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Abstract

For two graphs G and H, let G∪H be the union of vertex-disjoint copy
of G and H. And the Ramsey number R(G,H) is the minimum integer
N such that any red-blue coloring of the edges of the complete graph KN

contains either a red copy of G or a blue copy of H. If G is connected and
v(G) ≥ s(H), it is well known that R(G,H) ≥ (v(G)−1)(χ(H)−1) + s(H),
where χ(H) is the chromatic number of H and s(H) is the size of the smallest
color class taken over all proper vertex-colorings of H with χ(H) colors. Burr
defined a connected graph G as H-good if the above inequality becomes
equality. In this paper, for integers t ≥ 1 and m1 ≥ m2 ≥ · · · ≥ mt, we
show that if n is sufficiently large, then any tree Tn is

⋃t
i=1Kmi-good. In

particular, we show that the condition of n being sufficiently large can be
relaxed when Tn is a star.

Keywords: Ramsey number, tree, Ramsey goodness.

2020 Mathematics Subject Classification: 05C35, 05D10.

https://doi.org/10.7151/dmgt.2537


2 S. Hu and Z. Luo

1. Introduction

For two graphs G and H, the Ramsey number R(G,H) is the minimum integer N
such that any red-blue coloring of the edges of the complete graph KN contains
either a red copy of G or a blue copy of H. Although there have been many
results on the Ramsey number of graphs [10, 13, 24], the exact value of R(G,H)
is known only if at least one of G and H belongs to one of a few families of graphs.
An intriguing case is that H is fixed while G is in some sense “sparse”. In this
case, if G is connected, there is a universal lower bound.

As usual, we write v(G) as the number of vertices of G, χ(G) as the chromatic
number of G, and s(G) as the chromatic surplus of G, that is, the size of the
smallest color class taken over all proper vertex-colorings of G with χ(G) colors.
For a connected graph G and a graph H with v(G) ≥ s(H), Burr [4] proved that

(1.1) R(G,H) ≥ (v(G)− 1)(χ(H)− 1) + s(H).

Furthermore, we say that the connected graph G is H-good if the equality holds.
There are many known cases of Ramsey-goodness, e.g. [1, 2, 6, 7, 12, 13, 18,
19, 21, 23, 26] and their references. Moreover, we refer the reader to the survey
papers by Conlon, Fox and Sudakov [10], and Radziszowski [24].

In this paper, we consider a Ramsey-goodness problem related to trees. Let
Tn be a tree on n vertices and Kn be a complete graph on n vertices. For two
graphs G and H, let G ∪ H denote the vertex-disjoint union of G and H, and
tG denote the union of t vertex-disjoint copies of G. In the 1970s, before the
definition of Ramsey-goodness was given by Burr, a well-known result of Chvátal
[8] showed that any tree is Km-good for each m ≥ 2, and an earlier result of
Chvátal and Harary [9] showed that any tree is 2K2-good. Hu and Peng [16]
extended this result and proved that Tn is Km ∪Kl-good for integers n ≥ 3 and
m ≥ l ≥ 2. Furthermore, they [17] determined the exact value of R(Tn, tK2),
which yields that Tn is not tK2-good for small n. Luo and Peng [20] recently
proved that Tn is tKm-good for n sufficiently large. Moreover, they remarked
that n ≥ 16m3t4 is enough. Actually, Burr [5] proved that if t is at least double
exponential in k = max{v(G), v(H)}, then

(1.2) R(G, tH) = tv(H) +R(D(G), H)− 1,

where H is a connected graph and D(G) is a set of all graphs formed from G by
removing a maximal independent set. Recently, Bucić and Sudakov [3] obtained
an exponential improvement over the above result of Burr [5], i.e., they showed
that if t ≥ 2O(k), then (1.2) holds. In the case where R(G,H) is not exponential
in k, Sulser and Trujić [25] show that t ≥ O(k10R(G,H)2) is enough. However,
for a general tree Tn, we can not apply (1.2) to get the exact value of R(Tn, tH)
for even large t.
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In this paper, we determine the Ramsey number for a large tree versus multi-
ple copies of complete graphs of different sizes and give the following main result.

Theorem 1. Let t ≥ 1, s ≥ 1 and m > m1 ≥ m2 ≥ · · · ≥ mt ≥ 1 be integers. If
n is sufficiently large, then

R

(
Tn, sKm ∪

(
t⋃
i=1

Kmi

))
= (n− 1)(m− 1) + s.

From this, we can obtain the following concise corollary.

Corollary 2. Let t ≥ 1 and m1 ≥ m2 ≥ · · · ≥ mt ≥ 1 be integers. If n is
sufficiently large, then

R

(
Tn,

t⋃
i=1

Kmi

)
= (n− 1)(m1 − 1) + p,

where p is the number of Km1 in the union of Kmi , i ∈ [t].

Let G,H1 and H2 be graphs. Note that if H1 ⊆ H2, then r(G,H1) ≤
r(G,H2). The lower bound of Theorem 1 is from (1.1). Since sKm∪

(⋃t
i=1Kmi

)
⊆

sKm ∪ tKm−1, we just need to prove the following theorem to finish the proof of
Theorem 1.

Theorem 3. Let s ≥ 1, t ≥ 1 and m ≥ 2 be integers. If n is sufficiently large,
then

R(Tn, sKm ∪ tKm−1) = (n− 1)(m− 1) + s.

We remark that n ≥ 16m3(2s+ t)4 is enough for Theorem 3. Moreover, the
condition that n is sufficiently large in Theorem 3 can be relaxed to n ≥ s+ t+ 1
when Tn = Sn. Here, Sn denotes the star on n vertices.

Theorem 4. Let s ≥ 1, t ≥ 1 and m ≥ 2 be integers. If n ≥ s+ t+ 1, then

R(Sn, sKm ∪ tKm−1) = (n− 1)(m− 1) + s.

We will use the following notations and definitions throughout the paper.
For a graph G, let V (G) be the vertex set of G and E(G) be the edge set of G.
For U ⊆ V (G), let G − U denote the graph obtained from G by deleting U and
all edges incident to U , and let G[U ] denote the induced graph of G on U . For
H ⊆ G, let G − H be the subgraph induced on V (G) \ V (H). In a red-blue
edge-colored graph, the red/blue neighbors of v is those vertices adjacent to v in
red/blue, and the red/blue degree of v is the number of red/blue neighbors of v.
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2. Preliminaries

2.1. t-tree

Let n ≥ t + 1 ≥ 2 be integers. We call a graph G on n vertices a t-tree if there
is an ordered t-set A = {v1, . . . , vt} ⊆ V (G) such that for each j ∈ [t], vj is
adjacent to exactly one of V (G) \ {vj , . . . , vt}. Clearly, Tn is an (n− 1)-tree, and
a matching tK2 is a t-tree. Moreover, we denote the induced subgraph of G on
V (G) \A as G′, i.e., G′ = G[V (G) \A]. By the definition of t-tree, the number of
components of G − {vt} is equal to the number of components of G. Moreover,
for each j ∈ [t− 1], the number of components of G−{vj , . . . , vt} is equal to the
number of components of G−{vj+1, . . . , vt}. Consequently, G is connected if and
only if G′ is connected.

Theorem 5. Let t ≥ 1, m ≥ 2 and n ≥ t + 2 be integers. Let G be a connected
t-tree on n vertices. If G is tKm-good, tKm−1-good and (t + 1)Km−1-good, and
G′ is Km-good, then G is (Km ∪ tKm−1)-good.

Proof. By (1.1), it is sufficient to prove that r(G,Km ∪ tKm−1) ≤ (n− 1)(m−
1) + 1. Let N = (n − 1)(m − 1) + 1. Color E(KN ) by red or blue arbitrarily.
Let H be the resulting graph and V = V (H). If H contains a blue copy of
Km∪ tKm−1, then we are done. So we may assume that H contains no blue copy
of Km∪ tKm−1. Note that N ≥ (n−1)(m−2)+ t = R(G, tKm−1) since n ≥ t+2
and G is tKm−1-good. Thus, H contains either a red copy of G or a blue copy of
tKm−1. We only need to consider the latter and denote it by F . Recall that G′

is Km-good and note that

v(H −F ) = (n− 1)(m− 1) + 1− t(m− 1) = (n− t− 1)(m− 1) + 1 = R(G′,Km).

Consequently, H − F contains either a red copy of G′ or a blue copy of Km. If
H − F contains a blue copy of Km, then there is a blue copy of Km ∪ tKm−1
containing F in H. A contradiction to our assumption. Thus, H − F contains a
red copy of G′.

Since G is a connected t-tree, let A = V (G) \ V (G′) , {v1, . . . , vt} such that
for each j ∈ [t], vj is adjacent to exactly one of V (G′)∪{v1, . . . , vj−1}. Moreover,
let v∗j be the neighbor of vj in V (G′) ∪ {v1, . . . , vj−1}. In the following, we will
extend the red copy of G′ to a red copy of G by embedding vj one by one.

Let i ∈ [t− 1] ∪ {0} be an integer and assume that we have already found i
vertices to embed {v1, . . . , vi}, i.e., H contains a red copy of G − {vi+1, . . . , vt}.
Let I = V (G′) ∪ {v1, . . . , vi}. We will prove that there exists a vertex to embed
vi+1, i.e., H contains a red copy of G − {vi+2, . . . , vt}. Note that |I \ {v∗i+1}| =
n − t + i − 1 ≥ i + 1 since n ≥ t + 2. Let U ⊆ I \ {v∗i+1} be a vertex set with
|U | = i+ 1. Moreover, v∗i+1 /∈ V \ (I \ U) and

|V \ (I \ U)| = (n− 1)(m− 1) + 1− (n− t+ i) + i+ 1 = (n− 1)(m− 2) + t+ 1.
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Since G is (t+1)Km−1-good, H[V \(I\U)] contains either a red copy of G or a blue
copy of (t+ 1)Km−1. We only need to consider the latter and denote the vertex
set of these t+1 vertex-disjoint copies of Km−1 by V1, . . . , Vt+1, respectively. Note
that for all k ∈ [t+ 1], there exists at least one vertex uk ∈ Vk such that ukv

∗
i+1 is

red. Otherwise, there is a blue copy of Km∪tKm−1 containing {v∗i+1}∪
(⋃t+1

p=1 Vi

)
in H. A contradiction to our assumption. Furthermore, there exists k0 ∈ [t+ 1]
such that Vk0 ∩U = ∅ since |U | = i+ 1 < t+ 1. Consequently, we can extend the
red copy of G− {vi+1, . . . , vt} to a red copy of G− {vi+2, . . . , vt} by embedding
vi+1 into uk0 .

This process will stop once i+ 1 = t+ 1. When i+ 1 = t+ 1, there is a red
copy of G in H, and we are done.

In order to obtain the conclusion related to Tn, we need the following theorem.

Theorem 6 (Luo and Peng [20]). Let t ≥ 1 and m ≥ 2 be integers. There exists
an n0 such that if n ≥ n0, then

R(Tn, tKm) = (n− 1)(m− 1) + t.

Note that Tn is a t-tree for each t ∈ [n − 1]. According to Theorem 6 and
Theorem 5, we can directly obtain the following conclusion, which will be applied
in the proof of Theorem 3.

Corollary 7. Let t ≥ 1 and m ≥ 2 be integers. If n is sufficiently large, then

R(Tn,Km ∪ tKm−1) = (n− 1)(m− 1) + 1.

2.2. Some lemmas

In order to prove the main theorem, we need several results by Burr and Faudree
[7], Erdős, Faudree, Rousseau and Shelp [11], and Hall [15].

A suspended path in a graph is a path all of whose internal vertices have
degree two. An end-edge in a graph is an edge one of whose end vertices has
degree one. A talon in a graph is a star consisting of end-edges. The following
theorem tells us that any large tree contains one of the above structures.

Lemma 8 (Burr and Faudree [7]). Any tree on n vertices contains either a
suspended path on α vertices, or β independent end-edges, or a talon with

⌊
n

4αβ

⌋
edges.

The following two structure theorems also play an important role in the proof
of the main result.
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Lemma 9 (Erdős, Faudree, Rousseau and Shelp [11]). Let a, b, c and d be pos-
itive integers such that a ≥ b(c − 1) + d. Consider a Ka+b on the vertex set
{x1, . . . , xa, y1, . . . , yb} whose edges are red-blue colored. Suppose that x1x2 · · ·xa
is a red path joining x1 to xa and no such paths joining x1 to xa exists with
exactly a+ 1 vertices. Then either we have a blue Kc or there are d of the xi that
are joined in blue to all yj.

Lemma 10 (Hall’s Theorem [15]). Consider a complete bipartite graph Ka,b, a ≤
b, whose parts are X = {x1, x2, . . . , xa} and Y = {y1, y2, . . . , yb}, and whose edges
are red-blue colored. Then either there is a red matching of size a, or for some
0 ≤ c ≤ a− 1, there is a blue Kc+1,b−c with the c+ 1 vertices being in X.

Also, we need the following theorem. Call a set U ⊆ V (G) a (vertex) cover
of G if every edge of G is incident with at least one vertex of U . For a graph G,
let β(G) be the minimum size of vertex cover taken over all vertex covers of G.

Theorem 11 (Hu and Peng [17]. R(Tn, tK2) = t+ max{n, t+ β(Tn)} − 1.

3. Proofs of Theorem 4 and Theorem 3

The lower bounds of Theorem 3 and Theorem 4 both follow from (1.1). Before we
give the proof of the upper bound of Theorem 4, we need the following important
result due to Hajnal and Szemerédi [14].

Theorem 12 (Hajnal and Szemerédi [14], Kierstead and Kostochka [22]). Let
n, l, a and b be positive integers such that n = al + b, where 0 ≤ b < l. Let G be
a graph on n vertices with ∆(G) < l. Then there exists a partition A1, . . . , Al of
V (G) such that Ai is an independent set for all i ∈ [l], and |Aj | = a + 1 for all
j ∈ [b] and |Aj | = a for all j ∈ [l] \ [b].

Proof of Theorem 4. Color E(K(n−1)(m−1)+s) by red or blue arbitrarily, and
let R and B be the graph induced by all red edges and all blue edges, respectively.
We may assume that R contains no copy of Sn. Thus, ∆(R) < n−1. By Theorem
12, there exists a partition A1, . . . , An−1 of V (R) such that Ai is an independent
set in R for all i ∈ [n − 1], and |Aj | = m for all j ∈ [s] and |Aj | = m − 1 for all
j ∈ [n − 1] \ [s]. Note that n − 1 − s ≥ t, thus B[

⋃n−1
i=s+1Ai] contains a copy of

tKm−1. Consequently, B contains a copy of sKm ∪ tKm−1, and we are done.

Now, we prove the upper bound of Theorem 3.

Proof of Theorem 3. We use induction on m to prove the upper bound. It
is trivial that the base case (m = 2) holds from Theorem 11. Assume that the
result holds for m − 1, and we will prove it for m. Now we use induction on s.
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The base case (s = 1) is confirmed by Corollary 7. Assume that the assertion
holds for s− 1, and we will prove that

R(Tn, sKm ∪ tKm−1) ≤ (n− 1)(m− 1) + s.

Let N = (n − 1)(m − 1) + s. Color E(KN ) by red or blue arbitrarily and
let H be the resulting graph. We will show that H contains either a red Tn or a
blue sKm ∪ tKm−1. By Lemma 8, we split the argument into three cases.

Case 1. Tn has a suspended path on at least [(s + t)m − s − 2t][(s + t)m −
t− 1] + 2(s+ t) vertices.

Let T ′ be the tree obtained from Tn by shortening the suspended path by
s+ t vertices, i.e., v(T ′) = n−s− t. By the induction hypothesis, R(Tn, sKm−1∪
tKm−2) = (n− 1)(m− 2) + s < N . Thus, H contains either a red copy of Tn or
a blue copy of sKm−1 ∪ tKm−2. We only need to consider the latter and denote
it by A. Note that

v(H−A) = (n−1)(m−1)+s−s(m−1)−t(m−2) = (n−s−t−1)(m−1)+s+t.

By Theorem 6, H−A contains either a red copy of T ′ or a blue copy of (s+ t)Km

(thus, a blue copy of sKm ∪ tKm−1). We only need to consider the former. Let
b = s(m − 1) + t(m − 2), c = sm + t(m − 1), d = s + t and a = b(c − 1) + d.
Then, T ′ has a suspended path on a vertices and denote them by x1, x2, . . . , xa.
Furthermore, let V (A) = {y1, y2, . . . , yb}. By Lemma 9, in H[V (T ′)∪ V (A)], one
of the following holds.

(i) There is a blue Kc.

(ii) There are d vertices of V (T ′) such that they are adjacent to all vertices
of V (A) in blue.

(iii) The red suspended path of T ′ can be lengthened by 1, keeping the same
end vertices.

If (i) holds, then H contains a blue copy of Kc (thus, a blue copy of sKm ∪
tKm−1), and we are done. If (ii) holds, then these d = s + t vertices of V (T ′)
together with A form a blue copy of sKm∪ tKm−1 in H, and we are done. If (iii)
holds, then let T ′′ be the tree obtained from T ′ by lengthening the suspended
path of T ′ by 1, keeping the same end vertices. Note that

v(H−T ′′) = (n−1)(m−1)+s−(n−s−t+1) = R(Tn, sKm−1∪tKm−2)+s+t−2.

H−T ′′ contains either a red copy of Tn or a blue copy of sKm−1∪tKm−2. We only
need to consider the latter and denote it by A′. Note that T ′′ has a suspended path
on a+1 ≥ b(c−1)+d vertices. Therefore, as long as the red T ′′ has fewer than n
vertices, we continue to apply Lemma 9 for the same argument until we get a red
copy of Tn. We only need to verify that v(H −T ∗) = (n− 1)(m− 1) + s− (n− 1)
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is greater than or equal to R(Tn, sKm−1 ∪ tKm−2), where T ∗ is the tree obtained
from T ′ by lengthening the suspended path, keeping the same end vertices.

Case 2. Tn has at least 2s + t − 2 independent end-edges. Let T ′ be the
tree obtained from Tn by removing 2s + t − 2 end vertices of degree one from
independent end-edges of Tn. By the induction hypothesis, R(Tn, (s − 1)Km ∪
(s + t − 1)Km−1) = (n − 1)(m − 1) + s − 1 < N . Thus, H contains either a
red copy of Tn or a blue copy of (s− 1)Km ∪ (s+ t− 1)Km−1. We only need to
consider the latter and denote it by J . Note that v(T ′) = n− 2s− t+ 2 and

v(H−J) = (n−1)(m−1)+s−(s−1)m−(s+t−1)(m−1) = (n−2s−t+1)(m−1)+1.

Since Tn′ is Km′-good [8], H − J contains either a red copy of T ′ or a blue copy
of Km. If H − J contains a blue copy of Km, then it together with J forms a
blue copy of sKm ∪ (s+ t− 1)Km−1 (thus, a blue copy of sKm ∪ tKm−1), and we
are done. Therefore, we only need to consider the former.

Let X be those vertices of T ′ that are neighbors of the removed vertices in
Tn. Clearly, |X| = 2s + t − 2 , a. Let Y = V (H) \ V (T ′) and thus, |Y | =
(n−1)(m−2)+3s+ t−3 , b. Clearly, a ≤ b. By Lemma 10, one of the following
holds.

(i) There is a red matching of size 2s+ t− 2 between X and Y .

(ii) For some 0 ≤ c ≤ 2s+ t− 3, there is a blue copy of Kc+1,b−c with c+ 1
vertices in X.

If (i) holds, then H contains a red copy of Tn, and we are done. If (ii) holds,
then note that each vertex of X is adjacent to each Km−1 of (s+ t− 1)Km−1 ⊆
J in at least one red edge. Otherwise, the vertex and J form a blue copy of
sKm ∪ (s+ t− 2)Km−1 and thus, H contains a blue copy of sKm ∪ tKm−1 since
s ≥ 2. Consequently, the red degree of each vertex of X in J is at least s+ t− 1.
Furthermore, J ⊆ Y and thus, b − c ≤ b − (s + t − 1). Therefore, c + 1 ≥ s + t.
On the other hand, b− c ≥ b− (2s+ t− 3) = (n− 1)(m− 2) + s. Consequently,
H contains a blue copy of Ks+t,(n−1)(m−2)+s and denote it by C. In the part of
C with size (n − 1)(m − 2) + s, by the induction hypothesis, there is either a
red copy of Tn or a blue copy of sKm−1 ∪ tKm−2. We only need to consider the
latter. Note that the blue copy of sKm−1 ∪ tKm−2 together with the part of C
with size s+ t forms a blue copy of sKm ∪ tKm−1 in H, and we are done.

Case 3. Tn has a talon with at least c =
⌊

n
4αβ

⌋
edges, where α = [(s+ t)m−

s− 2t][(s+ t)m− t− 1] + 2(s+ t) and β = 2s+ t− 2.

Denote the center of the talon by x. Let T ′ be the tree obtained from Tn
by removing c end-vertices of the talon. By Theorem 4, H contains either a
red copy of Sn or a blue copy of sKm ∪ tKm−1. We only need to consider the
former and denote the center of the red copy of Sn by y. Note that v(H−{y}) =
(n− 1)(m− 1) + s− 1, and by the induction hypothesis, H −{y} contains either
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a red copy of Tn or a blue copy of (s− 1)Km ∪ tKm−1. We only need to consider
the latter and denote it by D. If the red degree of each vertex in H is at least
n − c, then we can embed a red copy of T ′ into H by putting x at y greedily
since v(T ′) = n− c. Recall that y is the center of a red copy of Sn, and thus we
can extend the red copy of T ′ to a red copy of Tn. Therefore, assume that there
exists a vertex z ∈ V (H) with blue degree at least (n−1)(m−1) +s−1− (n− c)
and let Z be the set of blue neighbors of z. Since n is sufficiently large,

|Z|−v(D) ≥ (n−1)(m−1)+s−1−(n−c)−(s−1)m−t(m−1) ≥ (n−1)(m−2)+1.

Since Tn′ is Km′-good [8], H[Z−V (D)] contains either a red copy of Tn or a blue
copy of Km−1. We only need to consider the latter. The blue Km−1 together
with {z} forms a blue Km in H − D. Moreover, the blue copy of Km together
with D forms a blue copy of sKm ∪ tKm−1 in H, and we are done.

All cases have been discussed, and the proof is complete.

By direct calculation, we have the following remark.

Remark 13. n ≥ 16m3(2s+ t)4 is enough for Theorem 3.

4. Remark

Theorem 1 illustrates that the Ramsey number for a large tree versus the disjoint
union of complete graphs only depends on the order of the tree, the order of the
maximum complete graph and the number of the maximum clique. What pair of
graphs will satisfy this property?

Problem 14. Let s and t be positive integers. For which graphsH,G,G1, . . . , Gt,
if e(G) = max{e(G), e(G1), . . . , e(Gt)}, then R

(
H, sG ∪

(⋃t
i=1Gi

))
only depends

on v(H), v(G) and s? If the size of graph does not make the property holds, then
what parameter of graph will make the property holds? Maybe density?
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