ON A PROBLEM OF L. ALCÓN CONCERNING PATH DOMINATION

Silvia B. Tondato
CMaLP Facultad de Ciencias Exactas Universidad Nacional de La Plata
e-mail: tondato@mate.unlp.edu.ar

Abstract

A walk W between two non-adjacent vertices in a graph G is called tolled if the first vertex of W is among vertices from W adjacent only to the second vertex of W, and the last vertex of W is among vertices from W adjacent only to the second-last vertex of W. In this article, we solve a problem posed by Alcón that seeks to characterize the class of graphs such that for every pair of non-adjacent vertices u and v, every $u v$ shortest path dominates every $u v$ tolled walk.

Keywords: domination, walks, interval graphs.
2020 Mathematics Subject Classification: 05C38, 05C75, 05C69, 05C12.

Introduction

In [1] the concept of path domination was introduced to understand the structure of those graphs in which for every pair of non-adjacent vertices u and v, and every pair of $u v$ walks W and W^{\prime}, each internal vertex of W^{\prime} is adjacent to some internal vertex of W.

Based in this concept, new characterization of standard classes like chordal, interval, superfragile and HHD-free graphs [3] have been obtained in $[1,8,10]$.

Also, in [1], p. 1032, Alcón suggests the following problem: determine if the graphs in which every $u v$ shortest path dominates every $u v$ tolled walk are exactly the ones in Interval ${ }^{+}$.

A graph G is in Interval ${ }^{+}$, if G is a chordal graph that contains none of the graphs F_{2} or $F_{4}(n)_{n \geq 6}$ as induced subgraph, and satisfy the following condition. If G has an induced subgraph H isomorphic to $F_{1}\left(F_{3}(n)_{n \geq 6}\right)$, then the distance in G between the vertices of $F_{1}\left(F_{3}(n)_{n \geq 6}\right)$ labelled u and w in Figure 1 is 2, and any vertex of G adjacent to both u and w is universal to $F_{1}\left(F_{3}(n)_{n \geq 6}\right)$.

In this paper, we show that there exist graphs in which every $u v$ shortest path dominates every $u v$ tolled walk that are not in Interval ${ }^{+}$. Thus, Alcón's Conjecture results false. We propose a reformulation of the problem. For this, we introduce the class IntervalE ${ }^{+}$that is the class of those chordal graphs G that contain none of the graphs F_{2} or $F_{4}(n)_{n \geq 6}$ as induced subgraph, and satisfy the following condition. If G has an induced subgraph H isomorphic to $F e_{1}(n)_{n \geq 7}\left(F e_{3}(n)_{n \geq 6}\right)$, then the distance in G between the vertices of $F e_{1}(n)_{n \geq 7}$ $\left(F e_{3}(n)_{n \geq 6}\right)$ labelled u and w in Figure 2 is 2 , and any vertex of G adjacent to both u and w is universal to $F e_{1}(n)_{n \geq 7}\left(F e_{3}(n)_{n \geq 6}\right)$. And then, we prove that the graphs in which every $u v$ shortest path dominates every $u v$ tolled walk are exactly the ones in IntervalE ${ }^{+}$.

The paper is organized as follows. In Section 1, we give necessary definitions, in Section 2, the main result is presented. Conclusions are developed in Section 3.

1. Preliminaries

We introduce the necessary definitions in this section.
All the graphs in this paper are finite, undirected, simple, and connected. We use standard graph terminology [11].

Let G be a graph. The subgraph induced in G by a subset $S \subseteq V(G)$ is denoted by $G[S]$. For any vertex v of G, the neighborhood of v is denoted by $N[v]=\{u \in V(G) \mid u v$ is an edge of G$\} \cup\{v\}$. We denoted $|V(G)|$ by $|G|$ and by $G(n)$ a graph with n vertices.

Let us introduce the following definitions. A $u v$ walk is a sequence $W: u=$ $v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}=v$ whose terms are vertices, not necessarily distinct, such that u is adjacent to v_{1}, v_{i} is adjacent to v_{i+1} for $i \in\{1, \ldots, k-2\}$, and v_{k-1} is adjacent to v. The vertices u and v are called ends of the walk, and the vertices v_{1}, \ldots, v_{k-1} are its internal vertices. The integer k is the length of the walk.

A $u v$ path is a $u v$ walk with all its vertices distinct. The distance $d_{G}(u, v)$ between vertices u and v is the minimum number of edges on a path connecting these vertices. If no confusion can arise we will omit the index G.

Let $W: v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}$ be a path, $W[a, b]: a=v_{i}, \ldots, v_{j}=b$ denote the section of the path W between a and b. Let $W(a, b]=W[a, b] \backslash\{a\}, W[a, b)=$ $W[a, b] \backslash\{b\}$, and $W(a, b)=W[a, b] \backslash\{a, b\}$.

A $u v$ shortest path (or geodesic [6]) is a $u v$ path of length $d(u, v)$.
A $u v$ tolled walk is a $u v$ walk, $u=v_{0}, v_{1}, \ldots, v_{k-1}, v_{k}=v$, satisfying that u is adjacent only to the vertex v_{1}, v is adjacent only to the vertex $v_{k-1},\left\{v_{1}\right\} \cap$ $\left\{v_{2}, \ldots, v_{k-1}\right\}=\emptyset$ and $\left\{v_{k-1}\right\} \cap\left\{v_{1}, \ldots, v_{k-2}\right\}=\emptyset[2]$. Note that v_{1} may be v_{k-1}, but if $v_{1}=v_{k-1}$ then $k=2$.

It is clear that every shortest path is a tolled walk.

Remark 1. Every $u v$ walk contains a $u v$ induced path.
Definition 1. The $u v$ walk $W: u, v_{1}, \ldots, v_{m-1}, v$ dominates the $u v$ walk W^{\prime} : $u, v_{1}^{\prime}, \ldots, v_{n-1}^{\prime}, v$ if every internal vertex of W^{\prime} is adjacent to some internal vertex of W or belongs to W.

Now, we introduce the notation SP and TW to refer to the set of shortest paths and tolled walks respectively, which connects two non-adjacent vertices u and v of a graph G :
$\mathbf{S P}(u, v)=\{W: W$ is a $u v$ shortest path $\}$,
$\mathbf{T W}(u, v)=\{W: W$ is a $u v$ tolled walk $\}$.
A cycle of length k in a graph G is a path $C: v_{1}, v_{2}, \ldots, v_{k}$ plus and edge between v_{1} and v_{k}. Each edge of G between two non-consecutive vertices of C is called a chord. The cycle of length k without chords is denoted by C_{k}.

Let P be an induced path of length at least two. We say that a graph obtained by adding an universal vertex to P is a gem.

A graph is chordal if every cycle of length at least 4 has a chord. Let Chordal denote the class of chordal graphs. Note that Chordal $=\left\{\mathbf{C}_{\mathbf{k}}: k>3\right\}$-free.

A graph is an interval graph if it has an intersection model consisting of intervals on a straight line. Let Interval denote the class of interval graphs.

An asteroidal triple of a graph G is a set of 3 non-adjacent vertices of G such that each pair is connected by a path avoiding the neighborhood of the third vertex.

Lekkerkerker and Boland [9] proved that:

1. For any graph G : G is an interval graph if and only if G is chordal and contains no asteroidal triple.
2. Interval $=\mathbf{C h o r d a l} \cap\left\{\mathbf{F}_{\mathbf{1}}, \mathbf{F}_{\mathbf{2}}, \mathbf{F}_{\mathbf{3}}(\mathbf{n})_{\mathbf{n} \geq \mathbf{6}}, \mathbf{F}_{\mathbf{4}}(\mathbf{n})_{\mathbf{n} \geq \mathbf{6}}\right\}$-free (see Figure 1).

Definition 2. SP/TW is the class formed by those graphs G such that for every pair of non-adjacent vertices u and v of G, every $W \in \mathbf{S P}(u, v)$ dominates every $W^{\prime} \in \mathbf{T W}(u, v)$, i.e., $W \in \mathbf{S P}(u, v)$ and $W^{\prime} \in \mathbf{T W}(u, v)$ implies W dominates W^{\prime}.

In [1], the class of graphs called Interval ${ }^{+}$was introduced, which is the class of those chordal graphs G that contain none of the graphs F_{2} or $F_{4}(n)_{n>6}$ as an induced subgraph, and satisfy the following condition. If G has an induced subgraph H isomorphic to $F_{1}\left(F_{3}(n)_{n \geq 6}\right)$, then the distance in G between the vertices of $F_{1}\left(F_{3}(n)_{n \geq 6}\right)$ labelled u and w in Figure 1 is 2 , and any vertex of G adjacent to both u and w is universal to $F_{1}\left(F_{3}(n)_{n \geq 6}\right)$.

The following theorem shows the relationship between the classes SP/TW and Interval ${ }^{+}$.
Theorem 1 [1]. SP/TW \subseteq Interval ${ }^{+}$.

Figure 1. Chordal forbidden induced subgraphs for interval graphs.

Figure 2. In $F e_{1}$ the distance between each pair of pending vertices is at least four. In graph (1) the distance between u and v is at least four, and vertices in the induced path between a and b plus c induce a gem. In graph (2) the distance between each pair of pending vertices is at least three, and the vertices a, b, c induce only a triangle.

Alcón left open the problem of determining if the class $\mathbf{S P} / \mathbf{T W}$ is exactly the class Interval ${ }^{+}[1]$.

Conjecture 1 [1]. SP/TW = Interval $^{+}$.

In what follows, we show that the conjecture is false, and we introduce class IntervalE ${ }^{+}$that will turn out to be $\mathbf{S P} / \mathbf{T W}$.

Let $F^{\prime} e_{1}$ be the graph in Figure 3. It is easy to check that $F^{\prime} e_{1} \in$ Interval $^{+}$. However, it is not in $\mathbf{S P} / \mathbf{T} \mathbf{W}$ since the shortest path u, x, v does not dominate the bold tolled walk $u, 1,2,4, w, y, w, 4,2,3, v$ between u and v, since $y \notin N[x]$.

Figure 3. $F^{\prime} e_{1} \in$ Interval $^{+} \backslash \mathbf{S P} / \mathbf{T W}$.

In what follows we reformulate the conjecture, for this we will define class IntervalE ${ }^{+}$. Let us abuse the notation, when defining the following family of graphs.

Let $F e_{1}(n)$ be a tree with n vertices, such that its only pendent vertices are u, v and w, and the distance between each pendent vertex and the vertex of degree three is at least two. Note that $F e_{1}(7)=F_{1}$ (see Figure 2).

Let $F e_{3}(n)$ be a graph with n vertices, such that u, v and w are its pendent vertices, a, b, c are vertices of degree three such that the distance between a and u, b and v, c and w, respectively, is minimum (see Figure 2). If a, b, c induce a gem then the distance between c and w is exactly one (see (2) in Figure 2). In both cases, if no confusion can arise we will omit n.

Note that $F e_{1}$ and $F e_{3}$ is obtained from F_{1} and F_{3}, respectively, through a possible increase in the paths between a pair of its pending vertices.

Let IntervalE ${ }^{+}$be the class of those chordal graphs G that contain none of the graphs F_{2} or $F_{4}(n)_{n \geq 6}$ as induced subgraph, and satisfy the following condition. If G has an induced subgraph H isomorphic to $F e_{1}(n)_{n \geq 7}\left(F e_{3}(n)_{n \geq 6}\right)$, then the distance in G between the vertices of $F e_{1}(n)_{n \geq 7}\left(F e_{3}(n)_{n \geq 6}\right)$ labelled u and w in Figure 2 is 2 , and any vertex of G adjacent to both u and w is universal to $F e_{1}(n)_{n \geq 7}\left(F e_{3}(n)_{n \geq 6}\right)$. It is important to notice that IntervalE ${ }^{+} \subseteq$ Interval $^{+}$.

Conjecture 2. SP/TW = IntervalE ${ }^{+}$.

Lemma 2. SP/TW \subseteq IntervalE ${ }^{+}$.

Proof. By Theorem 1, SP/TW \subseteq Interval $^{+}$. Clearly if $G \in \mathbf{S P} / \mathbf{T W}$ then $G \in \mathbf{C h o r d a l} \cap\left\{\mathbf{F}_{\mathbf{2}}, \mathbf{F}_{\mathbf{4}}(\mathbf{n})_{\mathbf{n} \geq 6}\right\}$-free.

Let $F e_{1}$ be a graph such that u, v, w are its pendent vertices, i be the vertex of degree three, $W_{u, w}: u, 1, \ldots, i, \ldots, j, w$ be the $u w$ induced path of $F e_{1}, W_{i, v}^{\prime}$: $i, j+1, \ldots, k, v$ be the $i v$ induced path of $F e_{1}$ (see Figure 4). Note that if $\left|F e_{1}\right|=7$ then $F e_{1}=F_{1}$.

Figure 4.

Observe that if G contains $F e_{1}$ as an induced subgraph (Figure 4), the distance between u and w cannot be $j+1$, otherwise the $u w$ shortest path $u, 1, \ldots, i, \ldots j, w$ does not dominate the tolled walk $u, 1 \ldots, i, \ldots, k, v, k, \ldots$, i, \ldots, j, w.

On the other hand, since $G \in$ Interval $^{+}$and $F e_{1}[\{i-2, i-1, i, i+1, i+$ $2, j+1, j+2\}]=F_{1}$, there exists a vertex y adjacent to every vertex of $\{i-2, i-$ $1, i, i+1, i+2, j+1, j+2\}$.

In what follows, we show that y must be adjacent to every vertex of $W_{u, w}[u, i-$ $3] \cup W_{u, w}[i+3, w] \cup W_{i, v}^{\prime}[j+3, v]$, whenever those vertices exist.

By the way of contradiction, suppose that there exists at least a vertex of $W_{u, w}[u, i-3]$ which is not adjacent to y. Among all, we choose the one closest to $i-3$, let us say a (a may be $i-3$). But then the shortest path $j+2, y, i+2$ does not dominate the tolled walk $j+2, \ldots, i, i-1, \ldots, a, a+1, \ldots, i, i+1, i+2$.

Thus y is adjacent to every vertex of $F e_{1}$.
A reasoning analogous to the one applied in the case of $F e_{1}$ shows that if G has an induced subgraph H isomorphic to $F e_{3}(n)_{n \geq 6}$ then the distance in G between the vertices of $F e_{3}(n)_{n \geq 6}$ labelled u and w in Figure 4 is 2. The reader should have no problem verifying the details. Therefore SP/TW \subseteq IntervalE ${ }^{+}$.

2. Main Results

In this section, we characterize the class $\mathbf{S P} / \mathbf{T W}$. We start with a preliminary observation that follows directly from the definition of tolled walks.

Observation 3. Let G be a graph, and $T: u=y_{0}, y_{1}, \ldots, y_{m}=v$ be a uv tolled walk. It follows from the definition of tolled walk that if there exists a vertex in T such that $y_{k} \notin N[u] \cup N[v]$ then u and y_{k} are in the same connected component of $G[T]-N[v]$, and also v and y_{k} are in the same connected component of $G[T]-N[u]$.

Note the following properties about chordal graphs.
Lemma 4. Let u and v be non-adjacent vertices of a chordal graph G, and P and Q be induced paths between u and v. If P has a vertex $y \notin Q$, and $a \in P \cap Q$ is the vertex closest to y in $P[u, y]$ and $b \in P \cap Q$ is the vertex closest to y in $P[v, y]$, then $Q[a, b] \cap P=\{a, b\}$.

Proof. Suppose that there exists at least a vertex $c \in Q(a, b) \cap P$. Clearly $c \notin P[a, b]$ because a and b are the vertices closest to y in $P[u, y]$ and $P[v, y]$. Hence there do not exist chords between c and vertices of $P[a, b]$. But then $G[P[a, b] \cup Q[a, b]]$ contains $C_{r}(r \geq 4)$ as an induced subgraph, a contradiction.

Lemma 5. Let G be a chordal graph, P and Q be two induced path between u and v non-adjacent vertices of G. If Q is a shortest path, then every vertex in $P-Q$ is adjacent to at most three vertices of Q.

Proof. Suppose that there exists at least a vertex $c \in P$ that is adjacent to a and b vertices in Q such that $|Q[a, b]|>3$. Since $G[Q[a, b] \cup\{c\}]$ is a chordal graph, c is adjacent to every vertex of $Q[a, b]$. It is clear that $Q-Q(a, b)+a c+b c$
is a $u v$ walk with at least two vertices fewer than Q. By Remark 1, it contains a $u v$ induced path Q_{1} such that $\left|Q_{1}\right|<|Q|$, a contradiction.

We are now able to prove the following.
Theorem 6. SP/TW $=$ IntervalE ${ }^{+}$.
Proof. By Lemma $2 \mathbf{S P} / \mathbf{T W} \subseteq$ IntervalE $^{+}$.
To prove that IntervalE ${ }^{+} \subseteq \mathbf{S P} / \mathbf{T W}$, let us suppose, on the contrary, that $G \in$ IntervalE $^{+}$, but $G \notin \mathbf{S P} / \mathbf{T W}$.

As $G \notin \mathbf{S P} / \mathbf{T W}$ there exist two non-adjacent vertices u and v, a $u v$ shortest path W and a $u v$ tolled walk $T: u=y_{0}, y_{1}, \ldots, y_{m}=v$ satisfying that W does not dominate T. Thus, there is some internal vertex of T that is neither a vertex of W nor adjacent to any internal vertex of W. Let y be a vertex of $T-W$ such that it is not adjacent to any vertex of W. We can assume that $y \neq y_{1}, y_{m-1}$, otherwise $G[W \cup T]$ contains as an induced subgraph a cycle of size at least four.

Let $P: u=z_{0}, z_{1}, \ldots, z_{l}=v$ be a shortest path in $G[T]$ from u to v. Note that $|P \cap W| \geq 2$. Since T is a $u v$ tolled walk, $z_{1}=y_{1}$ and $z_{l-1}=y_{m-1}$. Note that $z_{1} \neq z_{l-1}$, and then $|V(P)| \geq 4$.

In the following claim, we show that y cannot be an internal vertex of P.
Claim 7. $y \notin P$.
Proof. Assume the contrary, $y \in P$.
Clearly, $|P \cap W| \geq 2$. Let a, b be two vertices of $P \cap W$ such that a, y, b appear in this order in $P, d_{P}(a, y)$ and $d_{P}(b, y)$ is minimum. Note that a may be u and b may be v.

Since y is not a vertex of W nor adjacent to any internal vertex of W, it follows that $d(a, y)>1$ and $d(b, y)>1$. By Lemma $4, P \cap W[a, b]=\{a, b\}$. On the other hand, $G[P[a, b] \cup W[a, b]]$ is a chordal graph, there exist chords between vertices of $P[a, b]$ and vertices $W[a, b]$. Thus there exists at least a chord between a vertex of $W(a, b)$ and y, a contradiction.

Therefore $y \notin P$.
In what follows we will analyze two cases, depending of y is or is not adjacent to vertices of P. Observe that if $a \in P$ is adjacent to y then $a \notin W$. We will present some figures that could help in the analysis of cases. In such figures, we will allow ourselves to omit some edges between two adjacent vertices.

Case 1. y is adjacent to some vertex of P. Note that if y is adjacent to two non-consecutive vertices of P, let a and b, then since $G[P[a, b] \cup\{y\}] \neq C_{r}$ (for some $r>3$), it follows that y is adjacent to every vertex of $P[a, b]$.

By before exposed, we can analyze two situations: y is adjacent to two consecutive vertices or y is adjacent to one and only one vertex of P.

Case 1.1. y is adjacent to two consecutive vertices z_{i}, z_{i+1} of P. By the choice of $y, z_{i}, z_{i+1} \notin W$. Let $a \in P\left[u, z_{i}\right] \cap W$ and $b \in P\left[z_{i+1}, v\right] \cap W$ such that the distance in P between $a(b)$ and $z_{i}\left(z_{i+1}\right)$ is minimum. Note that $z_{i}\left(z_{i+1}\right)$ may be adjacent to $a(b)$, and $a(b)$ might be $u(v)$, respectively.

Since $G[P[a, b] \cup W[a, b]]$ is a chordal graph, there exist at least a vertex in $W[a, b]$ which is adjacent to z_{i} and z_{i+1}. In order to fix ideas, let us consider $W[a, b]: a, x_{1}, \ldots, x_{n-1}, b$.

Let p and q be the first and the last index such that z_{i}, z_{i+1} are simultaneously adjacent to x_{p} and x_{q} (see Figure 5). Since $W \in \mathbf{S P}$, by Lemma $5, q \leq p+2$.

Figure 5. The dotted line between a and b represents $W[a, b]$.
Since $G\left[P\left[a, z_{i}\right] \cup W\left[a, x_{p}\right]\right]$ is a chordal graph, then z_{i} must be adjacent to x_{p-1} or x_{p} must be adjacent to z_{i-1}. By similarity, $G\left[P\left[b, z_{i+1}\right] \cup W\left[b, x_{q}\right]\right]$ is a chordal graph, then z_{i+2} must be adjacent to x_{q} or x_{q+1} must be adjacent to z_{i+1}. Thus $G\left[\left\{y, z_{i}, z_{i+1}\right\} \cup W\left[x_{p-1}, x_{q+1}\right]\right]=F_{4}$ or $G\left[\left\{y, z_{i-1}, z_{i}, z_{i+1}, z_{i+2}\right\} \cup\right.$ $\left.W\left[x_{p}, x_{q}\right]\right]=F_{4}$ or $G\left[\left\{y, z_{i}, z_{i+1}, z_{i+2}\right\} \cup W\left[x_{p-1}, x_{q}\right]\right]=F_{4}$ or $G\left[\left\{y, z_{i-1}, z_{i}, z_{i+1}\right\}\right.$ $\left.\cup W\left[x_{p}, x_{q+1}\right]\right]=F_{4}$, a contradiction.

Case 1.2. Suppose that y is adjacent to one and only one vertex of P. Let us consider two situations: y is adjacent to z_{i} for some $i \in\{2, \ldots, l-2\}$ or y is adjacent to z_{1} or z_{l-1}.

Case 1.2.1. y is adjacent to z_{i} for $i \neq 1, l-1$. Let a and b be vertices in $W \cap P$ such that $a \in P\left[u, z_{i}\right], b \in P\left[z_{i}, v\right], d_{P}\left(a, z_{i}\right)$ and $d_{P}\left(z_{i}, b\right)$ is minimum.

Since $G[P[a, b] \cup W[a, b]]$ is a chordal graph, we have that there exist chords between vertices of $P[a, b]$ and $W[a, b]$. Let us consider $W[a, b]: a, x_{1}, \ldots, x_{n-1}, b$.

By Lemma 5 , as $W \in \mathbf{S P}$, if z_{i} is adjacent to two vertices $\left(x_{p}, x_{q}\right.$ at a maximum distance) in $W[a, b]$, those vertices must be at a distance of at most 2 in W.

Let us consider two cases depending of z_{i} is or is not adjacent to one and only one vertex of $W[a, b]$.

Case 1.2.1.1. z_{i} is adjacent to one and only one vertex of $W[a, b]$. Thus $a \neq z_{i-1}$ and $b \neq z_{i+1}$. Let x_{h} be the vertex of $W[a, b]$ such that z_{i} is adjacent to x_{h}. Since G is a chordal graph, let $z_{p} \in P\left[a, z_{i}\right]$ and $z_{q} \in P\left[z_{i}, b\right]$ such that x_{h} is adjacent to z_{p} and z_{q}, and the distance in P between z_{i} and z_{p}, z_{q} is maximum (see Figure 6).

Figure 6. The dotted line between a and b represents $W[a, b]$.
If $p \leq i-2$ and $q \geq i+2$ then $G\left[P\left[z_{p}, z_{q}\right] \cup\left\{y, x_{h}\right\}\right]$ contains F_{2} as induced subgraph, a contradiction.

Suppose that $p=i-1$ and $q=i+1$. By the choice of p and q, x_{h} is not adjacent to any vertex of $P\left[a, z_{p}\right) \cup P\left(z_{q}, b\right]$. Hence $G\left[P\left[a, z_{p}\right] \cup W\left[a, x_{h}\right]\right]$ contains $C_{r}(r>3)$ as induced subgraph, which is a contradiction, or there exists x_{h-1} in $W\left(a, x_{h}\right]$ such that it adjacent to z_{p}. Analogously there exists x_{h+1} in $W\left[x_{h}, b\right)$ such that z_{q} must be adjacent to x_{h+1}. Thus $G\left[\left\{z_{p}, z_{q}, z_{i}, y, x_{h}, x_{h+1}, x_{h-1}\right\}\right]=F_{2}$, a contradiction.

Suppose that $p=i-1$ and $q=i$ (by symmetry $p=i$ and $q=i+1$).
Observe that z_{p-1} may be a but $z_{q+1} \neq b$. Since x_{h} is not adjacent to z_{q+1} and z_{i} is not adjacent to any vertex of $W\left[x_{h}, b\right], G\left[P\left[z_{i}, b\right] \cup W\left[x_{h}, b\right]\right]$ contains C_{r} $(r>3)$ as induced subgraph, a contradiction.

Case 1.2.1.2. z_{i} is adjacent at least two vertices of $W[a, b]$. Note that those vertices may be a and b.

Let p and q be the first and the last index such that z_{i} is adjacent to x_{p} and x_{q}. By Lemma 5, since $W \in \mathbf{S P}, q \leq p+2$.

Note that $G\left[W\left[x_{p}, x_{q}\right] \cup\left\{z_{i}\right\}\right]$ induces a triangle or a gem. We can affirm that $G[W[a, b] \cup\{y\} \cup P]$ contains F_{3} as induced subgraph whose pending vertices are y, u and v (see Figure 7). Since $G \in$ IntervalE $^{+}$, there exists $w \in G$ universal vertex of F_{3}. Clearly every shortest path between u and v has 3 vertices. Thus, we arrive to a contradiction if $|W|>3$, or if $|W|=3$, results $x \in W \backslash\{u, v\}$ must be adjacent to y, which is also a contradiction.

Figure 7. The dotted line between a and b represents $W[a, b]$.
Case 1.2.2. Suppose that y is adjacent only to $z_{1}=y_{1}$ (by symmetry $z_{l-1}=$ $\left.y_{m-1}\right)$. As $T \in \mathbf{T W}$, there exists an induced path between y and v in $G[T]$ that does not have vertices neighbors of u. Assume that P_{1} is a shortest among the
paths join y to a vertex in P such that $P_{1} \cap N[u]=\emptyset$. Let $P_{1}: y=t_{1}, t_{2}, \ldots, t_{i}$ with $t_{i} \in P$. Note that $t_{2} \neq z_{1}$ and t_{i} may be adjacent to z_{1}.

No vertex in $P_{1}\left[y, t_{i-1}\right)$ is adjacent to a vertex in $P\left(z_{1}, t_{i}\right)$ because of the minimality of P_{1}, thus every vertex in $P_{1}\left[y, t_{i-1}\right)$ is adjacent to z_{1}, t_{i-1} is adjacent to z_{1} as well, and every vertex in $P_{1}\left[y, t_{i-1}\right]$, and every vertex in $P\left[z_{1}, t_{i}\right]$ is adjacent to t_{i-1}.

In what follows, we can assume that $t_{i}=z_{2}$.
Let a be a vertex in $P \cap W$ such that $d_{P}(u, a)$ is minimum. By the choice of $y, a \neq z_{1}$. Note that a may be z_{2}. Let $W[u, a]: u, x_{1}, \ldots, a$.

Note that if $|W|=3$ then x_{1} must be adjacent to every vertex of P (see Figure 8). Let p the first index such that x_{1} is adjacent to t_{p}. Clearly $p \neq 1$. Thus $G\left[P_{1}\left[t_{p-1}, t_{i}=z_{2}\right] \cup\left\{u, z_{1}, x_{1}, z_{3}\right\}\right]=F_{4}$, a contradiction.

Figure 8. The dotted line between y and t_{i-1} represents the induced path P_{1}, and the filled line between t_{i} and v represents $P\left[t_{i}, v\right]$.

Suppose that $|W| \neq 3$. Note that x_{1} must be adjacent to z_{1}.
First, we assume that at least a vertex of $W[u, a]$ is adjacent to a vertex of P_{1}. Let x_{j} be the first index such that x_{j} is adjacent to a vertex of P_{1}, and let p and q the first and the last index such that x_{j} is adjacent to t_{p} and t_{q}. Note that since $G\left[\left\{t_{p}, z_{1}, x_{j}\right\} \cup W\left[x_{1}, x_{j}\right]\right]$ is a chordal graph, x_{j} must be adjacent to z_{1}.

Suppose that $p \neq q$. Note that $G\left[P_{1}\left[t_{p}, t_{q}\right] \cup\left\{x_{j}\right\}\right]$ is a triangle or a gem whose universal vertex is x_{j}. Assume that x_{j} is not adjacent to any vertex of $P\left[t_{i}, v\right]$. Note that x_{j-1} cannot be adjacent to a vertex of $P\left[t_{i}, v\right]$, since $G\left[P_{1}\left[t_{q}, t_{i}\right] \cup P \cup\right.$ $\left.\left\{x_{j-1}, x_{j}\right\}\right]$ is a chordal graph. We can affirm that there exists an induced path in $G\left[P_{1} \cup P\left[t_{i}, v\right]\right]$, it follows that $G\left[W\left[x_{1}, x_{j}\right] \cup\{u\} \cup P_{1}\left[t_{p-1}, t_{i}\right] \cup P\left[t_{i}, v\right]\right]$ contains as induced subgraph to $F e_{3}$ or $F e_{1}$ with pending vertices u, v, t_{p-1} (see Figure 9).

Figure 9. The dotted line between x_{1} and x_{j} represents the induced path $W\left[x_{1}, x_{j}\right]$, and the filled line between t_{i} and v represents $P\left[t_{i}, v\right]$.

But then as $G \in \operatorname{IntervalE}^{+}$, there exists w such u, w, v is a shortest path, a contradiction because $|W|>3$. Thus x_{j} must be adjacent to a vertex of $P\left[t_{i}, v\right]$. Moreover, it must be adjacent to every vertex of $P\left[t_{i}, v\right]$ otherwise as before exposed $G\left[W\left[x_{1}, x_{j}\right] \cup\{u\} \cup P_{1}\left[t_{p-1}, t_{i}\right] \cup P\left[t_{i}, v\right]\right]$ contains as induced subgraph $F e_{3}$ or $F e_{1}$ with pending vertices u, v, t_{p-1} and we arrive to a contradiction.

Since x_{j} is adjacent to every vertex of $P\left[t_{i}, v\right]$, results $q=i$, and then $G\left[\left\{x_{j-1}, x_{j}, z_{1}\right\} \cup P_{1}\left[t_{p-1}, t_{i}\right]\right]=F_{4}$, a contradiction.

Now, assume that $p=q$. Note that x_{j} cannot be adjacent to any vertex of $P\left[t_{i}, v\right]$, otherwise $p=i$ and then z_{1} is adjacent to t_{i} both non-consecutive vertices of W.

On the other hand, there exists x_{j+1} and it must be adjacent to a vertex of $P_{1}\left[t_{p}, t_{i}\right] \cup P\left[t_{i}, v\right]$ since $G\left[W\left[x_{j}, a\right] \cup P_{1}\left[t_{p}, t_{i}\right] \cup P\left[a, t_{i}\right]\right]$ is a chordal graph. Moreover it must adjacent to t_{p} (see Figure 10).

Figure 10.
But then $G\left[\left\{z_{1}, t_{p}, t_{p-1}, t_{p}, x_{j-1}, x_{j}, x_{j+1}\right\}\right]=F_{4}$, a contradiction.
Now, none vertex of $W[u, a]$ is adjacent to a vertex of P_{1}. Thus, $G\left[\left\{z_{1}, t_{i-1}\right\} \cup\right.$ $\left.P\left[t_{i}, a\right] \cup W\left[x_{1}, a\right]\right]$ or $G\left[\left\{z_{1}, t_{i-1}\right\} \cup P\left[z_{1}, a\right] \cup W\left[x_{1}, a\right]\right]$ contains $C_{r}(r>3)$ depending of $a \in P\left[t_{i}, v\right]$ or $a \in P\left[z_{1}, t_{i}\right]$, a contradiction.

Case 1.2.2.2. $t_{i}=z_{2}$. This case can be treated similarly to Case 1.2.2.1.
Case 2. y is adjacent to no vertex of P. Note that $P \cap N[y]=\emptyset$. Since T is a $u v$ tolled walk, by Observation 3, there exists an induced path between u and y in $G[T]$ avoiding the neighborhood of v, and also there exists an induced path between v and y in $G[T]$ avoiding the neighborhood of u. Those paths, together with P allow us to state that u, v, y is an asteroidal triple.

Hence, we assume that there exist three induced paths of $G[T]: P$ between u and $v ; P_{1}$ between u and $y ; P_{2}$ between v and y; and three vertices $a \in V(P) \cap$ $V\left(P_{1}\right) ; b \in V(P) \cap V\left(P_{2}\right)$; and $c \in V\left(P_{1}\right) \cap V\left(P_{2}\right)$; such that $V(P) \cap N[y]=\emptyset$, $V\left(P_{1}\right) \cap N[v]=\emptyset, V\left(P_{2}\right) \cap N[u]=\emptyset$, and the distance between a and u, between b and v, and between c and y in the respective paths is maximum.

Note that $u, y_{1} \in P_{1}$ and $v, y_{m-1} \in P_{2}$ since T is a $u v$ tolled walk.
Without loss of generality, we can assume that $\left(P \cap P_{1}\right)[u, a],\left(P \cap P_{2}\right)[b, v]$ and $\left(P_{1} \cap P_{2}\right)[c, y]$ are induced paths (see Figure 11). By the choice of a, b and c, and since G contains no F_{2} and F_{4} as induced subgraphs, we can affirm that $y \neq c$.

Figure 11.
Case 2.1. Suppose that $P \cup P_{1} \cup P_{2}$ is a tree. Clearly $a=b=c$. Note that since y is not adjacent to any vertex of P, the distance in $P \cup P_{1} \cup P_{2}$ between y and a is at least two. Also the distance between u, v and a is at least two because u, y, v is an asteroidal triple. Thus $P \cup P_{1} \cup P_{2}=F e_{1}$.

On the other hand, as $G \in$ IntervalE $^{+}$, there exists $w \in G$ such that w is an universal vertex of $G\left[P \cup P_{1} \cup P_{2} \cup\{w\}\right]$. Thus the distance in G between u and v is two, and then since W is a shortest path it follows that $|W|$ must be three. More clearly, $W=u, x, v$. Again as a result of $G \in$ IntervalE $^{+}$, we can conclude that x must be an universal vertex of $G\left[P \cup P_{1} \cup P_{2} \cup\{x\}\right]$. But then y must be adjacent to x, which is a contradiction by the choice of y.

Case 2.2. Suppose that $P \cup P_{1} \cup P_{2}$ is not a tree. We can conclude that $G\left[P \cup P_{1} \cup P_{2}\right]$ must contain $F e_{3}(n)$ as induced subgraph being y, u and v its pending vertices, and $a, b c$ are the labelled vertices in Figure 2.

Let us consider two cases, depending of a is or is not adjacent to b.
Case 2.2.1. Suppose that a is not adjacent to b. Then a is adjacent to c and b is adjacent to c. Note that y must be adjacent to c, otherwise $G[P-P[a, b] \cup$ $P_{1} \cup P_{2}$] contains $F e_{1}$ as induced subgraph.

Since $G \in$ IntervalE $^{+}$, there exists a vertex x in G such that x is an universal vertex of $F e_{3}(n)$, which has y, u, v as its pendent vertices. Thus, the distance between u and v in G must be two. Hence $|W|=3$. Let $W=u, x, v$. Clearly x must be adjacent to every vertex of $F e_{3}(n)$, in particular x is adjacent to y, a contradiction.

Case 2.2.2. Suppose that a is adjacent to b. We can assume that a is adjacent to c and b is adjacent to c. This case can be treated similarly to Case 2.2.1.

Therefore $\mathbf{S P} / \mathbf{T W}=$ IntervalE ${ }^{+}$.

3. Conclusions

In this article, we have obtained a characterization of the graphs in which, for every pair of non-adjacent vertices u and v, every $u v$ shortest path dominates
every $u v$ tolled walk. Thus, we solve a problem of Alcón concerning the class SP/TW.

In $[1,8,10]$ it was displayed that the notion of domination between different types of walks plays a central role in characterizations of graph classes. It is interesting to ask what other classes of graphs can be characterized by path domination. We summarize the results obtained so far in Table 1, and then we will show that other problems related to path domination could be studied. For this, let us introduce the notation $\mathbf{I P}, \mathbf{P}, \mathbf{W}, \mathbf{W T W}$ and $\mathbf{l}_{\mathbf{k}}$ for $k=2,3$ to refer to the set of different types of walks connecting two non-adjacent vertices u and v of a graph G.
$\mathbf{I P}(u, v)=\{W: W$ is an $u v$ induced path (or monophonic [6]), i.e., a $u v$ path such that two of its vertice are adjacent if and only if are consecutive\},
$\mathbf{P}(u, v)=\{W: W$ is a $u v$ path $\}$,
$\mathbf{W}(u, v)=\{W: W$ is a $u v$ walk $\}$,
$\mathbf{W T W}(u, v)=\{W: W$ is a $u v$ weakly toll walk, i.e., a $u v$ walk such that $u(v)$ has a single neighbor in W that can appear more than once in W \} [5],
$\mathrm{l}_{\mathbf{k}}(u, v)=\left\{W: W\right.$ is a $u v l_{k}$ path, i.e., a $u v$ induced path with length at most $k\}$ [7],
$\mathbf{m}_{\mathbf{3}}(u, v)=\left\{W: W\right.$ is a $u v m_{3}$ path, i.e., a $u v$ induced path with length at least three\} [4].

Definition 3. Let A, B $\in\left\{\mathbf{S P}, \mathbf{I P}, \mathbf{P}, \mathbf{T W}, \mathbf{W T W}, \mathbf{W}, \mathbf{l}_{\mathbf{1}}, \mathbf{l}_{\mathbf{3}}, \mathbf{m}_{\mathbf{3}}\right\}$. A/B is the class formed by those graphs G such that for every pair of non-adjacent vertices u and v of G, every $W \in \mathbf{A}(u, v)$ dominates every $W^{\prime} \in \mathbf{B}(u, v)$, i.e., $W \in \mathbf{A}(u, v)$ and $W^{\prime} \in \mathbf{B}(u, v)$ implies W dominates W^{\prime}.

We denote by $\mathbf{C h}$ the class of chordal graphs, by Int the class of interval graphs, by Sup the class of superfragile graphs, by $\mathbf{P t}^{-}$the class $\mathbf{P t o l e m a t i c}{ }^{-}$, by $\mathbf{F}_{\mathbf{2 , 4 , 5 , 6 , 7}}=\left\{\mathbf{F}_{\mathbf{2}}, \mathbf{F}_{\mathbf{4}}(\mathbf{n})_{\mathbf{n} \geq \mathbf{6}}, \mathbf{F}_{\mathbf{5}}(\mathbf{n})_{\mathbf{n} \geq \mathbf{8}}, \mathbf{F}_{\mathbf{6}}(\mathbf{n})_{\mathbf{n} \geq \mathbf{7}}, \mathbf{F}_{\mathbf{7}}(\mathbf{n})_{\mathbf{n} \geq \mathbf{7}}\right\}$, and by $\mathbf{F}_{\mathbf{2 , 3 , 4 , 5}}=$ $\left\{F_{2}, F_{3}(\mathbf{n})_{n \geq 6}, F_{4}(\mathbf{n})_{n \geq 6}, F_{5}(\mathbf{n})_{n \geq 8}\right\}$, by $M_{3} W=\left\{P_{4}, A\right.$, gem $\cup K_{2}, C_{5}, \mathbf{X}_{58}$, $\left.\mathbf{X}_{\mathbf{9 6}}, \mathbf{F}_{\mathbf{3}}(\mathbf{6})\right\}$-free, by $\mathbf{M}_{\mathbf{3}} \mathbf{P}=\left\{\mathbf{H}, \mathbf{D}\right.$, Antenna, $\left.\mathbf{X}_{5}\right\}$-free, by $\mathrm{M}_{3} \mathbf{M}_{3}=\left\{\mathbf{C}_{\mathbf{n}>5}\right.$, \mathbf{D}, Antenna, $\mathbf{X}_{\mathbf{5}}, \mathbf{5}$ - pan, $\left.\mathbf{X}_{\mathbf{3 7}}\right\}$-free [8, 10]. The classes Ptolemaic- and g - Chordal are defined in [1].

The classes $\mathbf{S P} / \mathbf{S P}, \mathbf{S P} / \mathbf{T W}, \mathbf{1}_{\mathbf{3}} / \mathbf{S P}$ are not hereditary classes. In [1] the class $\mathbf{S P} / \mathbf{S P}$ was characterized as the class $\mathbf{g}-\mathbf{C h o r d a l}$ and in this paper we characterize the class $\mathbf{S P} / \mathbf{T W}$ as the class IntervalE ${ }^{+}$.

Natural question arise.

1. We know that $\mathbf{l}_{3} / \mathbf{S P} \subseteq\left\{\mathbf{C}_{4}, \mathbf{C}_{5}\right\}$-free and $\mathbf{l}_{3} / \mathbf{S P} \neq \mathbf{g}-\mathbf{C h o r d a l}$ [8]. Is it possible to characterize the non-hereditary class of graphs $\mathbf{1}_{3} / \mathbf{S P}$?
2. Do $\mathbf{A} / \mathbf{m}_{\mathbf{3}}$ and $\mathbf{m}_{\mathbf{3}} / \mathbf{A}$, for $\mathbf{A} \in\left\{\mathbf{l}_{\mathbf{k}}, \mathbf{S P}, \mathbf{T W}, \mathbf{W T W}\right\}$ give rise to characterizations of some classes of graphs?

	l_{2}	1_{3}	SP	IP	P	TW	WTW	W	m_{3}
1_{2}	\{C, ${ }_{4}$-free	Ch	\{ C_{4} \}-free	Ch	Pt^{-}	$\mathbf{C h} \cap \mathrm{F}_{2,4,5,5,7}$ - -ree	$\mathbf{C h} \cap\left\{\right.$ chair, dart, $\left.\mathbf{F}_{4}(\mathbf{6})\right\}$-free	Sup	
1_{3}	$\left\{\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right\}$-free	Ch		Ch	Pt^{-}	$\mathbf{C h} \cap \mathrm{F}_{2,3,4,5}$-free	Int \cap \{chair, dart $\}$-free	Sup	
SP	$\left\{\mathrm{C}_{4}\right\}$-free	$\left\{\mathbf{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}\right\}$-free	$\mathrm{g}-\mathrm{Ch}$	Ch	Pt^{-}	IntE ${ }^{+}$	Int \cap \{chair, dart $\}$-free	Sup	
IP	Ch	Ch	Ch	Ch	Pt^{-}	Int	Int $\cap\{$ chair, dart $\}$-free	Sup	HHD-free
P	Ch	Ch	Ch	Ch	Pt^{-}	Int	Int \cap \{chair, dart \}-free	Sup	HHD-free
TW	Ch	Ch	Ch	Ch	Pt^{-}	Int	Int \cap \{chair, dart $\}$-free	Sup	
WTW	Ch	Ch	Ch	Ch	Pt^{-}	Int	Int \cap \{chair, dart $\}$-free	Sup	
w	Ch	Ch	Ch	Ch	Pt^{-}	Int	Int \cap \{chair, dart \}-free	Sup	HHD-free
m_{3}				$\mathrm{M}_{3} \mathrm{P}$	$\mathrm{M}_{3} \mathrm{P}$			$\mathrm{M}_{3} \mathrm{~W}$	$\mathrm{M}_{3} \mathrm{M}_{3}$

Table 1. With $\mathbf{A} \in\left\{\mathbf{l}_{\mathbf{2}}, \mathbf{l}_{\mathbf{3}}, \mathbf{S P}, \mathbf{I P}, \mathbf{P}, \mathbf{T W}, \mathbf{W T W}, \mathbf{W}, \mathbf{m}_{\mathbf{3}}\right\}$ in the first column and $\mathbf{B} \in$ $\left\{\mathbf{l}_{\mathbf{2}}, \mathbf{l}_{\mathbf{3}}, \mathbf{S P}, \mathbf{I P}, \mathbf{P}, \mathbf{T W}, \mathbf{W T W}, \mathbf{W}, \mathbf{m}_{\mathbf{3}}\right\}$ in the first row, the table describes each one of the graph classes \mathbf{A} / \mathbf{B}.

Acknowledgment

We express our gratitude to the anonymous referees for their thorough reviewing, which has resulted in an improved paper.

References

[1] L. Alcón, A note on path domination, Discuss. Math. Graph Theory 36 (2016) 1021-1034.
https://doi.org/10.7151/dmgt. 1917
[2] L. Alcón, B. Brešar, T. Gologranc, M. Gutierrez, T. Kraner Šumenjak, I. Peterin and A. Tepeh, Toll convexity, European J. Combin. 46 (2015) 161-175. https://doi.org/10.1016/j.ejc.2015.01.002
[3] A. Brandstädt, V.B. Le and J.P. Spinrad, Graph Classes: A Survey, SIAM Monographs on Discrete Mathematics and Applications (Philadelphia, 1999). https://doi.org/10.1137/1.9780898719796
[4] F.F. Dragan, F. Nicolai and A. Brandstädt, Convexity and HHD-free graphs, SIAM J. Discrete Math. 12 (1999) 119-135. https://doi.org/10.1137/S0895480195321718
[5] M.C. Dourado, M. Gutierrez, F. Protti and S.B. Tondato, Weakly toll convexity (2022).
arXiv:2203.17056
[6] M. Farber and R.E. Jamison, Convexity in graphs and hypergraphs, SIAM J. Algebraic Discrete Math. 7 (1986) 433-444. https://doi.org/10.1137/0607049
[7] M. Gutierrez, F. Protti and S.B. Tondato, Convex geometries over induced paths with bounded length, Discrete Math. 346(1) (2023) 113133.
https://doi.org/10.1016/j.disc.2022.113133
[8] M. Gutierrez and S.B. Tondato, On walk domination: weakly toll domination, l_{2} and l_{3} domination, Discuss. Math. Graph Theory (2022), in-press.
https://doi.org/10.7151/dmgt. 2475
[9] C. Lekkerkerker and J. Boland, Representation of finite graph by a set of intervals on the real line, Fund. Math. 51 (1962) 45-64. https://doi.org/10.4064/fm-51-1-45-64
[10] S. Tondato, Walk domination and HHD-free graphs, submitted for publication (2023).
[11] D.B. West, Introduction to Graph Theory, 2nd. Edition (Prentice-Hall, Upper Saddle River, 2000).

Received 3 April 2023
Revised 30 October 2023
Accepted 4 November 2023
Available online 16 November 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

