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Abstract

A graph G is equitably k-choosable if, for every k-uniform list assignment
L, G is L-colorable and each color appears on at most d|V (G)|/ke vertices.
Equitable list-coloring was introduced by Kostochka, Pelsmajer, and West
in 2003 [A list analogue of equitable coloring, J. Graph Theory 44 (2003)
166–177]. They conjectured that a connected graph G with ∆(G) ≥ 3 is
equitably ∆(G)-choosable, as long as G is not complete or Kd,d for odd d.
In this paper, we use a discharging argument to prove their conjecture for
the infinite family of prism graphs.
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figuration, discharging.
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1. Introduction

For terminology and notation not explicitly defined in this paper, see [2]. Let
G be a graph. We say that G is properly k-colorable if there exists a mapping
c : V (G) → [k] such that c(u) 6= c(v) for every edge uv ∈ E(G). In some graph
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coloring scenarios, we impose restrictions on which colors it is acceptable to use on
each vertex. A list assignment L for G provides a list of acceptable colors, L(v),
to each vertex v ∈ V (G). This list assignment is said to be k-uniform if |L(v)| = k
for every v ∈ V (G). A proper L-coloring of G is a proper coloring in which each
vertex is assigned a color from its list. If every k-uniform list assignment L of G
admits a proper list coloring, we say that G is k-choosable. The choice number,
ch(G), of a graph G is the smallest k for which G is k-choosable. The concept of
list coloring was independently introduced by Vizing [7] and Erdős, Rubin, and
Taylor [4].

A vertex coloring of G partitions V (G) into sets called color classes. All
vertices in a particular color class are assigned the same color, so if the coloring
is proper, each color class is an independent set of vertices. Depending on the
context, we may wish to ensure that the color classes are roughly uniform in size.
A proper k-coloring is said to be equitable if the size of every color class is either
d|V (G)|/ke or b|V (G)|/kc. In [5], Kostochka, Pelsmajer, and West introduced a
variation of equitable coloring for k-uniform list colorings. In particular, they say
that a graph G is equitably k-choosable if every k-uniform list assignment of G
admits a proper coloring in which each color class is d|V (G)|/ke-bounded. That
is, they allow each color class to have any size up to d|V (G)|/ke.

In this paper, we will investigate the equitable choosability parameter of the
infinite family of prism graphs, {Πn : n ≥ 3}. Note that the n-prism Πn is the
Cartesian product Cn�K2, whose drawing resembles a geometric prism with an
n-sided polygon base. We will refer to the n edges which attach the two copies
of Cn in Πn as rungs. Note that the prism graphs are cubic, Hamiltonian, and
planar (but not outerplanar). When n is even, the prism Πn is bipartite. And
when n ≥ 4, the prism Πn has girth 4.

With this in mind, there are two results from Erdős, Rubin, and Taylor that
are very relevant to our research. In their seminal paper on list coloring, these
authors were able to bound the choice number in the following way.

Theorem 1 [4]. If a connected graph G is not Kn and not an odd cycle, then
ch(G) ≤ ∆(G).

They were also able to completely characterize the family of 2-choosable
graphs. They define the core of a graph G to be the induced subgraph H of
G that is obtained by successively pruning degree-1 vertices until none remain.
They also define Θi,j,k to be the graph consisting of two distinct vertices u and v
attached by three internally-disjoint paths of respective lengths i, j, and k. Using
these definitions, they articulate the following result.

Theorem 2 [4]. A graph G is 2-choosable if and only if the core of G belongs to
the set {K1, C2m+2,Θ2,2,2m : m ≥ 1}.
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These results lead us to the following observation.

Observation 3. ch(Πn) = 3 for all n ≥ 3.

Additionally, there are several results known about equitable choosability
that are relevant to us. Zhu and Bu proved that all outerplanar graphs with
maximum degree 3 are equitably 3-choosable [9]. Dong and Zhang proved that
a graph G with maximum average degree less than 3 is equitably k-colorable
and equitably k-choosable for k ≥ max{∆(G), 4} [3]. Wang and Lih proved the
following theorem about graphs with maximum degree at most 3, and Pelsmajer
proved an equivalent result in [6].

Theorem 4 [8]. Every graph G with ∆(G) ≤ 3 is equitably k-choosable whenever
k > ∆(G).

In 1994, Chen, Lih, and Wu proposed the Equitable ∆-Coloring Conjecture.

Conjecture 5 (The Equitable ∆-Coloring Conjecture [1]). Let G be a connected
graph. If G is not a complete graph, or an odd cycle, or a complete bipartite
graph K2m+1,2m+1, then G is equitably ∆(G)-colorable.

They also proved the following special case of their conjecture.

Theorem 6 [1]. A connected graph G with ∆(G) ≤ 3 is equitably ∆(G)-colorable
if it is different from Km, C2m+1, and K2m+1,2m+1 for all m ≥ 1.

In 2003, when Kostochka, Pelsmajer, and West introduced their list analogue
of equitable coloring, they included a list analogue of the Equitable ∆-Coloring
Conjecture.

Conjecture 7 [5]. If G is a connected graph with maximum degree at least 3,
then G is equitably ∆(G)-choosable, unless G is a complete graph or is Kd,d for
some odd d.

Note that there are many more publications on equitable choosability. We
have chosen to highlight only those that are most relevant to our main result,
which verifies that Conjecture 7 holds for the infinite family of prism graphs.

Theorem 8. Πn, n ≥ 3, is equitably 3-choosable.

For a graph to be equitably k-choosable, it must be k-choosable. According
to Observation 3, the prisms are 3-choosable, and they are not equitably 1- or
2-choosable because they are neither 1- nor 2-choosable. Also, by Theorem 4,
the prisms are equitably k-choosable for k ≥ 4. So the question that remains is
whether or not the prisms are equitably 3-choosable. In the remaining sections
of this paper, we will answer this question in the affirmative.
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Our proof of Theorem 8 is organized as follows. In Section 2, we show that
Πn is equitably 3-choosable for n ∈ {3, 4, 5}. In Section 3, we complete the
proof that all prisms are equitably 3-choosable. This argument is broken into
two subsections. In Section 3.1 we prove that in a minimum list coloring of Πn,
n ≥ 6, the two largest color classes must differ in size by at least 2 vertices.
Finally, in Section 3.2 we use a discharging argument to prove that a minimum
list coloring of Πn, n ≥ 6, must be equitable.

2. Small Prisms

In this section we prove that Π3, Π4, and Π5 are equitably 3-choosable. The proofs
for Π4 and Π5 were done by the third author in their 2021 undergraduate thesis
and are recreated below. For the proof of Lemma 9, recall that the independence
number, α(G), of a graph G is the cardinality of a maximum set of pairwise
nonadjacent vertices of G.

Lemma 9. Π3 and Π5 are equitably 3-choosable.

Proof. First, recall that Π3 and Π5 are both 3-choosable by Observation 3, so
every 3-list-assignment of these graphs admits a proper coloring.

For Π3 to be equitably 3-choosable, every 3-list-assignment of Π3 must admit
a proper coloring in which the cardinality of a largest color class is at most
d6/3e = 2. Since each color class in a proper coloring is an independent set, and
the independence number of Π3 is α(Π3) = 2, it must be that every color class
contains at most 2 vertices. Thus, Π3 is equitably 3-choosable.

Similarly, for Π5 to be equitably 3-choosable, the cardinality of a largest
color class must be at most d10/3e = 4. The independence number of Π5 is
α(Π5) = 4, so every color class contains at most 4 vertices, and Π5 is equitably
3-choosable.

To prove that Π4 is equitably 3-choosable, it is not sufficient to simply cal-
culate the independence number. Instead, we perform a case analysis to show
that every coloring which is not d|V (Π4)|/3e-bounded can be transformed into a
coloring which is.

Lemma 10. Π4 is equitably 3-choosable.

Proof. First, recall that ch(Π4) = 3 by Observation 3, so every 3-list-assignment
of this graph admits a proper coloring. Let L be an arbitrary 3-list-assignment
of Π4 and let c : V → C be a proper L-coloring of Π4, where C is a set of at
least three colors. Without a loss of generality, suppose a largest color class of c
corresponds to the color b. We will denote this color class Blue.
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If |Blue| ≤ d8/3e = 3, then c is 3-bounded and we have found the coloring
we need. So suppose instead that |Blue| > 3. The independence number of Π4 is
α(Π4) = 4, so it must be that |Blue| = 4. Thus, due to the symmetries of Π4, the
coloring c must look like one of the configurations in Figure 1. Note that these
cases are distinguished by the different possible colorings of u1, v2, u3, and v4,
which must all have colors other than b.

Case 1 Case 2

Case 3

Case 4 Case 5

Figure 1. Potential colorings of Π4.

In Case 1 there are two color classes of cardinality 4. However, lists L(u1)
and L(v3) must each contain a color which is neither r nor b. (This color may
or may not be the same in the two lists.) Define a new coloring c′ in which
c′(u1), c

′(v3) 6∈ {b, r} and c′ = c for all other vertices. This new coloring c′ is
a proper L-coloring whose largest color class has cardinality 3, so L admits a
proper 3-bounded coloring.
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In Case 2, list L(v3) must contain a color which is neither b nor g. Define a
new coloring c′ in which c′(v3) 6∈ {b, g} and c′ = c for all other vertices. This new
coloring c′ is a proper L-coloring whose largest color class has cardinality 3, so L
admits a proper 3-bounded coloring.

In Cases 3 and 4, we will attempt to change the color of vertex u2. If there
is a color in L(u2) which is not b, g, or r, we can obtain a proper 3-bounded L-
coloring by changing u2 to that color. If not, then L(u2) = {b, g, r}. Fortunately,
list L(u1) must contain a color that is not blue or red. Define a new coloring
c′ in which c′(u2) = r, c′(u1) 6∈ {b, r}, and c′ = c for all other vertices. This
new coloring c′ is a proper L-coloring whose largest color class has cardinality 3.
Thus, in Cases 3 and 4, L always admits a proper 3-bounded coloring.

In Case 5, we will attempt to change the color of vertex u2. If there is a
color in L(u2) which is not b, r, g, or y, we can obtain a proper 3-bounded L-
coloring by changing u2 to that color. If not, then L(u2) must contain b and
exactly two of the colors r, g, and y. Without a loss of generality, suppose L(u2)
contains y. Fortunately, list L(u1) must contain a color that is not b or y. Define
a new coloring c′ in which c′(u2) = y, c′(u1) 6∈ {b, y}, and c′ = c for all other
vertices. This new coloring c′ is a proper L-coloring whose largest color class has
cardinality 3. Thus, in Case 5, L always admits a proper 3-bounded coloring.

In every case, we are able to obtain a proper 3-bounded L-coloring. This
means that the arbitrary 3-list-assignment L always admits a proper 3-bounded
coloring, so by definition Π4 is equitably 3-choosable.

3. Proof of Main Result

In this section we prove that Πn, n ≥ 6, is equitably 3-choosable. Together with
Lemmas 9 and 10, this constitutes a proof of our main result, Theorem 8. For
the remainder of the paper, let L be an arbitrary 3-list-assignment of Πn. We
know that a proper L-coloring of Πn exists by Observation 3, so we will use a
minimum counterexample technique and a discharging argument to prove that L
admits a proper d2n/3e-bounded coloring.

Let c be a proper L-coloring of Πn, and let C1, C2, . . . , Cr be the color classes
of c. Further, let |Ci| = ni for each color class and, without a loss of gener-
ality, suppose n1 ≥ n2 ≥ · · · ≥ nr. The color word of c is the length-r list
wc = n1n2 · · ·nr. We say c is a lex-min coloring of Πn if its color word wc is
lexicographically minimum. That is, if c′ is another proper L-coloring of Πn with
color word wc′ = m1m2 · · ·ms, then either wc = wc′ or there exists an index k
(1 ≤ k ≤ s), such that ni = mi for 1 ≤ i ≤ k − 1 and nk < mk.

The following two lemmas describe some useful properties of a lex-min L-
coloring of Πn, n ≥ 6.



Equitable Choosability of Prism Graphs 7

Lemma 11. Let c be a proper lex-min L-coloring of Πn, n ≥ 6. If the lists in L
are all the same, then c is d2n/3e-bounded.

Proof. Suppose c is a proper lex-min L-coloring of Πn. As L is a 3-list-assignment
of Πn, if all lists are the same, then finding a proper L-coloring of Πn is equivalent
to finding a proper 3-coloring of Πn. According to Theorem 6, Πn is equitably 3-
colorable. That is, there exists a proper 3-coloring of Πn in which each color class
has cardinality equal to d2n/3e or b2n/3c. In the lex-min coloring c, the largest
color class may be even smaller than d2n/3e. Therefore, c is d2n/3e-bounded.

Lemma 12. Let c be a proper lex-min L-coloring of Πn, n ≥ 6. If c is not
d2n/3e-bounded, then the range of c includes at least 4 colors.

Proof. By Lemma 11, we know that the lists used to define c are not all the
same, so at least 4 colors appear in the union of all the color lists. Suppose c uses
fewer than 4 colors. Then there exists a vertex v such that L(v) contains a color
not used by c, say c0. Define a coloring c′ in which c′(v) = c0 and c′ = c for all
other vertices. Since color c0 was not used by coloring c, we may conclude that
wc′ is lexicographically less than wc. This contradicts the assumption that c is
lex-min, so it must be that c uses at least 4 colors.

The remainder of this section is organized as follows. We start by assuming
that c is a lex-min L-coloring of Πn, n ≥ 6, which is not d2n/3e-bounded. In
Section 3.1, we use reducible configurations and a counting argument to prove
that the two largest color classes of c must differ in cardinality by at least 2.
Then in Section 3.2, we use additional reducible configurations and a discharging
argument to prove that c must be d2n/3e-bounded, and so Πn, n ≥ 6, is equitably
3-choosable.

3.1. Two large color classes

In this subsection we prove that if c is lex-min and not d2n/3e-bounded, then its
two largest color classes must differ in size by at least 2. To simplify the notation,
let us say that Blue is the most common color and Red is the second most
common color. We assume that |Blue| ≥ d2n/3e + 1 and either |Red| = |Blue|
or |Red| = |Blue| − 1. First, we determine how much larger |Red| and |Blue| are
than the other color classes.

Lemma 13. If c is lex-min and not d2n/3e-bounded, and |Red| = |Blue| or
|Red| = |Blue| − 1, then |Blue| and |Red| are at least 2 larger than every color
class.

Proof. Recall that by Lemma 12, c has at least 4 nonempty color classes. Sup-
pose |Red| = |Blue| − 1, and let C denote an arbitrary third color class. Then
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because Πn has 2n vertices and |Blue| ≥ d2n/3e+ 1, we may conclude that

|C| ≤ 2n− |Blue| − |Red| − 1 ≤ 2n− 2 d2n/3e − 2 ≤ 2n/3− 2 ≤ d2n/3e − 2.

Note that d2n/3e − 2 ≤ |Blue| − 3 and d2n/3e − 2 ≤ |Red| − 2. So when |Red| =
|Blue|−1, Blue contains at least 3 more vertices and Red contains at least 2 more
vertices than every other color class.

A similar bounding argument shows that when |Red| = |Blue|, Red and Blue
both contain at least 4 more vertices than every other color class.

Next, we identify four color configurations that cannot occur in c. Note that
in these diagrams, there are vertices that have not been labeled with a color. We
put no restriction on which colors c assigns to these unlabeled vertices.

Configuration F1 Configuration F2

Configuration F3 Configuration F4

Figure 2. Reducible configurations for Lemma 14.

Lemma 14. If c is lex-min and not d2n/3e-bounded, and |Red| = |Blue| or
|Red| = |Blue| − 1, then the color configurations in Figure 2 do not occur in c.

Proof. In configurations F1 and F2, notice that L(v) contains a color which is
neither r nor b. Define a new coloring c′ in which c′(v) 6∈ {b, r} and c′ = c for
all other vertices. Because either |Red| or |Blue| decreases by 1 and a third color
class increases by 1, wc′ is lexicographically less than wc. This is a contradiction,
so configurations F1 and F2 cannot occur in the lex-min coloring c.

In configurations F3 and F4, we attempt to recolor one of vertices u2, u3,
and v2. If one of these vertices’ lists contains a color other than r, b, and
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the blank neighbor’s color, then we may recolor that vertex and obtain a lex-
icographically smaller color word. This is a contradiction, so it must be that
L(u2) = {b, r, c(u1)}, and L(u3) = L(v2) = {b, r, c(v3)}. Note that this implies
c(v3) is neither r nor b.

In F3, there must be a color c0 in L(v3) such that c0 6∈ {b, c(v3)}. Define a
new coloring c′ in which c′(v3) = c0, c

′(u3) = c′(v2) = c(v3), c
′(u2) = b, and c′ = c

for all other vertices. If c0 = r, then |Red| stays the same, |Blue| decreases by 1,
and the color class corresponding to c(v3) increases by 1. If c0 6= r, then |Red|
and |Blue| both decrease by 1, and the color classes corresponding to c(v3) and
c′(v3) both increase by 1. Either way, wc′ is lexicographically less than wc. This
contradicts the assumption that c was a lex-min coloring, so F3 cannot occur in c.

The argument for F4 is similar. We let c0 denote a color in L(v3) such
that c0 6∈ {r, c(v3)}, then we define c′ in the same way. To determine that wc′ is
lexicographically less than wc, we consider cases c0 = b and c0 6= b. In both cases,
we contradict the assumption that c was lex-min, so F4 cannot occur in c.

Lemma 15. If c is lex-min and not d2n/3e-bounded, then there does not exist a
subgraph of 6 consecutive rungs of Πn, n ≥ 6, in which 9 or more of the vertices
are colored red or blue.

Proof. Suppose there is a subgraph H of 6 consecutive rungs of Πn, n ≥ 6, in
which 9 or more of the vertices are colored red or blue. H cannot contain 6
blue vertices and 3 or more red vertices because then reducible configuration F2

would occur. Similarly, if H contained 6 red vertices and at least 3 blue vertices,
reducible configuration F1 would occur. So the only possible counts for red and
blue vertices are: 5 blue, 4 red; 5 blue, 5 red; and 4 blue, 5 red.

Suppose H contains 5 blue vertices. Then H looks like one of the diagrams
in Figure 3. Note that the blank vertices cannot be blue and must be properly
colored.

In Case 1, the blue vertices are arranged in 5 consecutive rungs. If 4 of the
blank vertices are colored red, and the coloring is proper, then at least one of
u2, u4, and v3 would be forced to be red. However, this creates a copy of the
reducible configuration F2, so this arrangement of blue vertices cannot occur.

In Case 2, the blue vertices are arranged in 4 consecutive rungs with the fifth
blue vertex being v6. If u2 or v3 is red, then reducible configuration F2 occurs,
which is a contradiction. So if 4 of the blank vertices are colored red, it must
be that v1, u4, v5, and u6 are red. However, this creates a copy of the reducible
configuration F4, so this arrangement of blue vertices cannot occur.

In Case 3, the blue vertices are arranged in 4 consecutive rungs with the fifth
blue vertex being u6. If 4 of the blank vertices are colored red, and the coloring
is proper, then at least one of u2 and v3 would be forced to be red. However, this
creates a copy of F2, so this arrangement of blue vertices cannot occur.
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Case 1 Case 2

Case 3

Case 4 Case 5

Figure 3. Potential colorings of 6 consecutive rungs.

In Case 4, the blue vertices are arranged in 3 consecutive rungs, with the
fourth and fifth blue vertices being v5 and u6. To avoid F2, u2 cannot be red.
The largest independent set of vertices which are neither blue nor u2 is 4, so there
cannot be 5 red vertices in this case. If v1, v3, u4, and v6 are red, a copy of F3

is created, which is a contradiction. If v1, v4, u5, and v6 are red, a copy of F1 is
created, which is a contradiction. So it must be that v1, v3, u5, and v6 are the
only red vertices in this case. Notice that u4 and v4 are neither red nor blue,
and c(u4) 6= c(v4). An updated diagram for Case 4 is shown in Figure 4. For
simplicity, we will say c(u4) = g and c(v4) = y.

If we were able to change any blue or red vertex to a color other than
red and blue, we would contradict the assumption that c is lex-min. There-
fore, L(u5) = {b, g, r} and L(v3) = L(v5) = {b, r, y}. It must be that L(v4) ⊆
{b, g, r, y}, because otherwise we could define a new coloring c′ in which c′(v5) = y,
c′(v4) 6∈ {b, g, r, y}, and c′ = c for all other vertices. The color word of c′ is
lexicographically less than wc, which is a contradiction. For similar reasons,
L(u4) ⊆ {b, g, r, y}.
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Figure 4. Updated coloring for Case 4.

Now, notice that L(u4) = {b, g, y}. If not, then r ∈ L(u4), so we could
define a new coloring c′ in which c′(u5) = g, c′(u4) = r, and c′ = c for all other
vertices. The color word of c′ is equal to wc, so they are both lex-min colorings.
However, c′ contains a copy of F3, which is a contradiction. Further, notice that
L(v4) = {b, r, y}. If not, then g ∈ L(v4), and we can define a new coloring c′′

such that c′′(u5) = g, c′′(u4) = y, c′′(v4) = g, and c′′ = c for all other vertices.
The color word of c′′ is less than wc, which is a contradiction.

Now that we know the color lists for u5, u4, v4, and v3, we can define a new
coloring c′ in the following way. Let c′(u5) = g, c′(u4) = y, c′(v4) = r, c′(v3) = y,
and c′ = c for all other vertices. The color word of c′ is less than wc, which is a
contradiction, so the Case 4 color arrangement cannot occur in coloring c.

In Case 5, the blue vertices are arranged in 3 consecutive rungs, with the
fourth and fifth blue vertices being u5 and v6. If u2 is red, then F2 occurs, which
is a contradiction. And if u4, u6, and v5 are all red, then F1 occurs, which is a
contradiction. So there cannot be 5 red vertices in this case. Further, to avoid
F1 and F2 when there are 4 red vertices, it must be that v1, v3, and exactly
2 of u4, u6, and v5 are red. If u4 is red, a copy of F3 is created, which is a
contradiction. So it must be that v1, v3, v5, and u6 are the only red vertices
in this case. Notice that u4 and v4 are neither red nor blue, and c(u4) 6= c(v4).
An updated diagram for Case 5 is shown in Figure 5. For simplicity, we will say
c(u4) = g and c(v4) = y.

Figure 5. Updated coloring for Case 5.

By an argument similar to the one from Case 4, we can determine that
L(u5) = {b, g, r}, L(v3) = L(v5) = {b, r, y}, L(v4) ⊆ {b, g, r, y}, and L(u4) ⊆
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{b, g, r, y}. Now, notice that L(v4) = {b, g, y}. If not, then r ∈ L(v4), so we could
define a new coloring c′ in which c′(v4) = r, c′(v3) = c′(v5) = y, and c′ = c for all
other vertices. The color word of c′ is lexicographically less than wc, which is a
contradiction.

We know there must exist some co ∈ L(u4) such that c0 6∈ {b, g}. In partic-
ular, c0 ∈ {r, y}. So define a new coloring c′ in the following way: c′(u5) = g;
c′(u4) = c0; c

′(v4) = b; c′(v5) = y; if c0 = r, then c′(v3) = y, otherwise c′(v3) = r;
and for all other vertices, c′ = c. When switching from c to c′, the blue and
green color classes stay the same size, the red color class decreases by 1, and the
yellow color class increases by 1, so wc′ is lexicographically less than wc. This is
a contradiction, so the Case 5 color arrangement cannot occur in coloring c.

Similar arguments hold when H contains 5 red vertices and 4 blue vertices.
Simply swap the colors red and blue, swap the reducible configurations F1 and
F2, and swap the configurations F3 and F4. Therefore, when c is lex-min, every
subgraph of 6 consecutive rungs of Πn can contain at most 8 vertices that are
blue or red.

Lemma 16. If c is lex-min and not d2n/3e-bounded, then |Blue| ≥ |Red|+ 2.

Proof. Suppose |Blue| < |Red| + 2. That is, suppose |Red| = |Blue| or |Red| =
|Blue| − 1.

By Lemma 15, we know that every 6 consecutive rungs must contain at most
8 vertices that are blue or red. There are n distinct subgraphs of 6 consecutive
rungs, and each red or blue vertex is in exactly 6 of these subgraphs. So we can
now bound the number of red and blue vertices in Πn, n ≥ 6, in the following
way:

|Blue|+ |Red| ≤ 8n

6
≤ 2 d2n/3e = (d2n/3e+1) +d2n/3e − 1≤|Blue|+ |Red|−1.

This is a contradiction, so if |Blue| ≥ d2n/3e+ 1, we must have |Red| ≤ d2n/3e−
1 ≤ |Blue| − 2.

3.2. One large color class

In Section 3.1, we determined that the largest color class of a lex-min, non-d2n/3e-
bounded coloring of Πn, n ≥ 6, must contain at least 2 more vertices than every
other color class. In this subsection, we use this fact to finish proving our main
result. To simplify notation, we continue to say Blue is the largest color class.

To begin, we show that the color configurations in Figure 6 do not occur in a
lex-min, non-d2n/3e-bounded coloring. In these diagrams, the blue vertices must
come from the largest color class, but the yellow vertices do not need to come
from the second largest color class. A blank vertex could be any color which is
not already in use by its neighbors.
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Configuration F5 Configuration F6

Figure 6. Reducible configurations for Lemma 17.

Lemma 17. If c is lex-min and not d2n/3e-bounded, then the color configurations
in Figure 6 do not occur.

Proof. In configuration F5, we attempt to recolor v2. If L(v2) contains a color
other than b, y, and c(v3), then we may recolor it and obtain a lexicographi-
cally smaller color word. This is a contradiction, so it must be that L(v2) =
{b, y, c(v3)}. Note that this implies c(v3) is neither b nor y. Define a new coloring
c′ in which c′(v2) = c(v3) and c′(v3) 6∈ {b, c(v3)}. Since |Blue| decreases by 1, wc′

is lexicographically less than wc, which is a contradiction. So F5 cannot occur in
the lex-min coloring c.

In configuration F6, we attempt to recolor u3. By an argument similar to the
F5 case, L(u3) = {b, y, c(v3)} and c(v3) 6∈ {b, y}. Define a new coloring c′ in which
c′(u3) = c(v3) and c′(v3) 6∈ {b, c(v3)}. Then wc′ is lexicographically less than wc,
which is a contradiction. So F6 cannot occur in the lex-min coloring c.

Next, we will show that there cannot be 4 consecutive rungs which contain
blue vertices.

Lemma 18. If c is lex-min and not d2n/3e-bounded, then there does not exist
a subgraph of 4 consecutive rungs of Πn, n ≥ 6, in which 4 vertices are colored
blue.

Proof. Suppose Πn contains a subgraph H of four consecutive rungs with blue
vertices. A diagram of this subgraph is shown in Figure 7. Note that the blank
vertices cannot be blue because the graph must be properly colored.

To avoid configuration F5, c(v1) 6= c(u2) and c(u4) 6= c(v3). To avoid F6,
c(u2) 6= c(u4) and c(v1) 6= c(v3). Therefore, without a loss of generality, there are
four possible ways to color v1, u2, v3, and v4, which can be seen in Figure 8.

In all cases, the color list of every blue vertex must only contain blue and
colors utilized by neighbors. If not, we could recolor one blue vertex to obtain
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Figure 7. Diagram of subgraph H.

Case 1 Case 2

Case 3 Case 4

Figure 8. Possible colorings of H.

a new coloring whose color word is lexicographically less than wc, which is a
contradiction.

In Cases 1 and 2, we know L(v2) ⊆ {b, g, r, y}. If r ∈ L(v2), define a new
coloring c′ in which c′(v2) = r, c′(u2) 6∈ {b, r}, and c′ = c for all other vertices.
If g ∈ L(v2), define a new coloring c′′ in which c′′(v2) = g, c′′(v3) 6∈ {b, g}, and
c′′ = c for all other vertices. Both wc′ and wc′′ are lexicographically less than wc,
so we obtain a contradiction and Cases 1 and 2 cannot occur.

In Cases 3 and 4, we know L(v2) = {b, r, y} and L(u3) = {b, r, c(u4)}. Define
a new coloring c′ in which c′(v2) = c′(u3) = r, c′(u2), c

′(v3) 6∈ {b, r}, and c′ = c
for all other vertices. If c′(u2) 6= c′(v3), then the blue color class has decreased
by 2 and two other color classes each increase by 1. Since Blue is at least 2 larger
than every other color classes, we know that wc′ is lexicographically less than wc,
which is a contradiction. So it must be that c′(u2) = c′(v3). If we are forced to
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make c′(u2) = c′(v3), let’s say that the new color of u2 and v3 in c′ is pink. If pink
occurred at least 3 times fewer than blue in c, then wc′ is still lexicographically
less than wc. So c′(u2) = c′(v3), pink was the second most common color class
of c, pink occurred exactly 2 times fewer than Blue in c, and we cannot avoid
utilizing pink when defining c′. This causes us to obtain wc′ = wc, so we must
define c′ in a different way to obtain a contradiction.

Since |Pink| = |Blue| − 2 in c and c uses at least 4 colors, it must be that
|Blue| = d2n/3e + 1 and |Pink| = d2n/3e − 1 in c. Further, since we could not
avoid coloring u2 and v3 pink, it must be that L(u2) = L(v3) = {b, p, r}. Recall
that L(v2) = {b, r, y} and L(u3) = {b, r, c(u4)}. We will consider the rung to the
left of u1 and v1 as pictured in Figure 9.

Figure 9. Diagram for Cases 3 and 4.

Notice that c(u0) 6= b because c is a proper coloring. Also, c(v0) 6= b, other
wise we could define a new coloring c′ in which c′(v2) = y, c′(v1) 6∈ {b, y}, and
c′ = c for all other vertices. Since wc′ is less than wc, this gives us a contradiction.
Additionally, notice that L(v1) = {b, y, c(v0)}. If not, we could obtain a contra-
diction by defining c′ so c′(v2) = y, c′(v1) 6∈ {b, y, c(v0)}, and c′ = c for all other
vertices. And L(u1) ⊆ {b, r, y, c(u0)}, otherwise we could obtain a contradiction
by recoloring u1 with something other than those 4 colors.

If c(u0) ∈ {r, y}, then L(u1) = {b, r, y}. If c(u0) = y, obtain a contradiction
by defining a new coloring c′ in which c′(u1) = r, c′(u2) = p, and c′ = c for all
other vertices. If c(u0) = r, obtain a contradiction by defining a new coloring c′′

in which c′′(u1) = y, c′′(v1) = b, c′′(v2) = p, and c′′ = c for all other vertices.

If c(u0) 6∈ {r, y}, there are 3 possible lists for u1. If L(u1) = {b, r, y} or
L(u1) = {b, y, c(u0)}, obtain a contradiction by defining a new coloring c′ in
which c′(u1) = y, c′(v1) = b, c′(v2) = p, and c′ = c for all other vertices. If
L(u1) = {b, r, c(u0)}, obtain a contradiction by defining a new coloring c′′ in
which c′′(u1) = r, c′′(u2) = p, and c′′ = c for all other vertices.

In every case and sub-case we are able to obtain a contradiction. Thus, it
must be that c does not contain four blue vertices in four consecutive rungs.

A consequence of Lemma 18 is that in the lex-min coloring c, the blue vertices
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of Πn, n ≥ 6, must be arranged into blocks of 1, 2, or 3 consecutive rungs. That
is, we can cover the vertices and edges of Πn with disjoint copies of the blocks
shown in Figure 10, which may be reflected vertically. In these diagrams, the
vertically-oriented edges correspond to rungs of Πn and the blank vertices must
not be blue.

Block B0 Block B1

Block B2 Block B3

Figure 10. Blocks in the decomposition of Πn, n ≥ 6.

The block decomposition of Πn, n ≥ 6 will play an important role in the
proof of Theorem 20. But first, in Lemma 19, we show that a B3 block cannot
be adjacent to either a B2 block or another B3 block.

Lemma 19. If c is lex-min and not d2n/3e-bounded, then a B3 block in Πn,
n ≥ 6 cannot be adjacent to a B2 block or another B3 block.

Proof. Suppose not. Then Πn contains a subgraph of 7 consecutive rungs which
looks like one of configurations F7 and F8 in Figure 11. Vertices u3 and v3 must
be non-blue and different colors, so without a loss of generality, we suppose they
have colors r and y, respectively. Note further that the blue vertices must be
blue and each blank vertex could be any non-blue color which is not already in
use by its neighbors.

In configuration F7, we will first determine L(v4). Notice that L(v4) ⊆
{b, y, c(u4), c(v5)}. If not, we could recolor v4 and obtain a lexicographically
smaller color word. Further, notice that c(u4) 6= y. If it were, then L(v4) =
{b, y, c(v5)} so we could define a lexicographically smaller coloring c′ in which
c′(v4) = c(v5), c

′(v5) 6∈ {b, c(v5)}, and c′ = c for all other vertices. For simplicity,
say c(u4) = g. Then L(v4) = {b, g, y}. If not, then there exists a color c0 in
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Configuration F7

Configuration F8

Figure 11. Reducible configurations for Lemma 19.

L(v4) − {b, g, y}. So we could define a lexicographically smaller coloring c′′ in
which c′′(v4) = c0, c

′′(v5) 6∈ {b, c0}, and c′′ = c for all other vertices.

Now we will determine L(u4), L(u3), and L(v3). Notice that L(u4) = {b, g, r}.
If not, we could obtain a lexicographically smaller coloring c′ in which c′(v4) = g,
c′(u4) 6∈ {b, g, r}, c′(v5) 6∈ {b, g}, and c′ = c for all other vertices. Next, notice
that L(u3) = {b, r, y}. If not, we could obtain a lexicographically smaller coloring
c′′ in which c′′(v4) = g, c′′(u4) = r, c′′(u3) 6∈ {b, r, y}, c′′(v5) 6∈ {b, g}, and c′′ = c
for all other vertices. Finally, notice that L(v3) = {b, y, c(v2)}. If not, we could
obtain a lexicographically smaller coloring c′′′ in which c′′′(v4) = g, c′′′(u4) = r,
c′′′(u3) = y, c′′′(v3) 6∈ {b, y, c(v2)}, c′′′(v5) 6∈ {b, g}, and c′′′ = c for all other
vertices.

Since we now know the color lists for u3, v3, u4, and v4, we will use them
to obtain a lexicographically smaller coloring c′. If c(v2) 6= r, define c′ so that
c′(v4) = y, c′(v3) = c(v2), c

′(v2) 6∈ {b, c(v2)}, and c′ = c for all other vertices.
If c(v2) = r, define c′ so that c′(v4) = g, c′(u4) = r, c′(u3) = y, c′(v3) = r,
c′(v2) 6∈ {b, r}, and c′ = c for all other vertices. In both cases, we contradict the
assumption that c is a lex-min coloring. Thus, configuration F7 cannot occur in
coloring c.

In configuration F8, we will first determine L(u4) and L(u2). Notice that
L(u4) ⊆ {b, r, c(v4), c(u5)}. If not, we could recolor u4 and obtain a lexico-
graphically smaller color word. Futher, notice that c(v4) 6= r. If it were, then
L(u4) = {b, r, c(u5)} so we could define a lexicographically smaller coloring c′ in
which c′(u4) = c(u5), c

′(u5) 6∈ {b, c(u5)}, and c′ = c for all other vertices. For sim-
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plicity, say c(v4) = g. Then L(u4) = {b, g, r}. If not, then L(u4) = {b, r, c(u5)}
with c(u5) 6= g. So we could define a lexicographically smaller coloring c′′ in
which c′′(u4) = c(u5), c

′′(u5) 6∈ {b, c(u5)}, and c′′ = c for all other vertices.

We will now consider three cases: c(u5) = r, c(u5) = g, and c(u5) 6∈ {g, r}.

Case 1. Suppose that c(u5) = r. We will determine L(v4), L(v3), and L(u3).
Notice that L(v4) = {b, g, y}. If not, we could obtain a lexicographically smaller
coloring c′ in which c′(u4) = g, c′(v4) 6∈ {b, g, y}, and c′ = c for all other vertices.
Next, notice that L(v3) = {r, y, c(v2)}. If not, we could obtain a lexicographically
smaller coloring c′′ in which c′′(u4) = g, c′′(v4) = y, c′′(v3) 6∈ {r, y, c(v2)}, and
c′′ = c for all other vertices. Finally, notice that L(u3) = {b, g, r}. If not, we could
obtain a lexicographically smaller coloring c′′′ in which c′′′(u4) = g, c′′′(v4) = y,
c′′′(v3) = r, c′′′(u3) 6∈ {b, g, r}, and c′′′ = c for all other vertices.

Since we now know the color lists for u4, v4, and v3, we will use them to
obtain a lexicographically smaller coloring c′. Let c′(u4) = g, c′(v4) = y, c′(v3) =
c(v2), c

′(v2) 6∈ {b, c(v2)}, and c′ = c for all other vertices. This contradicts the
assumption that c is a lex-min coloring.

Case 2. Suppose c(u5) = g. We will determine L(u3) and L(v3). Notice that
L(u3) = {b, r, y}. If not, we could obtain a lexicographically smaller coloring c′ in
which c′(u4) = r, c′(u3) 6∈ {b, r, y}, and c′ = c for all other vertices. Next, notice
that L(v3) = {g, y, c(v2)}. If not, we could obtain a lexicographically smaller
coloring c′′ in which c′′(u4) = r, c′′(u3) = y, c′′(v3) 6∈ {g, y, c(v2)}, and c′′ = c for
all other vertices.

Since we now know the color lists for u4, u3, and v3, we will use them to
obtain a lexicographically smaller coloring c′. Let c′(u4) = r, c′(u3) = y, c′(v3) =
c(v2), c

′(v2) 6∈ {b, c(v2)}, and c′ = c for all other vertices. This contradicts the
assumption that c is a lex-min coloring.

Case 3. Suppose c(u5) 6∈ {g, r}. We can apply the same argument as Case 2
to obtain a coloring that is lexicographically smaller than c.

In each of the three cases, we contradict the assumption that c is a lex-min
coloring. Thus, configuration F8 cannot occur in coloring c.

We are now ready to finish proving our main result. Theorem 20 argues
that every lex-min 3-list-coloring of Πn, n ≥ 6 is d2n/3e-bounded. Together with
Observation 3 and Lemmas 9 and 10, this final proof confirms that our main
result, Theorem 8, is true, and Πn, n ≥ 3, is equitably 3-choosable.

Theorem 20. If c is lex-min L-coloring of Πn, n ≥ 6, then c is d2n/3e-bounded.

Proof. Suppose not. Define a charge function chg on the vertices and faces of a
planar embedding of Πn, n ≥ 6, as follows.
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For every vertex v, chg(v) = 1− |B(v)| where B(v) is the set of neighbors
of v in Πn which are colored blue under c.

For every 4-face f , chg(f) = 4
3 −|B(f)| where B(f) is the set of vertices on

face f which are colored blue under c.

For every n-face f , chg(f) = 0.

Let V denote the set of vertices of Πn and F denote the set of faces of Πn. Note
that F consists of two n-faces and n 4-faces. Since |Blue| > d2n/3e, the total
charge of Πn is

chg(Πn) =
∑
f∈F

chg(f) +
∑
v∈V

chg(v) = 2(0) +
4n

3
− 2|Blue|+ 2n− 3|Blue|

= 10n/3− 5|Blue| ≤ 10n/3− 5 (d2n/3e+ 1) < 0.

That is, when c is not d2n/3e-bounded, the total charge of Πn is negative.

Recall that we can cover Πn with disjoint copies of the blocks B0, B1, B2, and
B3 pictured in Figure 10. As suggested by the figure, we introduce the convention
that each block includes the 4-face to its right, and compute the charge of each
block by summing the charges of its vertices and faces. To begin, the blocks have
the following charges.

chg(B0) = 10/3 if the block to its left is B0 and chg(B0) = 7/3 otherwise.

chg(B1) = 8/3 if the block to its left is B0 and chg(B1) = 5/3 otherwise.

chg(B2) = 1 if the block to its left is B0 and chg(B2) = 0 otherwise.

chg(B3) = −2/3 if the block to its left is B0 and chg(B3) = −5/3 otherwise.

We introduce the following discharging rules.

Rule 1. Every B0 steals +1 charge from the block to its right.

Rule 2. Every B3 steals +5/3 charge from the block to its right.

After applying Rule 1, blocks of each type all have the same charge. In
particular, chg(B0) = 10/3, chg(B1) = 5/3, chg(B2) = 0, and chg(B3) = −5/3.
After applying Rule 2, chg(B3) = 0 for every B3 block. Further, by Lemma 19,
we know that the block to the right of any B3 cannot be a B2 or a B3. Thus, we
end with the following charges.

chg(B0) = 5/3 if the block to its left is B3 and chg(B0) = 10/3 otherwise.

chg(B1) = 0 if the block to its left is B3 and chg(B1) = 5/3 otherwise.

chg(B2) = chg(B3) = 0 for all B2 and B3 blocks.
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Since chg(Bi) ≥ 0 for all i ∈ {0, 1, 2, 3}, and chg(Πn) is equal to the sum of the
charges of the blocks, we may conclude that chg(Πn) ≥ 0. This contradicts our
earlier conclusion that chg(Πn) < 0, so it must be that our assumption about
c is wrong. Instead, every lex-min coloring c of Πn, n ≥ 6, must be d2n/3e-
bounded.

References

[1] B.L. Chen, K.-W. Lih and P.-L. Wu, Equitable coloring and the maximum degree,
European J. Combin. 15 (1994) 443–447.
https://doi.org/10.1006/eujc.1994.1047

[2] R. Diestel, Graph Theory, Grad. Texts in Math. 173 (Springer, Berlin, Heidelberg,
2017).
https://doi.org/10.1007/978-3-662-53622-3

[3] A. Dong and X. Zhang, Equitable coloring and equitable choosability of graphs with
small maximum average degree, Discuss. Math. Graph Theory 38 (2018) 829–839.
https://doi.org/10.7151/dmgt.2049
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