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Abstract

For graphs G and H, the multicolor Ramsey number rk+1(G;H) is de-
fined as the minimum integer N such that any edge-coloring of KN by
k + 1 colors contains either a monochromatic G in the first k colors or a
monochromatic H in the last color. We shall write two color Ramsey num-
bers as r(G,H). For graphs F , G and H, let F → (G,H) signify that any
red/blue edge coloring of F contains either a red G or a blue H. Define
the star-critical Ramsey number r∗(G,H) as max{s | Kr \K1,s → (G,H)}
where r = R(G,H). A fan Fn is a graph that consists of n copies of K3

sharing a common vertex, and a book B
(p)
n is a graph that consists of n

copies of Kp+1 sharing a common Kp. In this note, we shall show the upper
bounds for rk+1(Kt,s;Fn), rk+1(K2,s;Fn), rk+1(C2t;Fn), some of which are
sharp up to the sub-linear term asymptotically. We also obtain the value of

r∗(Fm, B
(p)
n ) as n → ∞.

Keywords: multicolor Ramsey number, star-critical Ramsey number, fan,
book.
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1. Introduction

For simple graph G, let v(G) = |V (G)| and e(G) = |E(G)|, respectively. For
graphs G and H, the multicolor Ramsey number rk+1(G;H) is defined as the
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minimum integer N such that any edge-coloring of KN by k + 1 colors contains
either a monochromatic G in the first k colors or a monochromatic H in the
last color. We shall write two color Ramsey number r2(G;H) as r(G,H). Let
r(G,G) = r(G) be the diagonal Ramsey number. Then we call r(G,H) the off-
diagonal Ramsey number when G 6= H. For graphs F , G and H, let F → (G,H)
signify that any red/blue edge coloring of graph F contains a red subgraph G or
a blue subgraph H. Call graph F a Ramsey graph if F → (G,H) and v(F ) =
r(G,H). Let Kr \F denote the graph obtained from Kr by deleting the edges of
F from Kr, where F is viewed as a subgraph of Kr.

A new problem in Ramsey theory to consider is that the largest surplus
graph F such that Kr \ F remains a Ramsey graph. Thus we shall define F as a
surplus subgraph of (G,H). If we consider F as a star, then we have the following
definition.

Definition [26]. The definition of star-critical Ramsey number is

r∗(G,H) = max{s | Kr \K1,s → (G,H)},

where r = r(G,H).

In this problem, one may ask how to add an extra vertex u and connect u with
s vertices of Kr−1 completely such that the resultant graph remains a Ramsey
graph of (G,H). Let Kr−1 ⊔ K1,s signify the graph that consists of a complete
graph Kr−1 and an extra vertex u obtained by connecting vertex u with random s
vertices from V (Kr−1) completely. Hook and Isaak [14] introduced the definition
of the star-critical Ramsey number first as r∗(G,H) = min{s | Kr−1 ⊔ K1,s →
(G,H)}, where r = r(G,H).

By above definitions, r(G,H) = r∗(G,H) + r∗(G,H) + 1. The study of
star-critical Ramsey numbers attracts much interests, see [17, 21, 28, 30].

For a vertex u ∈ V (G) and set U ⊆ V (G), let NR(u, U) and NB(u, U) de-
note the sets of neighbors of u in set U in graph R and B, respectively. Define
dR(u, U) = |NR(u, U)| and dB(u, U) = |NB(u, U)|. Let χ(G) denote the chro-
matic number of G. Let δ(G) and ∆(G) be the minimum degree and maximum
degree of G, respectively. Let V1, V2, . . . , Vχ(G) be the color classes of G with
|V1| ≤ |V2| ≤ · · · ≤ |Vχ(G)|. Define s(G) = |V1|, and

τ(G) = min min
v∈V1

|V1|=s(G)

min
2≤i≤χ(G)

|NG(v) ∩ Vi|,

in which the first minimum takes over all proper vertex colorings of G.

For graphs G and H, where H is connected with v(H) ≥ s(G), if r(G,H) =
(χ(G) − 1)(v(H) − 1) + s(G), then Burr [3] defined that H is G-good. Hao and
Lin [13] gave a general upper bound for r∗(G,H).
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Lemma 1 [13]. For graph G with χ(G) ≥ 2 and connected graph H with v(H) ≥
s(G), if H is G-good, then

r∗(G,H) ≤ max{s(G)− 2, v(H) + s(G)− δ(H)− τ(G)− 1}.

Call a graph B
(p)
n to be a book that consists of n copies of Kp+1 sharing a

common Kp, and a graph Fn to be a fan that consists of n copies of K3 sharing
a common vertex. Book and fan graphs play important roles in graph Ramsey
theory. It was shown by Rousseau and Sheehan [23] that r(Bn) = 4n + 2 for

infinitely many n. Moreover, Conlon [5] obtained r(B
(m)
n ) ∼ 2mn as n → ∞.

Chen, Yu and Zhao [4] improved the bound of r(Fn) as 9
2n − 5 ≤ r(Fn) ≤

11
2 n + 6. Recently, Dvořák and Metrebian [6] improved the upper bound as
r(Fn) ≤ 31

6 n+ 15. For the results about the off-diagonal cases, see [29].

It is difficult to determine the exact values of Ramsey numbers involving
fans. The case of multicolor Ramsey numbers involving fans is even worse. In
this note, we focus on the multicolor Ramsey numbers and star-critical Ramsey
numbers involving fans.

For positive functions f(n) and g(n), we write f(n) = o(g(n)) if f(n)
g(n) → 0

as n → ∞, and f(n) = Θ(g(n)) if c1g(n) ≤ f(n) ≤ c2g(n) for some constants
c1, c2 > 0 and all large n.

Theorem 2. Let s ≥ t ≥ 3 and k ≥ 1 be fixed integers. If ǫ > 0, then

rk+1(Kt,s;Fn) ≤ 2n+ (1 + ǫ)k(s− t+ 1)1/t(2n)1−1/t

for all sufficiently large n.

Then we consider a special case of rk+1(Kt,s;Fn).

Theorem 3. Let s ≥ 2 and k ≥ 1 be fixed integers. Let a = rk(K2,s). If ǫ > 0,
then

rk+1(K2,s;Fn) ≤ 2n+

⌈

k
√

(s− 1)2n+
k(ks− k + 1)

2
+ ǫ

⌉

+ a

for all sufficiently large n.

Theorem 4. Let k, t ≥ 1 be fixed integers. If n is large, then

rk+1(C2t;Fn) ≤ 2n+ (1 + o(1))ctkn
1/t

where ct > 0 is a constant depending on t only.

By the above results, we can get the following theorem.
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Theorem 5. Let k, t, s ≥ 1 be fixed integers. Then there are infinitely many

n such that rk+1(K2,s;Fn) = 2n + (1 + o(1))k
√

(s− 1)2n and rk+1(K3,3;Fn) =
2n+(1+o(1))k(2n)2/3 as such n → ∞, and rk+1(C2t;Fn) = 2n+(1+o(1))ctkn

1/t

for all sufficiently large n where ct > 0 is a constant depending on t only.

Recently, Liu and Li [20] showed that for fixed integers m, p,

(1) r
(

Fm, B(p)
n

)

= 2(n+ p− 1) + 1

for large n. The star-critical Ramsey numbers involving large books also receive

much attention, see [13, 18, 19]. It is determined in [19] that r∗(K2+G,B
(p)
n ) ∼ n

for given graph G and fixed integer p as n → ∞ where K2+G is the join of graphs
K2 and G by connecting all the vertices of K2 and all that of G completely. In

this note, we also obtain the asymptotic value of r∗(Fm, B
(p)
n ) as follows.

Theorem 6. If m and p are fixed integers, then

r∗(Fm, B(p)
n ) ∼ n

as n → ∞.

2. Proofs

For a graph G whose edges are colored by red and blue, let R and B denote the
subgraphs of G induced by red and blue edges, respectively.

The Turán number ex(n,H) of H is defined as the maximum e(G) of an
H-free graph G of order n. A well known argument called double counting of
Kövári, Sós and Turán [16] shows that

(2) ex(N,Kt,s) ≤
1

2

[

(s− 1)1/tN2−1/t + (t− 1)N
]

for s ≥ t ≥ 3. Furthermore, Füredi [12] obtained

ex(N,Kt,s) ≤
1

2

[

(s− t+ 1)1/tN2−1/t + tN + tN2−2/t
]

,

which improves (2) for s ≥ t ≥ 3.
Erdős, Füredi, Gould and Gunderson [10] showed that for n ≥ 1 and N ≥

50n2,

ex(N,Fn) ≤
⌊

N2

4

⌋

+ n2 − cn,

where c = 1 for odd n and c = 3/2 for even n.
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For even cycles C2t, Bondy and Simonovits [2] proved that for any t ≥ 2,

ex(N,C2t) ≤ ctN
1+1/t

for large N , where ct > 0.

Proof of Theorem 2. Let ℓ = (1 + ǫ)k(s − t + 1)1/t(2n)1−1/t and N = 2n + ℓ
where ǫ > 0. Color the edges of KN by colors 1, 2, . . . , k + 1. Denote by Gi

the spanning subgraph of order N induced by edges of KN in color i. To prove
rk+1(Kt,s;Fn) ≤ N , it suffices to show that k · ex(N ;Kt,s) + ex(N ;Fn) ≤

(

N
2

)

.

Otherwise if
(

N
2

)

=
∑k+1

i=1 e(Gi) > k · ex(N ;Kt,s)+ex(N ;Fn), then either e(Gi) >
ex(N ;Kt,s) for some 1 ≤ i ≤ k, or e(Gk+1) > ex(N ;Fn). Thus we get a Kt,s in
color i or an Fn in color k + 1. Then we have

N(N − 1)

2
>

k

2

[

(s− t+ 1)1/tN2−1/t + tN + tN2−2/t
]

+

⌊

N2

4

⌋

+ n2 − cn,

where c = 1 for odd n and c = 3/2 for even n. Equivalently,

2N2 − 2N > 2k(s− t+ 1)1/tN2−1/t + 2ktN + 2ktN2−2/t +N2 + 4(n2 − cn).

So it holds

(3) 1− 2 + 2kt

N
>

2k(s− t+ 1)1/t

N1/t
+

2kt

N2/t
+

4(n2 − cn)

N2
.

Note that 1 − 2+2kt
N > 1 − 2+2kt

2n , 2k(s−t+1)1/t

N1/t < 2k(s−t+1)1/t

(2n)1/t
. The third term on

right side of (3) is

4(n2 − cn)

N2
=

4n2 − 4cn

(2n+ ℓ)2
=
(

1− c

n

)

(

1 +
ℓ

2n

)−2

=
(

1− c

n

)

(

1− ℓ

n
+Θ

(

1

n2

))

= 1− c+ ℓ

n
+Θ

(

ℓ

n2

)

.

The second term on right side of (3) is 2kt
N2/t = Θ

(

1
n2/t

)

. So

1− 1 + kt

n
>

2k(s− t+ 1)1/t

(2n)1/t
+ 1− c+ ℓ

n
+Θ

(

ℓ

n2

)

+Θ

(

1

n2/t

)

.

Since ℓ
n2 = Θ

(

1
n1+1/t

)

= o
(

1
n2/t

)

, we only need to show that

1 + kt

n
< −2k(s− t+ 1)1/t

(2n)1/t
+

c+ ℓ

n
−Θ

(

1

n2/t

)

.
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Namely,

1 + kt < c+ ℓ− k(s− t+ 1)1/t(2n)1−1/t −Θ
(

n1−2/t
)

.

Then

ℓ > k(s− t+ 1)1/t(2n)1−1/t +Θ
(

n1−2/t
)

+ 1 + kt− c.

Since Θ
(

n1−2/t
)

= o
(

n1−1/t
)

, we have that if ǫ > 0 and ℓ = (1 + ǫ)k(s − t +

1)1/t(2n)1−1/t, then the claimed statement follows for large n.

Lemma 7 [27]. Let s ≥ 2 be an integer. Then

ex(N ;K2,s) ≤
1

2

(√
s− 1N3/2 +

N

2

)

.

Proof of Theorem 3. Let ℓ =
⌈

k
√

(s− 1)2n+ k(ks−k+1)
2 +ǫ

⌉

and N = 2n+ℓ+a

where ǫ > 0. Color the edges of KN by colors 1, 2, . . . , k + 1. Denote by Gi the
spanning subgraph of order N induced by edges of KN in color i. Let di(v) be
the number of neighbors that are adjacent to v by color i for 1 ≤ i ≤ k + 1.

We claim that if (2n + ℓ + a)ℓ > 2k · ex(N ;K2,s), then rk+1(K2,s;Fn) ≤ N .
For any vertex v ∈ V (KN ), we have dk+1(v) ≤ 2n+a−1. Otherwise if dk+1(v) ≥
2n+ a, then Nk+1(v) can only contain at most n− 1 copies of K2 in color k+1,
otherwise we have an Fn in color k+1. So the graph induced by Nk+1(v) contains
a Ka+2, whose edges are colored by i = 1, . . . , k. Then we get a K2,s in color i
for some i = 1, . . . , k since a = rk(K2,s). Then

k
∑

i=1

di(v) ≥ N − 1− (2n+ a− 1) = ℓ.

Thus
k
∑

i=1

e(Gi) ≥
(2n+ ℓ+ a)ℓ

2
> k · ex(N ;K2,s)

such that e(Gi) ≥ ex(N ;K2,s) for some i = 1, . . . , k. Then we only need to prove
(2n + ℓ + a)ℓ > 2k · ex(N ;K2,s). Namely, (2n + ℓ + a)ℓ > k

(√
s− 1(2n + ℓ +

a)3/2 + 2n+ℓ+a
2

)

. Equivalently,

k
√

(s− 1)2n+
k(ks− k + 1)

2
+ ǫ > k

√

(s− 1)(2n+ ℓ+ a) +
k

2
.

So
ks− k

2
+

ǫ

k
>
√

(s− 1)(2n+ ℓ+ a)−
√

(s− 1)2n,
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which is true since

√

(s−1)(2n+ ℓ+ a)−
√

(s−1)2n =

√
s−1(ℓ+ a)√

2n+ ℓ+ a+
√
2n

∼
√
s−1ℓ

2
√
2n

→ k(s−1)

2

as n → ∞.

Proof of Theorem 4. Let ℓ = (1+ o(1))ctkn
1/t and N = 2n+ ℓ. Denote by Gi

the spanning subgraph of order N induced by edges of KN in color i. Similarly,
it suffices to show that

k · ex(N ;C2t) + ex(N ;Fn) ≤
(

N

2

)

.

Namely,

N2 − 2N ≥ 4kctN
1+1/t + 4

(

n2 − cn
)

where c = 1 for odd n and c = 3/2 for even n, which is

1− 2

N
≥ 4kct

N1−1/t
+

4(n2 − cn)

N2
.

Since 1− 2
N > 1− 1

n ,
4kct

N1−1/t < 4kct
(2n)1−1/t and 4(n2−cn)

(2n+ℓ)2
= 1− ℓ+c

n +Θ
(

ℓ
n2

)

, we have

1− 1

n
≥ 4kct

(2n)1−1/t
+ 1− ℓ+ c

n
+Θ

(

ℓ

n2

)

.

Thus
ℓ+ c− 1

n
≥ 4kct

(2n)1−1/t
+Θ

(

ℓ

n2

)

.

Therefore it holds

ℓ+ c− 1 ≥ 2kct(2n)
1/t +Θ

(

ℓ

n

)

.

Note that Θ
(

ℓ
n

)

= Θ
(

1
n1−1/t

)

= o
(

n1/t
)

. We shall get the desired upper bound,
completing the proof.

Lemma 8 [27]. Let k, s ≥ 1 be fixed integers. Then there are infinitely many n
such that

rk+1(K2,s;K1,2n) = 2n+ (1 + o(1))k
√

(s− 1)2n.

Lemma 9 [27]. Let k ≥ 1 be fixed integer. Then there are infinitely many n such

that

rk+1(K3,3;K1,2n) = 2n+ (1 + o(1))k(2n)2/3.
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Lemma 10 [27]. Let H be a bipartite graph with ex(N,H) ≥ cN2−η as N → ∞,

where c and η are positive constants. If there are extremal graphs GN of order N
for ex(N,H) such that δ(GN ) ∼ ∆(GN ) as N → ∞, then

rk+1(H;K1,n) ≥ n+ (1− ǫ)2kcn1−η

for large n, where ǫ > 0.

Proof of Theorem 5. By Lemma 8 and Theorem 3, we have rk+1(K2,s;Fn) =
2n+(1+o(1))k

√

(s− 1)2n for infinitely many n as n → ∞ since rk+1(K2,s;Fn) ≥
rk+1(K2,s;K1,2n).

By Lemma 9 and Theorem 2, we have rk+1(K3,3;Fn) = 2n+(1+o(1))k(2n)2/3

for infinitely many n as n → ∞ since rk+1(K3,3;Fn) ≥ rk+1(K3,3;K1,2n).
By Lemma 10 and Theorem 4, we have rk+1(C2t;Fn) = 2n+(1+o(1))ctkn

1/t

for sufficiently large n since rk+1(C2t;Fn) ≥ rk+1(C2t;K1,2n).

In terms of the proof of Theorem 6, the basic tool we mainly used is the
stability theorem from Erdős and Simonovits. Intuitively, stability theorem de-
scribes that the structure of large graph G that has no subgraph G1 is similar to
that of Kq(N/q) where χ(G1) = q + 1 if e(G)− e(Kq(N/q)) is very small.

Lemma 11 [8, 9, 24]. Let G be a given “forbidden” graph with χ(G) = k + 1.
For each ξ > 0, there exist δ = δ(ξ) > 0 and N0 = N0(δ) > 0 such that if H is a

graph with v(H) = N > N0 and e(H) > k−1
2k N2 − δN2 that contains no G, then

there is a partition of V (H) into classes V1, V2, . . . , Vk such that

(i) N/k − ξN < |Vi| < N/k + ξN for each i = 1, 2, . . . , k;

(ii) all but at most ξN2 pairs (u, v) with u ∈ Vi and v ∈ Vj (i 6= j) belong to

E(H);

(iii) at most ξN2 pairs (u, v) with u, v ∈ Vi belong to E(H);

(iv) no vertex is adjacent to fewer vertices in some other class than the number

of vertices to which it is adjacent in its own class.

The following Regularity Lemma is due to Szemerédi. For graph G, let
X,Y ⊂ V (G) be nonempty subsets and X ∩ Y = ∅. Let e(X,Y ) be the number

of edges between sets X and Y . Denote by d(X,Y ) = e(X,Y )
|X||Y | the density of pair

(X,Y ). A pair (U, V ) is called ǫ-regular if |d(U, V ) − d(X,Y )| < ǫ whenever
U ⊂ X, V ⊂ Y such that |U | ≥ ǫ|X| and |V | ≥ ǫ|Y | for ǫ > 0.

Lemma 12 [25]. For positive integer ℓ and real ǫ, there is a large integer N =
N(ℓ, ǫ) such that the vertex set V (G) of any graph G has a partition

⋃q
i=1 Vi with

ℓ ≤ q ≤ N if n = v(G) is large enough, where |V0| < ǫn, |V1| = |V2| = · · · = |Vq|
and all but at most ǫq2 pairs (Vi, Vj), 1 ≤ i 6= j ≤ q, are ǫ-regular.

Before proceeding to proof, we also need to introduce the following lemmas.
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Lemma 13 [7]. Let integers t ≥ 3, p ≥ 2. There exists a ct,p > 0 such that

if G is a Kt-free graph of order n ≥ R(Kt,Kp), then G contains at least ct,pn
p

independent p-sets.

Lemma 14 [15]. Let 0 < ǫ < η ≤ 1 and (η − ǫ)p−2 > ǫ. Suppose G is a graph

and V (G) = V ∪V1 ∪ · · · ∪Vk is a partition with |V | = |V1| = · · · = |Vk| such that

each pair (V, Vi) is ǫ-regular and e(V, Vi) ≥ η|V ||Vi|, 1 ≤ i ≤ k. Furthermore, G
has at least

k|V |(m− ǫp|V |p)(η − ǫ)p

cliques ω with |ω| = p + 1 and |ω ∩ V | = p, where m denotes the number of all

cliques of size p of V .

Lemma 15 [15]. For 0 < ǫ < η < 1 and an integer s ≥ 1, let H be a graph

obtained from a given graph F by replacing each vertex in V (F ) by s vertices and

E(F ) with ǫ-regular pairs of density at least η. Let G be a subgraph of F with

maximum degree ∆ > 0. If ǫ ≤ (η − ǫ)∆/(∆ + 2), then G is a subgraph of H.

Lemma 16 [11]. Suppose integer k ≥ 2 and ǫ > 0. Then there is n0 = n0(k, ǫ)
that has the following property. If a graph G with n = v(G) ≥ n0 and

e(G) ≥
(

k − 2

k − 1
+ ǫ

)(

n

2

)

,

then Kk(ℓ) is a subgraph of G for some ℓ ≥ c ǫ logn.

Lemma 17 [1]. For integers t ≥ 1 and s ≥ 2, r(tK2,Ks) = 2(t− 1) + s.

Proof of Theorem 6. By Lemma 1, we only need to prove the lower bound.
Take ζ to be a sufficiently small number and let ξ ≪ ζ. By (1), let r =

r
(

Fm, B
(p)
n

)

= 2(n + p − 1) + 1. We may assume that there is neither a red

Fm nor a blue B
(p)
n in G = Kr \K1,M where M = (1 − ξ0)n and ξ0 > 0 is suffi-

ciently small.

Claim 1. The number of the red edges in graph KN is at least (1/4 − o(1))N2

in which N = r − 1.

Proof. Since the proof is similar to [22] by Nikiforov and Rousseau, and the

version in terms of r
(

Fm, B
(p)
n

)

can also be found in [20], we only give a sketch
of the proof. First, apply Lemma 12 on red subgraph of KN , and we shall get
a partition of V (KN ) = V0 ∪ V1 ∪ · · · ∪ Vq such that almost all pairs (Vi, Vj) are
ǫ-regular for 1 ≤ i < j ≤ q. For any ǫ-regular pair (Vi, Vj), we say it is dense
ǫ-regular if d(Vi, Vj) > a for some positive constant a, and we can get the number
of these dense pairs in blue subgraph of KN is at least (1/4+ o(1))q2. Otherwise
by Lemmas 15 and 16, we can get a red Fm. By Lemma 13, there are Θ(Np) blue
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cliques of size p in each set Vi for 1 ≤ i ≤ q. By Lemma 14, almost all vertices
in Vj can form the pages of a p-book for every dense ǫ-regular pair (Vi, Vj) in
blue subgraph of KN , and the base of each p-books is in one Vi. Then each
ǫ-regular pair (Vi, Vj) with d(Vi, Vj) not very close to 1 yields many additional

pages to such books. Note that KN contains no blue B
(p)
n . So there are at least

(1/4− o(1))q2 ǫ-regular pairs (Vi, Vj) with d(Vi, Vj) close to 1. Thus the number
of the red edges is at least (1/4− o(1))N2. 2

Then by Lemma 11, V (KN ) namely V (R) can be divided into two classes
V1, V2 and for i = 1, 2,

(i) N/2− ξN < |Vi| < N/2 + ξN ;

(ii) all but at most ξN2 pairs {u, v} with u ∈ Vi, v ∈ V3−i are colored red;

(iii) at most ξN2 pairs {u, v} with u, v ∈ Vi are colored red;

(iv) for any vertex z ∈ Vi, d
R(z, Vi) ≤ dR(z, V3−i).

Let V ′
i = {z ∈ Vi | dR(z, V3−i) ≥ (1− 2

√
ξ)|V3−i|} for i = 1, 2.

Claim 2. |V ′
i | ≥ (1− 3

√
ξ)|Vi| for i = 1, 2.

Proof. We shall only prove |V ′
1 | ≥ (1 − 3

√
ξ)|V1| by symmetry. Suppose to

the contrary, |V ′
1 | < (1 − 3

√
ξ)|V1|. Then |V1 \ V ′

1 | ≥ 3
√
ξ|V1|. For any vertex

z ∈ V1 \ V ′
1 , dR(z, V2) < (1 − 2

√
ξ)|V2|. So dB(z, V2) ≥ 2

√
ξ|V2|. Note that

|Vi| ≥ (1/2 − ξ)N . Therefore the number of blue edges between V1 and V2 is at
least dB(z, V2) · |V1 \ V ′

1 | > ξN2, which contradicts to (ii). 2

Select Ci1 from Vi \ V ′
i such that Ci1 = {z ∈ Vi \ V ′

i | dR(z, V ′
3−i) ≥ ζ|V ′

3−i|}
and let Ci2 be the set of the remaining vertices of Vi \ V ′

i for i = 1, 2.

Claim 3. For i = 1, 2, we have dR(z, V ′
i ) ≤ m− 1 for any vertex z ∈ Ci1.

Proof. By symmetry, suppose to the contrary that dR(z, V ′
1) ≥ m for some vertex

z ∈ C11. Select m vertices in NR(z, V ′
1) and denote by Z = {z1, z2, . . . , zm}. Note

that

dR(zi, V
′
2) ≥ dR(zi, V2)− |V2 \ V ′

2 | ≥ (1− 2
√

ξ)|V2| − 3
√

ξ|V2| = (1− 5
√

ξ)|V2|
for i = 1, 2, . . . ,m. Thus we have
∣

∣

∣

∣

∣

⋂

zi∈W

NR(zi, V
′
2)

∣

∣

∣

∣

∣

≥ m
(

1− 5
√

ξ
)

|V2| − (m− 1)|V2| =
(

1− 5m
√

ξ
)

|V2|.

Since dR(z, V ′
2) ≥ ζ|V ′

2 |, it follows that
∣

∣

∣

∣

∣

(

⋂

zi∈W

NR(zi, V
′
2)

)

∩NR(z, V ′
2)

∣

∣

∣

∣

∣

≥
(

1− 5m
√

ξ
)

|V2|+ ζ|V ′
2 | − |V ′

2 |

≥
(

1

2
ζ − 5

2
m
√

ξ − 2ζ
√

ξ

)

N ≥ m
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for large n. Therefore R contains an Fm, a contradiction. 2

Claim 4. |Ci2| ≤ c with c = r(Fm,Kp)− 1.

Proof. We shall only prove |C12| ≤ c as symmetry. Suppose to the contrary,
|C12| ≥ c+ 1. Note that for any vertex z ∈ C12, d

R(z, V ′
2) < ζ|V ′

2 |. Apply Claim
2, we can obtain that

dR(z, V ′
1) ≤ dR(z, V1) ≤ dR(z, V2) ≤ dR(z, V ′

2) + |V2 \ V ′
2 |

≤ ζ|V ′
2 |+

3
√
ξ

1− 3
√
ξ
|V ′

2 | ≤ 2ζ|V ′
2 |

since ξ ≪ ζ. Therefore

dB
(

z, V ′
1 ∪ V ′

2

)

= |V ′
1 |+ |V ′

2 | −
(

dR(z, V ′
1) + dR(z, V ′

2)
)

> (1− 3ζ)
(

|V ′
1 |+ |V ′

2 |
)

.

Since |C12| ≥ r(Fm,Kp) and R contains no Fm, there is a blue Kp in C12.
Then the number of common blue neighbors of p-clique in V ′

1 ∪ V ′
2 is at least

(1− 3pζ) (|V ′
2 |+ |V ′

2 |) ≥ (1− 3pζ) (1− 3
√

ξ) (|V1|+ |V2|)
≥ 2(1− 4pζ) (n+ p− 1) ≥ n

for large n. Thus B contains a B
(p)
n , a contradiction. 2

Since R contains no Fm, the graph induced by NR(u, V ′
i ) contains no red

mK2 for each vertex u in V ′
3−i. Note that

∣

∣NR(u, V ′
i )
∣

∣ ≥
∣

∣NR(u, Vi)
∣

∣−
∣

∣Vi \ V ′
i

∣

∣ ≥
(

1− 5
√

ξ
)

|Vi|.
By Lemma 17, each set V ′

i contains a blue clique Xi with

|Xi| ≥
(

1− 5
√

ξ
)

|Vi| − (2m− 2) ≥
(

1− 6
√

ξ
)

|Vi|
for large n. Similar to the proof of Claim 3, we have dR(u, V

′
i ) ≤ m− 1 for each

vertex u ∈ V ′
i . Then we can put all the vertices of V ′

i \Xi into Ci1, and redefine
sets V1 and V2 as

V1 = X1 ∪ C11 ∪ C22;

V2 = X2 ∪ C21 ∪ C12.

Then we can find a subset X ′
i ⊆ Xi and each vertex in Vi \X ′

i is blue-adjacent to
Xi completely with

|X ′
1| ≥ |X1| −m|C11| − ζ|C22|

∣

∣V ′
1

∣

∣

≥
(

1− 6
√

ξ
)

|V1| −m · 6
√

ξ|V1| − ζ · c|V1|

≥
(1

2
− 2cζ

)

N ≥ p
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for large n. Similarly, we can obtain |X ′
2| ≥ p. Note that |V1|+ |V2| = 2(n+p−1).

If there exists a set Vi such that |Vi| ≥ N/2+1, then B contains a B
(p)
n . Therefore,

we conclude that |V1| = |V2| = n + p − 1, and each set Vi contains a blue B
(p)
n−1

for i = 1, 2.

Now we consider a new vertex v. Since B contains no blue B
(p)
n , then

dB(v,X ′
i) ≤ p− 1. Thus there are at least

r − 1−M −
2
∑

i=1

|Vi \X ′
i| − 2dB(v,X ′

i) ≥ N − (1− ξ0)n− 4cζN − 2p+ 2

≥
(

1− 9cζ −
√

ξ + ξ0

)

n ≥ 1

2
n

red edges between v andX ′
1∪X ′

2 for large n. Now we may assume that dR(v,X ′
2) ≥

dR(v,X ′
1) without loss of generality. By choosing ξ0 = ξ0(ζ) suitably, we can get

that

dR(v,X ′
1) ≥ r − 1−M − |V2| − |V1 \X ′

1| − (p− 1)

≥ 2(n+ p− 1)− (1− ξ0)n− (n+ p− 1)− 4cζ(n+ p− 1)− (p− 1)

≥ (ξ0 − 5cζ)n ≥ m

for large n. Note that dR(v,X ′
2) ≥ 1

2 · 1
2n = 1

4n. Then select m vertices from
NR(v,X ′

1) and denote them by L = {l1, l2, . . . , lm}. Note that dR(li, X
′
2) ≥

|X ′
2| − (p− 1), otherwise there is a blue B

(p)
n . We can obtain that

∣

∣

∣

∣

∣

⋂

li∈L

NR(li, X
′
2)

∣

∣

∣

∣

∣

≥ m
(

|X ′
2| − (p− 1)

)

− (m− 1)|X ′
2| = |X ′

2| −m(p− 1).

Moreover, we have

∣

∣

∣

∣

∣

(

⋂

li∈H

NR

(

li, X
′
2

)

)

∩NR

(

v,X ′
2

)

∣

∣

∣

∣

∣

≥ |X ′
2| −m(p− 1) +

1

4
n− |X ′

2|

=
1

4
n−m(p− 1) ≥ m

for large n. Hence we find a red Fm.
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