥ 3 and |V2| ≥ 2. First assume that G is not a
complete bipartite graph. Then there are vertices v1 ∈ V1 and v2 ∈ V2 such that
v1v2 6∈ E(G). Color the vertices from V1 except for v1 with color 1, the vertices
from V2 except for v2 with 2, and the vertices v1, v2 with color 3. In such a way
we obtain a proper vertex coloring of G. G is 2-connected, so it has no vertex
of degree one. This implies that G contains an edge e1 whose endvertices are
colored with 2 and 3, an edge e2 whose endvertices are colored with 1 and 3, and
an edge e3 whose endvertices are colored with 1 and 2.

Now, let u, v be two vertices of G. If they have different colors, then we
choose a third vertex w colored with the third color. By Lemma 14, there is a
u − v path containing w. If they have the same color, say 1, then we choose an
edge e1 whose endvertices are colored with 2 and 3. By Lemma 15, there is a
u− v path containing e1.

Finally, assume that G is a complete bipartite graph. Let x be a vertex from
V2. Color the vertices from V1 with 1, the vertices from V2 except for x with 2,
and the vertex x with color 3. In the obtained proper vertex coloring there are
only edges whose endvertices are colored with 1, 2 and edges whose endvertices
are colored with 1 and 3.

Now, let u, v be two vertices of G. If both of them have color 1, then let w
be an other vertex of color 1, and let y be a vertex of color 2. Then uywxv is a
dynamic path. In all other cases we proceed similarly as in the previous case.
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Theorem 21. Let G be a connected graph with at least one cut-vertex. Let m

denote the maximum number of cut-edges incident with a vertex of G. Then

π∗d(G) =

{

max{3,m+ 1, χ(G)} if G does not contain C4 as a block,

max{4,m+ 1, χ(G)} otherwise.

Proof. We can proceed similarly as in the proof of Theorem 17.

Let G2 be the square of G, which is the graph obtained from G by adding
the edges between pairs of vertices at distance two.

Theorem 22. If G is a connected graph, then

χd(G) = χ∗
d(G) = χ(G2).

Proof. Let ψ be a vertex coloring of G such that all paths of G are dynamic.
Then ψ is a proper coloring, since every path on two vertices is dynamic. Now
assume that u and v are at distance two in G. This implies that there is a third
vertex w such that w is adjacent with both of them. Clearly, uwv form a path
on three vertices in G. Every path of G is dynamic, so the vertices u,w, v are
colored with different colors. Consequently, any two vertices at distance at most
two have different colors. Therefore, χ∗

d(G) ≥ χ(G2).

Now assume that ρ is a proper vertex coloring of G2. If two vertices are
adjacent in G, then they are adjacent in G2 as well. If uwv is a path on three
vertices in G, then the vertices u,w, v are mutually adjacent in G2. Hence any
proper vertex coloring of G2 induces a proper vertex coloring of G such that
any path on at least three vertices is colored with at least three colors, i.e.,
χ∗
d(G) ≤ χ(G2).

6. Nonrepetitive Vertex-Connection

A word of the form ℓ1ℓ2 · · · ℓnℓ1ℓ2 · · · ℓn is called a repetition. A word is nonrepet-
itive if it does not contain a repetition as a block, i.e., a sequence of consecutive
letters. The property nonrepetitive consists of all nonrepetitive words. Clearly,
nonrepetitive is A∗-property, since if we color the vertices of a connected n-vertex
graph with n different colors, then every path is nonrepetitive.

The smallest integer k, for which a connected graph G has a (proper) vertex
coloring ψ : V (G) → {1, 2, . . . , k} that makes G nonrepetitive vertex-connected is
denoted by πnr(G) (π∗nr(G)). The minimum k for which there exists a (proper)
vertex coloring ψ : V (G) → {1, 2, . . . , k} such that all paths of G are nonrepetitive
is denoted by χnr(G) (χ∗

nr(G)).
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Determining πnr(G) is a nontrivial task even for paths. Indeed, the fact that
πnr(Pn) = 3 for all n ≥ 4 follows from the famous result of Thue [21].

Brešar et al. [4] proved that every tree admits a proper vertex coloring with
at most four colors that makes it nonrepetitive vertex-connected.

Theorem 23 [4]. If T is a tree, then

πnr(T ) = π∗nr(T ) = χnr(T ) = χ∗
nr(T ) ≤ 4.

This result immediately implies.

Corollary 24. If G is a connected graph, then πnr(G) ≤ 4.

Now consider proper vertex colorings that make G nonrepetitive vertex-con-
nected.

Theorem 25. If G is a connected graph and S is its spanning tree, then

χ(G) ≤ π∗nr(G) ≤ 4 · χ(G \ E(S)).

Proof. It follows from Theorem 6, Theorem 23, and from the fact that the
property nonrepetitive is flexible.

Corollary 26. Every connected planar graph has a proper vertex coloring with at

most 16 colors such that any two of its vertices are connected by a nonrepetitive

path.

Very recently was proven, by Dujmović et al. [12], that every planar graph G
has a proper vertex coloring with at most 768 colors such that every path in G is
nonrepetitive, i.e., χ∗

nr(G) ≤ 768. For several years, the problem whether planar
graphs have bounded χ∗

nr(G) was widely recognized as the most important open
problem in the field of nonrepetitive graph coloring.

Vertex coloring in which all paths are nonrepetitive was introduced by Alon
et al. [1]. They obtained the following bounds for χ∗

nr(G).

Theorem 27 [1]. If G is a graph with maximum degree ∆, then there are absolute

constants c1 and c2 such that

c1 ·
∆2

log ∆
≤ χ∗

nr(G) ≤ c2 · ∆2.

The precise upper bound shown was 216∆2. Several authors subsequently
improved the constant 216. The best presently known upper bound on χ∗

nr(G) is
the following one by Dujmović et al. [13] from 2016.
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Theorem 28 [13]. If G is a graph with maximum degree ∆, then

χ∗
nr(G) ≤ (1 + o(1))∆2.

Note that the topic of the nonrepetitive coloring is intensively studied. There
is a very recent survey of Wood [22], which gives a unified and comprehensive
presentation for the major results and proof methods as well as to highlight
numerous open problems.

We offer the following.

Problem 29. Determine the precise value K such that π∗nr(G) ≤ K for every
connected graph G.

7. Conflict-Free Vertex-Connection

Let W = ℓ1 · · · ℓt be a word. We say that W is conflict-free if at least one letter
occurs exactly once in W . The property conflict-free consists of all conflict-free
words. Clearly, conflict-free is A∗-property, since if we color the vertices of a
connected n-vertex graph with n different colors, then every path is conflict-free.

The smallest integer k, for which a connected graph G has a (proper) vertex
coloring ψ : V (G) → {1, 2, . . . , k} that makes G conflict-free vertex-connected is
denoted by πcf (G) (π∗cf (G)). The minimum k for which there exists a (proper)
vertex coloring ψ : V (G) → {1, 2, . . . , k} such that all paths of G are conflict-free
is denoted by χcf (G) (χ∗

cf (G)).
Note that, χcf (G) = χ∗

cf (G) for any connected graph G, since if a path on
two vertices is conflict-free, then its vertices have different colors.

The concept of conflict-free vertex-connection was introduced very recently;
even so, the study of πcf (G) has attracted a lot of attention, see e.g. [10, 11, 14,
18, 20].

For π∗cf (G) we have the following Vizing type theorem.

Theorem 30. If G is a 2-connected graph or it has only one cut-vertex, then

χ(G) ≤ π∗cf (G) ≤ χ(G) + 1.

Proof. It suffices to show that π∗cf (G) ≤ χ(G) + 1.
By Lemma 14, if w is a vertex of G, then for any two vertices u and v in

G, there is a u − v path containing w. Therefore, to get a required coloring of
a 2-connected graph G we choose an arbitrary vertex x of G, then we properly
color G with χ(G) colors and finally we recolor x with a new color χ(G) + 1. If
G has exactly one cut-vertex, say y, then our chosen vertex is y.

The upper bound is tight due to bipartite graphs.
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If a graph G contains more cut-vertices, then the situation is much more
complicated. Observe that for any tree T we have πcf (T ) = π∗cf (T ) = χcf (T ) =
χ∗
cf (T ). For paths, we have the following result.

Theorem 31 [18]. If Pn is a path on n vertices, then

πcf (Pn) = π∗cf (Pn) = χcf (Pn) = χ∗
cf (Pn) = ⌈log2(n+ 1)⌉ .

Recently, Ji et al. [14] proved the following.

Theorem 32 [14]. If G is a connected graph with t cut-vertices, then

πcf (G) ≤ ⌈log2(t+ 1)⌉ + 1.

It is easy to see that the property conflict-free is flexible. So the next result
immediately follows from Theorems 6 and 32.

Corollary 33. Let G be a connected graph and let S be its spanning tree with t

cut-vertices. Then

π∗cf (G) ≤ (⌈log2(t+ 1)⌉ + 1) · χ(G \ E(S)).

We finish the paper with the following problem.

Problem 34. Determine the value χcf (G) for any graph G.
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