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Abstract

For bipartite graphs G1, G2, . . . , Gk, the bipartite Ramsey number b(G1,
G2, . . . , Gk) is the least positive integer b, so that any coloring of the edges
of Kb,b with k colors, will result in a copy of Gi in the ith color, for some i.
We determine all pairs of positive integers r and t, such that for a sufficiently
large positive integer s, any 2-coloring of Kr,t has a monochromatic copy of
C2s. Let a and b be positive integers with a ≥ b. For bipartite graphs G1 and
G2, the bipartite Ramsey number pair (a, b), denoted by bp(G1, G2) = (a, b),
is an ordered pair of integers such that for any blue-red coloring of the edges
of Kr,t, with r ≥ t, either a blue copy of G1 exists or a red copy of G2 exists
if and only if r ≥ a and t ≥ b. In [Path-path Ramsey-type numbers for the
complete bipartite graph, J. Combin. Theory Ser. B 19 (1975) 161–173],
Faudree and Schelp showed that bp(P2s, P2s) = (2s − 1, 2s − 1), for s ≥ 1.
In this paper we will show that for a sufficiently large positive integer s,
any 2-coloring of K2s,2s−1 has a monochromatic C2s. This will imply that
bp(C2s, C2s) = (2s, 2s− 1), if s is sufficiently large.
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1. Introduction

In this paper, we will follow the basic graph theory terminology and notation
as prescribed by [2]. Specifically, let G = (V,E) be a graph with vertex set V
(or V (G)) and edge set E (or E(G)). We will use the notation n(G) (m(G),
respectively) to signify the order (size, respectively) of a graph G or just n (m,
respectively) if the context is clear. For a set S ⊆ V , the subgraph induced by S
in G is denoted by 〈S〉G or just 〈S〉 if the context is clear. The open neighborhood
of a vertex v in G is the set NG(v) = {u ∈ V |uv ∈ E(G)} (or N(v) if the context
is clear), and the closed neighborhood of v is defined as NG[v] = {v} ∪N(v) (or
N [v] if the context is clear). The degree of v, denoted degG(v) (or deg(v), if the
context is clear), is defined as |NG(v)|. If S ⊂ V (G) and v ∈ V (G) − S, then
NS(v) = NG(v) ∩ S. Furthermore, degS(v) = |NG(v) ∩ S| . If H is a bipartite
graph then L(H) (R(H), respectively) will denote the left (right, respectively)
partite set of H. If v is a vertex that has degree one in G, then v is called an
end vertex. If H = K1,2, then the one degree two vertex will be referred to as
the central vertex.

For bipartite graphs G1, G2, . . . , Gk, the bipartite Ramsey number b(G1, G2,
. . . , Gk) is the least positive integer b so that any coloring of the edges of Kb,b with
k colors will result in a copy of Gi in the ith color, for some i. The existence of all
numbers b(G1, G2, . . . , Gk) follows from a result of Erdős and Rado [3]. The case
where Gi is an even cycle for all 1 ≤ i ≤ k has been considered in [1, 6, 7, 8] and [9].
Recent papers have mainly produced asymptotic bounds. In [1], Bicić, Letzter
and Sudakov show that the asymptotic value of b(C2s, C2s, C2s) is (3 + o(1))s.
The authors Lin, Liu and Shen prove, in [8], that b(C2s, C2s) = (2+o(1))s. Exact
values for bipartite Ramsey numbers and their variations are rare as the problem
is notoriously difficult. This is because complete bipartite graphs have far fewer
edges than complete graphs, and so in the bipartite case there are fewer edges to
work with. In this paper we present an exact value for a bipartite Ramsey-type
number that involves cycles.

Let a and b be positive integers with a ≥ b. For bipartite graphs G1 and G2,
the bipartite Ramsey number pair (a, b), denoted by bp(G1, G2) = (a, b), is an
ordered pair of integers such that for any blue-red coloring of the edges of Kr,t,
with r ≥ t, either a blue copy of G1 exists or a red copy of G2 exists if and only
if r ≥ a and t ≥ b. In [4], Faudree and Schelp considered the bipartite Ramsey
number pair problem for paths. In this paper, we will focus on bipartite Ramsey
number pairs that involve cycles. We will show that bp(C2s, C2s) = (2s, 2s − 1),
if s is a sufficiently large integer.
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2. Known Results

We rely heavily on the 1984 result due to Gyàrfàs, Rousseau and Schelp [5], who
established the maximum number of edges in a spanning subgraph of Ks,t that
contains no specified path.

Theorem 1 [5]. Let c be a positive non-zero integer and G(S, T ) be a bipartite
graph with |T | = a and |S| = b (a ≤ b). If G contains no path P2` for ` > c, then

m(G(S, T )) ≤


ab if a ≤ c,

bc if c < a < 2c,

(a + b− 2c)c if a ≥ 2c.

In order to make the paper easy to read, we provide as much detail in the
arguments as possible. In Section 3, the main result is presented and proved
using an essential lemma. This lemma is proved in Section 5. The proof of this
vital lemma requires foundational lemmas and results, and they are presented
and proved in Section 4.

3. Main Result

In this paper we will show that if s is a sufficiently large positive integer then
bp(C2s, C2s) = (2s, 2s − 1). Before proving our result, we state the following
essential lemma.

Lemma 2. Let s ≥ 18 be an integer. If a blue-red coloring of the edges of K2s,2s−1
results in a red copy of C2s−2, then there either exists a red copy of C2s or a blue
copy of C2s.

The proof of Lemma 2 will be given in Section 5. We are now ready to prove
our main result.

Theorem 3. If s is an integer such that s ≥ max{18, (b(C34, C34) + 1)/2}, then
every blue-red coloring of the edges of G = K2s,2s−1 will result in a monochromatic
copy of C2s.

Proof. Assume that s is an integer such that s ≥ max{18, (b(C34, C34) + 1)/2}.
Consider a blue-red coloring C of the edges of G = K2s,2s−1. Let G1 (G2, re-
spectively) denote the graph with vertex set V (G) and blue (red, respectively)
edges. Assume that G1 (G2, respectively) has no C2s (C2s, respectively). The
fact that 2s − 1 ≥ 2(b(C34, C34) + 1)/2 − 1 = b(C34, C34), implies that C has a
monochromatic C34. Assume, without loss of generality, that G2 has a C34.
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It follows that, in G2, we can pick a monochromatic cycle C ′ = C2q, with
17 ≤ q ≤ s−1, such that q is as large as possible. Set q′ = q+ 1 and observe that
17 < q′ ≤ s. Pick a subgraph G′ = K2q′,2q′−1 of G, such that if we restrict the
blue-red coloring C to G′, G′ contains the monochromatic cycle C ′. As q′ ≥ 18 we
have, by Lemma 2, that since G′ has the monochromatic C ′ = C2q = C2q′−2, G

′

(and G) has a monochromatic cycle C ′′ = C2q′ . If q ≤ s−2, then 18 ≤ q′ ≤ s−1,
and so our choice of q is contradicted, whence q = s− 1, and so q′ = s, implying
that G has a monochromatic C2s.

Theorem 4. If s ≥ max{18, (b(C34, C34)+1)/2}, then bp(C2s, C2s) = (2s, 2s−1).

Proof. Let bp(C2s, C2s) = (a, b), and recall that a ≥ b. By Theorem 3, a ≤ 2s
and b ≤ 2s− 1. Consider H = Ka,2s−2. Partition R(H) into sets Y and W , such
that |Y | = |W | = s − 1. Join each vertex in Y (W , respectively) to each vertex
in L(H) with a blue (red, respectively) edge. This produces a blue-red coloring
of H that contains neither a blue C2s, nor a red C2s, whence b ≥ 2s − 1 and so
b = 2s− 1.

Now consider H = K2s−1,2s−1. Let x ∈ L(H) (y ∈ R(H), respectively).
Partition L(H)− {x} (R(H)− {y}, respectively) into disjoint sets X and U (Y
and W , respectively) such that |X| = |Y | = s − 1 and |W | = |U | = s − 1.
With red edges, join each vertex in X (U , respectively) to each vertex in Y (W ,
respectively), and x to every vertex in R(H). With blue edges, join each vertex
in X (Y , respectively) to each vertex in W (U , respectively), and y to each vertex
in L(H)−{x}. This produces a coloring with no blue C2s and no red C2s, whence
a ≥ 2s and so a = 2s.

4. Proofs of Foundation Lemmas

Lemma 5. Let S and T be the partite sets of a bipartite graph, with u, v ∈ S.
If every two vertices in S have at least k > 0 common neighbors in T, then, if
|S| > k, there exists a u − v path P that alternates between S and T , on 2k + 1
vertices.

Proof. Let s2, s3, . . . , sk ∈ S − {u, v}. Pick the following sequence of vertices
in T : t1 ∈ N(u) ∩ N(s2), t2 ∈ N(s2) ∩ N(s3) − {t1}, . . . , tk ∈ N(sk) ∩ N(v) −
{t1, t2, . . . , tk−1}. We can form P : u, t1, s2, t2, s3, . . . , sk, tk, v, which produces
the desired result.

Let S and T be two disjoint vertex sets (with |S| ≥ 2 and |T | ≥ 2) where
every vertex in S is adjacent to at least |T |−2 vertices in T . Let Z1 be a set of k
(≥ 0) disjoint copies of K1,2. Observe that |Z1| = k. For the purpose of the proof
of Lemma 6, we label the vertices of the copies of K1,2 within Z1 as follows. If
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k ≥ 1, let the vertices zi and z′i (z′′i , respectively) denote the end vertices (central
vertex, respectively) of the i’th copy. Let V (Z1) denote the set of vertices of all
the copies of K1,2 within Z1, where V (Z1) = ∅ if k = 0. Define Z2 as a set that
contains a single copy of P5, or set Z2 = ∅. If Z2 6= ∅, label vertices of the P5

as z1, z
′′
1 , z
′
1, z
′′
2 , z
′
2, with end vertices z1 and z′2. If Z2 6= ∅ (Z2 = ∅, respectively),

define V (Z2) = {z1, z′′1 , z′1, z′′2 , z′2} (V (Z2) = ∅, respectively).

For the set Z1, join each vertex in
⋃k

i=1{zi, z′i} to at least |T | − 1 vertices
in T. For the set Z2, join each vertex in {z1, z′1, z′2} to at least |T | − 1 vertices
in T. For an odd integer ` ≥ 3, let P ′ : w1, w2, w3, . . . , w`−2, w`−1, w` denote the
vertices of a path. For every odd integer j with 1 ≤ j ≤ `, join the vertex wj to
at least |T |−1 vertices in T . Let G = 〈S ∪ T ∪ V (Z1) ∪ V (Z2) ∪ V (P ′)〉 (the sets
S, T, V (Z1), V (Z2) and V (P ′) are all disjoint). We have the following important
lemma.

Lemma 6. Let u, v ∈ S, u′, v′ ∈ S − {u, v} and |T | ≥ 4. For the graph G, the
following holds.

1. If |T | − 1 ≥ k + 1, |S|+ k ≥ |T |, and every vertex in S has at least |T | − 1
neighbors in T, then for the set Z1, there exists a u − v path on 2 |T | − 1 + 2k
vertices.

2. If |S| ≥ |T | − 1, and every vertex in S has at least |T | − 1 neighbors in T,
then there exists a cycle on 2 |T | − 2 vertices.

3. If |Z1| = 2 (Z2 6= ∅, respectively), |S| + 2 ≥ |T | − 1 (|S| + 1 ≥ |T | − 1,
respectively), |T | ≥ 6, and every vertex in S has at least |T | − 1 neighbors in T,
then there exists a cycle on 2 |T |+ 2 vertices.

4. If |T | ≥ k + 3, |S| + k − 1 ≥ |T |, every vertex in S has at least |T | − 1
neighbors in T, and u′ and v′ both have |T | neighbors in T, then for the set Z1

there exists a u− v path on 2 |T |+ 1 + 2k vertices.

5. If |T | − 1 ≥ k + 2, |S| + k + 1 ≥ |T | and every vertex in S has at least
|T | − 1 neighbors in T, then for the set Z1 and the path P ′, there exists a u − v
path on 2 |T | − 1 + 2k + `− 1 vertices.

6. If |T | ≥ k + 4, |S|+ k + 1 ≥ |T |+ 1, every vertex in S has at least |T | − 1
neighbors in T, and u′ and v′ both have |T | neighbors in T, then for the set Z1

and the path P ′ there exists a u− v path on 2 |T |+ 2k + ` vertices.

7. If |T | ≥ 8, |S|+ k ≥ |T | − 2, k ∈ {0, 1}, and, if k = 1, the vertices z1 and
z′1 are joined to at least |T | − 2 vertices in T, then there exists a u − v path on
2 |T | − 5 + 2k vertices.

Proof of Part 1. Suppose that |T | − 1 ≥ k + 1. Recall that each vertex in
S′ = S ∪

(⋃k
i=1{zi, z′i}

)
has |T | − 1 neighbors in T. Observe, by the pigeonhole

principle, that each pair of vertices in S′ have at least |T | − 2 common neighbors
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in T. If |T | − 2 > k, then pick vertices sk+1, sk+2, . . . , s|T |−2 ∈ S − {u, v}. If
|T | − 2 = k, then label z′k as s|T |−2.

If k ≥ 1, pick a sequence of vertices t1, t2, . . . , t|T |−3, t|T |−2 ∈ T such that
t1 ∈ N(u) ∩NT (z1), t2 ∈ NT (z′1) ∩NT (z2)− {t1}, . . . , tk ∈ NT (z′k−1) ∩NT (zk)−
{t1, t2, . . . , tk−1}, tk+1 ∈ NT (z′k)∩N(sk+1)−{t1, t2, . . . , tk}, . . . , t|T |−2 ∈ N(s|T |−3)
∩N(s|T |−2)−{t1, t2, . . . , t|T |−3}. If k = 0, then pick tk+1 ∈ N(u)∩N(sk+1), tk+2 ∈
N(sk+1)∩N(sk+2)−{tk+1},. . . , t|T |−2 ∈ N(s|T |−3)∩N(s|T |−2)−{tk+1, tk+2, . . . ,
t|T |−3}.

Let x ∈ N(s|T |−2) − {t1, t2, . . . , t|T |−2} and y ∈ N(v) − {t1, t2, . . . , t|T |−2}. If
k ≥ 1 (k = 0, respectively), then if x = y, the path P : u, t1, z1, z

′′
1 , z
′
1, t2, . . . , tk,

zk, z
′′
k , z
′
k, tk+1, sk+1, tk+2, sk+2, . . . , s|T |−3, t|T |−2, s|T |−2, x, v (P :u, tk+1, sk+1, tk+2,

sk+2, . . . , s|T |−3, t|T |−2, s|T |−2, x, v, respectively) is a u− v path on 2 |T |+ 2k − 1
vertices. We may assume that x 6= y, whence N(s|T |−2) ⊇ {t1, t2, . . . , t|T |−2, x}
and N(v) ⊇ {t1, t2, . . . , t|T |−2, y}. If u is adjacent to x, then the path P : u, x,
s|T |−2, t|T |−2, s|T |−3, . . . , sk+2, tk+2, sk+1, tk+1, z

′
k, z
′′
k , zk, tk, . . . , t3, z

′
2, z
′′
2 , z2, t2, z

′
1,

z′′1 , z1, t1, v (P : u, x, s|T |−2, t|T |−2, s|T |−3, . . . , sk+2, tk+2, sk+1, tk+1, v, respectively)
is a u−v path on 2 |T |+2k−1 vertices. It follows that N(u) ⊇ {t1, t2, . . . , t|T |−2, y}.

If k ≥ 1 (k = 0, respectively), suppose that z′1 (sk+1, respectively) is adja-
cent to x. The path P : u, t1, z1, z

′′
1 , z
′
1, x, s|T |−2, t|T |−2, . . . , sk+1, tk+1, z

′
k, z
′′
k , zk,

. . . , z′2, z
′′
2 , z2, t2, v (P : u, tk+1, sk+1, x, s|T |−2 , t|T |−2, . . . , tk+3, sk+2, tk+2, v, re-

spectively) is a u−v path on 2 |T |+2k−1 vertices. We may conclude that if k ≥ 1
(k = 0, respectively), then z′1 (sk+1, respectively) (and u) is adjacent to y, and
as N(v) ⊇ {t1, t2, . . . , t|T |−2, y}, the path P : u, y, z′1, z

′′
1 , z1, t1, s|T |−2, t|T |−2, . . . ,

tk+1, z
′
k, z
′′
k , zk, tk, . . . , z

′
2, z
′′
2 , z2, t2, v (P : u, y, sk+1, t1, s|T |−2, t|T |−2, . . . , tk+3,

sk+2, tk+2, v, respectively) is a u−v path on 2 |T |+ 2k−1 vertices. The proofs of
parts 2 to 7 are similar and can be found in the appendix contained in Section 6.

Lemma 7. Let S′ and T ′ be the partite sets of a bipartite graph, where, for some
integer k′ ≥ 0, |S′| − k′ > |T ′| . If each vertex in S′ has more that k′ neighbors in
T ′, then there exist k′ + 1 disjoint copies of K1,2, where each copy has its central
vertex (two end vertices, respectively) in T ′ (S′, respectively).

Proof. Choose the largest amount of disjoint copies of K1,2 such that each copy
has its central vertex (two end vertices, respectively) in T ′ (S′, respectively). Let
T1 (S1, respectively) denote the set of central vertices (end vertices, respectively)
of all these copies of K1,2. Define T2 = T ′ − T1 and S2 = S′ − S1. Observe that
|T1| ≤ k′, since otherwise we are done. Hence |S1| ≤ 2k′.

As |S′|−k′ > |T ′| , we have that |S1|+ |S2|−k′ > |T1|+ |T2| = |S1| /2 + |T2| .
This, together with the fact that |S1| /2 ≤ k′, implies that |S2| > k′ − |S1| +
|S1| /2 + |T2| ≥ |T2| . The pigeonhole principle and the fact that each vertex in S′

has more than k′ neighbors in T ′, implies that each vertex in S2 has a neighbor
in T2. By our choice of T1, observe that each vertex in T2 can have at most one
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neighbor in S2 (since otherwise there will be |T1|+1 copies of K1,2). It follows that
each vertex in S2 is matched to a vertex in T2. This is impossible as |S2| > |T2| .

Lemma 8. Let S and T be the partite sets of a bipartite graph, with |S| ≥ |T | ≥ 8.
If u and v are vertices in S, and each vertex in S has at least

⌈
1
2 |T |

⌉
+1 neighbors

in T, then there exists a u−v path on 5 vertices, that alternates between S and T.

Proof. Let u, v ∈ S. Pick sets W1 ⊆ N(u) and W2 ⊆ N(v), such that |W1| =
|W2| =

⌈
1
2 |T |

⌉
+ 1. Define W = W1 ∩ W2, T1 = W1 ∪ W2, T2 = T − T1 and

observe that, by the pigeonhole principle, W 6= ∅. Let w ∈ S − {u, v}. If w has
a neighbor w1 ∈ W1 and a neighbor w2 ∈ W2 (w1 6= w2), then P : u,w1, w, w2, v
is a path with the desired property. Observe that |T1| = |W1| + |W2| − |W | =⌈
1
2 |T |

⌉
+
⌈
1
2 |T |

⌉
+ 2 − |W | ≥ |T | + 2 − |W | = |T1| + |T2| + 2 − |W | , whence

|W | − 2 ≥ |T2| .
Clearly, |T2| ≤ |W | − 2 ≤ |W1| − 2 =

⌈
1
2 |T |

⌉
− 1. Suppose first that w is

adjacent to a vertex w1 ∈ W. Then it cannot be adjacent to any other vertex in
W1∪W2−{w1}, since otherwise we are done. As w has degree at least

⌈
1
2 |T |

⌉
+1,

we have, by the pigeonhole principle, that w has at most
⌈
1
2 |T |

⌉
− 1 neighbors in

T2, implying that the degree of w is at most
⌈
1
2 |T |

⌉
, a contradiction.

We may assume, without loss of generality, that w is adjacent to a vertex
w1 ∈W1−W, whence w cannot be adjacent to any vertex in W2, since otherwise
we are done. Hence, w is adjacent to at most |W1| − |W | =

⌈
1
2 |T |

⌉
+ 1 − |W |

vertices in W1∪W2. By the pigeonhole principle, w is adjacent to at most |W |−2
vertices in T2, implying that w has degree at most

⌈
1
2 |T |

⌉
−1, a contradiction.

In what follows, consider a blue-red edge coloring of H = K2s,2s−1, with s ≥
18. Let GR (GB, respectively) denote the spanning subgraph of H with edge set
comprising of red (blue, respectively) edges. In H we will say that a vertex u has
a blue (red, respectively) neighbor v if the edge uv is blue (red, respectively). As-
sume that GR has a cycle C = C2s−2. Let C : u1, w1, u2, w2, . . . , ui, wi, . . . , us−1,
ws−1 denote the vertices of C, where ui ∈ L(H) and wi ∈ R(H) for all 1 ≤ i ≤
s−1. Define U =

⋃s−1
i=1{ui}, W =

⋃s−1
i=1{wi}, L = L(H)−U and Y = R(H)−W .

To prove Lemma 2, we need to show that GB 〈L ∪ Y 〉 has some specific structural
properties. These properties will be proven in Lemmas 14, 19, 21 and 22. Lem-
mas 9, 10, 11 13 and 17 will assist in proving the structural properties. Lemmas
15, 16 and 20 will be used throughout the paper.

Lemma 9. If, for some i > j, x′ ∈ L is adjacent to wi and wj in GR, and y′ ∈ Y
is adjacent to ui and uj in GR, then GR has a C2s.

Proof. Assume that for i > j, x′ ∈ L is adjacent to wi and wj in GR, and
y′ ∈ Y is adjacent to ui and uj in GR. Consider the path segments P and P ′ on
C given by P : wi, ui+1, wi+1, . . . , us−1, ws−1, u1, w1, . . . , uj−1, wj−1, uj and P ′ :
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ui, wi−1, ui−1, . . . , wj+1, uj+1, wj . Observe that the sequence P ′, x′, P, y′ forms a
cycle in GR on 2s vertices.

Lemma 10. Let S ⊆ L and T ⊆ Y such that |S| ≥ |T | ≥ s− 2. If GR 〈S ∪ T 〉 =
K|S|,|T |, then GB 〈S ∪W 〉 = K|S|,|W | or GB 〈T ∪ U〉 = K|T |,|U |, or GR has a C2s.

Proof. Let x1 ∈ S, y1 ∈ T , ui ∈ U and wj ∈ W . Assume the edges x1wj and
y1ui are red. We may assume, without loss of generality, that j = 1 as we can
relabel the vertices of C if necessary. Note that for all 1 ≤ k ≤ s − 2, there
exists an x1 − y1 path P in GR 〈S ∪ T 〉 on 2k vertices. If i = 1, then the vertices
V (C) ∪ {x1, y1} form a red C2s, whence 2 ≤ i ≤ s− 1. In GR, consider the path
P ′ : w1, u2, w2, . . . , wi−1, ui on C. In GR, let P ′′ be the path segment on C with
vertices (V (C) − V (P ′)) ∪ {ui, w1}. Note that P ′′ has 2s − 2 − (2i − 2 − 2) =
2s−2(i−1) vertices. Observe that 1 ≤ i−1 ≤ s−2. Pick k = i−1. The vertices
V (P ) ∪ V (P ′′) form a red C2s.

Lemma 11. Let S′ ⊆ L (S′ ⊆ Y , respectively) and T ′ ⊆ Y (T ′ ⊆ L, respectively)
such that |S′| ≥ |T ′| ≥ s− 2. If, in GR, every vertex in S′ is adjacent to at least
|T ′| − 1 vertices in T ′, then there exists a vertex z such that, in GB, exactly one
of the following holds.

1. The vertex z is in S′ and every vertex in S′ − {z} is adjacent to every
vertex in W (U , respectively).

2. The vertex z is in W (U , respectively) and every vertex in S′ is adjacent
to every vertex in W − {z} (U − {z}, respectively).

Proof. We consider only the case where S′ ⊆ L and T ′ ⊆ Y , since the case
where S′ ⊆ Y and T ′ ⊆ L is symmetrical. We will prove that every edge in
GR 〈S′ ∪W 〉 is incident with a single vertex z. Recall that wj , wi ∈W . Let x1wj

and x2wi be red edges in GR 〈S′ ∪W 〉 such that x1 6= x2 and wi 6= wj . We may
assume that j = 1, since we can relabel the vertices of C if necessary. In addition,
2 ≤ i ≤ s− 1. Let T be a subset of 4 ≤ ` ≤ s− 2 vertices in T ′. Set S = S′. By
Part 1 of Lemma 6, we can set k = 0, and deduce that there exists an x1 − x2
path P , that alternates between S and T , on 2 |T | − 1 = 2` − 1 vertices, with
4 ≤ ` ≤ s − 2. Note that, in GR, x1 and x2 have at least s − 4 ≥ 14 common
neighbors in T ′. Set S = S′ and T = T ′ and so, by Lemma 5, there exists, for
2 ≤ ` ≤ 3, an x1−x2 path P that alternates between S and T , on 2`−1 vertices.
We can therefore assume that P has 2`− 1 vertices with 2 ≤ ` ≤ s− 2.

Consider the path segment P ′ : w1, u2, w2, . . . , wi−1, ui, wi on C. Note that
P ′ has 2i−1 vertices. Consider that path segment P ′′ on C with vertices (V (C)−
V (P ′)) ∪ {w1, wi}. Note that P ′′ has 2s− 2− (2i− 3) = 2s− 2i + 1 vertices. If
2 ≤ i ≤ s − 2, then pick ` = i and so the vertices V (P ′′) ∪ V (P ) form a C2s in
GR. If i = s−1, then pick ` = 2 and observe that the vertices V (P )∪V (P ′) form
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a C2s in GR. Hence, either x1 = x2 or wi = w1. It can easily be deduced that
all edges in GR 〈S′ ∪W 〉 must be incident with a single vertex z, where z ∈ S′ or
z ∈W , whence GB 〈S′ ∪W 〉 has the required property.

Observation 12. Let S and T be disjoint vertex sets with |S| ≥ |T | > 0. If a
vertex w /∈ S ∪ T has two neighbors u, v ∈ S and there exists a u− v path P that
alternates between S and T on 2s−1 vertices, then the vertices S∪T ∪{w} form
a C2s.

Lemma 13. If GB 〈L ∪ Y 〉 has two disjoint K1,2’s with end vertices in L (Y ,
respectively), or a P5 that starts and ends in L (Y , respectively), and every vertex
in L (Y , respectively) has at least s−2 blue neighbors in W (U respectively), then
GB has a C2s.

Proof. We consider the case where the end vertices are in L, as the case where
the end vertices are in Y is symmetrical. Let us assume first that GB 〈L ∪ Y 〉 has
a P = P5 with end vertices in L. Let S be a subset of L − V (P ) of cardinality
s−3. Let Z2 be the set containing P and set T = W . We apply Part 3 of Lemma
6. Observe that |S|+ 1 = s− 3 + 1 ≥ |T | − 1. It follows that GB has a cycle on
2 |T |+ 2 = 2(s− 1) + 2 vertices.

Assume now that GB 〈L ∪ Y 〉 has two disjoint K1,2’s. Let S be a subset of
L−V (P ) of cardinality s−4. Let Z1 be the set containing the two disjoint K1,2’s
and set T = W . We apply Part 3 of Lemma 6. Observe that |S|+2 = s−4+2 ≥
|T | − 1. It follows that GB has a cycle on 2 |T |+ 2 = 2(s− 1) + 2 vertices.

Lemma 14. The graph GB 〈L ∪ Y 〉 has a K1,2 with end (central, respectively)
vertices (vertex, respectively) in L (Y , respectively) or GR has a C2s.

Proof. Suppose, to the contrary, that each vertex in Y has at most one blue
neighbor in L. This implies that each vertex in Y has at least |L|−1 red neighbors
in L. Let w ∈ L such that w has two red neighbors in Y . Set S = Y and
T = L− {w}. Note that |S| = s and |T | = s. Furthermore, in GR, every vertex
in S has at least |T | − 1 neighbors in T . By Part 1 of Lemma 6, we have, for
each u, v ∈ Y , that there exists a u− v path in GR 〈S ∪ T 〉 on 2 |T | − 1 = 2s− 1
vertices. By Observation 12, GR has a C2s.

Lemma 15. Let x ∈ L (y ∈ Y , respectively) be a vertex that has exactly t blue
neighbors in W (U , respectively), such that t is as small as possible. In GB,
there exists a set U1 ⊆ U (W1 ⊆ W , respectively) such that |U1| = s − 1 − t
(|W1| = s − 1 − t, respectively) and, if |U1| ≥ 1 (|W1| ≥ 1, respectively), every
vertex in Y (L, respectively) has |U1| − 1 (|W1| − 1, respectively) blue neighbors
in U1 (W1, respectively) or a C2s exists in GR.



10 E.J. Joubert and J.H. Hattingh

Proof. Let x ∈ L (y ∈ Y , respectively) be a vertex that has exactly t blue
neighbors in W (U , respectively) such that t is as small as possible. The case
where y ∈ Y is a vertex with exactly t blue neighbors in U such that t is as small
as possible, will be omitted as it follows symmetrically. In GB, define U1 ⊆ U
such that U1 = {ui ∈ U | wi is not adjacent to x in GB}. Observe that as x has
exactly t blue neighbors in W , we have that |U1| = s− 1− t.

Suppose that |U1| ≥ 1. If |U1| = 1, then clearly every vertex in Y has at least
|U1| − 1 = 0 neighbors in U1 and so we are done, whence |U1| ≥ 2. Let y′ ∈ Y,
and suppose, to the contrary, that there are two vertices ui, uj ∈ U1 such that, in
GB, y′ is adjacent to neither ui nor uj , with i > j. Recall that the vertex x is not
adjacent to wi and wj in GB. In the graph GR, the vertex x is adjacent to both
wi and wj , and y′ is adjacent to both ui and uj . By Lemma 9, GR has a C2s.

Lemma 16. Let x ∈ L (y ∈ Y , respectively) be a vertex that has exactly t blue
neighbors in W (U , respectively) such that t is as small as possible. If |U1| ≥ 1
(|W1| ≥ 1, respectively), then, in GB, if y′ ∈ Y (x′ ∈ L, respectively) is a vertex
not adjacent to x (y, respectively), then y′ (x′, respectively) must be adjacent to
all vertices in U1 (W1, respectively), or a C2s exists in GR.

Proof. Let x ∈ L be a vertex that has exactly t blue neighbors in W such
that t is as small as possible. The case where y ∈ Y , with y having exactly t
blue neighbors in U , such that t is as small as possible, will be omitted as it
follows symmetrically. Let U1 be defined as it was in the proof of Lemma 15.
Let y′ ∈ Y such that y′ is not adjacent to x in GB. Assume that |U1| ≥ 1. By
Lemma 15, y′ is adjacent to |U1| − 1 vertices of U1 in GB. Suppose, for some
i, that y′ is not adjacent to ui ∈ U1 in GB. Recall from the definition of U1

that x is not adjacent to wi in GB. Consider the path segments on C given by
P : ui, wi−1, ui−1, . . . , w1, u1 and P ′ : ws−1, us−1, ws−2, us−2, . . . , wi+1, ui+1, wi.
The sequence P ′, x, y′, P forms a C2s in GR.

Lemma 17. Let x1 ∈ L and y1 ∈ Y . If the graph GR 〈L ∪ Y − {x1, y1}〉 =
Ks,s−1, then either GR or GB has a C2s.

Proof. Let x1 ∈ L and y1 ∈ Y such that GR 〈L ∪ Y − {x1, y1}〉 = Ks,s−1. If a
vertex w ∈ {y1} ∪W has two red neighbors in L − {x1}, then, by Observation
12, a C2s exists in GR. Hence, each vertex in {y1} ∪W has at least |L| − 2 ≥ 17
blue neighbors in L − {x1}. By setting S′ = L − {x1} and T ′ = Y − {y1} and
applying Lemma 11, we have that there exists a vertex z that satisfies Part 1 or
Part 2 of Lemma 11. Let x′1, x

′
2 ∈ L− {x1, z} be two blue neighbors of y1.

We assume first that z ∈W . Recall that, in GB, every vertex in L− {x1} is
adjacent to every vertex in W − {z}. From the previous paragraph, the vertex
z has |L| − 2 ≥ 17 blue neighbors in L − {x1}. This implies that there are
|L| − 2 = s + 1− 2 ≥ 17 vertices in L− {x1} that, in GB, are adjacent to every
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vertex in W . Set S = L−{x1}, T = W and let u′, v′ ∈ S−{x′1, x′2} be two vertices
that are, in GB, adjacent to every vertex in W . By Part 4 of Lemma 6, there
exists an x′1−x′2 path P , in GB 〈S ∪ T 〉, on 2 |T |−1 = 2(s−1)+1 = 2s−1 vertices.
Whence, the sequence P, y1 forms a C2s. We may assume that z ∈ L− {x1} and
so, in GB, every vertex in L−{x1, z} is adjacent to every vertex in W . Note that
if, in GB, z is adjacent to every vertex in W , then GB 〈L ∪W − {x1}〉 = Ks,s−1,
and so GB 〈L ∪W ∪ {y1} − {x1}〉 has a C2s, whence z has a red neighbor in W .

We claim that z can have at most one blue neighbor in W . Suppose w,w′ ∈
W are two distinct blue neighbors of z. Let x′3 ∈ L − {x1, z, x′1, x′2} and set
S = L − {x1, z, x′2} and T = W − {w,w′}. By Part 4 of Lemma 6, GB 〈S ∪ T 〉
has an x′1−x′3 path P on 2 |T |− 1 = 2(s− 3) + 1 = 2s− 5 vertices. The sequence
P,w′, z, w, x′2, y1 forms a C2s, whence z has at most one blue neighbor in W . This
implies, by Lemma 15, that, in GB, |U1| ≥ s − 1 − degW (z) ≥ s − 2. Hence, in
GB, every vertex in Y is adjacent to at least |U1|−1 ≥ s−3 vertices in U . Recall
that there exists at least one edge (incident with z) in GR 〈L ∪W − {x1}〉. Set
S = L−{x1} and T = Y −{y1}. By Lemma 10, GB 〈Y ∪ U − {y1}〉 = K|T |,|U | =
Ks−1,s−1.

We claim that x1 has at most one blue neighbor in Y − {y1}. Suppose
y2, y3 ∈ Y −{y1} are blue neighbors of x1. Let u, u′ ∈ U be two blue neighbors of
y1. Set S = Y −{y1, y2} and T = U−{u, u′}, and let y4 ∈ Y −{y1, y2, y3}. By Part
4 of Lemma 6, GB 〈S ∪ T 〉 has a y3−y4 path P on 2 |T |+1 = 2(s−3)+1 = 2s−5
vertices. The sequence P, u′, y1, u, y2, x1 forms a C2s. It follows that x1 has at
least s− 2 red neighbors in Y − {y1}. Set S′ = L and T ′ = Y − {y1} and apply
Lemma 11. There exists a vertex z′ such that either Part 1 or 2 of Lemma 11
hold. Suppose first that z′ ∈ S′. Then, in GB, every vertex in L−{z′} is adjacent
to every vertex in W . Recall that z has a red neighbor in W . This implies that
z = z′. Hence GB 〈L ∪W − {z′}〉 = Ks,s−1, and, since x′1, x

′
2 ∈ L − {z, x1}, the

vertices L ∪W ∪ {y1} − {z′} form a C2s in GB. We may assume that z′ ∈ W ,
and that, in GB, every vertex in L is adjacent to every vertex in W − {z′}.

If z′ has two red neighbors u, v ∈ L, then we can set S = L and T = Y −{y1},
and so, by Part 4 of Lemma 6, GR 〈S ∪ T 〉 has a u − v path on 2 |T | + 1 =
2(s − 1) + 1 = 2s − 1 vertices. The sequence P, z′ forms a C2s in GR, whence
the vertex z′ must have at least |L| − 1 blue neighbors in L. The blue neighbors
of z′ in L must be adjacent to every vertex in W . Set S = L, T = W and let
u′, v′ ∈ S − {x′1, x′2} be two vertices that are, in GB, adjacent to every vertex in
W . By Part 4 of Lemma 6, there exists an x′1 − x′2 path P , in GB 〈S ∪ T 〉, on
2 |T | − 1 = 2(s − 1) + 1 = 2s − 1 vertices. Whence, the sequence P, y1 forms
a C2s.

Lemma 18. The graph GB 〈L ∪ Y 〉 has two disjoint K2’s or either GR or GB

has a C2s.
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Proof. Note that GB 〈L ∪ Y 〉 must have a K2 since otherwise GR 〈L ∪ Y 〉 =
Ks+1,s and so GR will have a C2s. Let x1 ∈ L and y1 ∈ Y be the vertices of
the K2 in GB 〈L ∪ Y 〉. If GB 〈L ∪ Y − {x1, y1}〉 has a K2 we are done, whence
GR 〈L ∪ Y − {x1, y1}〉 = Ks,s−1. By Lemma 17, we are done.

Lemma 19. The graph GB 〈L ∪ Y 〉 has a K1,2 with end (central, respectively)
vertices (vertex, respectively) in Y (L, respectively) or GR has a C2s.

Proof. Suppose, to the contrary, that each vertex in L has at most one blue
neighbor in Y . This implies that each vertex in L has at least |Y | − 1 red
neighbors in Y . Set S = L and T = Y . By Part 1 of Lemma 6, we have, for
any u, v ∈ S, that there exists a u − v path in GR 〈S ∪ T 〉 on 2 |T | − 1 = 2s − 1
vertices. If, in GR, w ∈W is adjacent to say u and v, then, by Observation 12, a
red C2s exists, whence each vertex in W has at least |L| − 1 blue neighbors in L.
Set S′ = L and T ′ = Y . By Lemma 11, there exists a vertex z that satisfies either
Part 1 or 2 of Lemma 11. By Lemma 14, GB 〈L ∪ Y 〉 has a K1,2 with central
vertex y′1 ∈ Y and end vertices x′1, x

′
2 ∈ L.

Let us assume first that z ∈W . In GB, every vertex in L is adjacent to every
vertex in W − {z}. Recall that z has |L| − 1 blue neighbors in L. This implies
that there are |L|− 1 = s+ 1− 1 ≥ 18 vertices in L that have |W | blue neighbors
in W . Set S = L and T = W and note that there are two vertices in L−{x′1, x′2}
with |T | blue neighbors in T . We apply Part 4 of Lemma 6 and deduce that there
exists an x′1−x′2 path P in GB 〈S ∪ T 〉 on 2 |T |−1 = 2(s−1)+1 = 2s−1 vertices.
The vertices V (P )∪{y′1} form a C2s in GB. We may assume that z ∈ L, and that,
in GB, every vertex in L − {z} is adjacent to every vertex in W . Assume first
that z ∈ L− {x′1, x′2}. Set S = L− {z} and T = W . It is clear that there exists
an x′1 − x′2 path P in GB 〈S ∪ T 〉 on 2s − 1 vertices. The vertices V (P ) ∪ {y′1}
form a C2s. Hence, without loss of generality z = x′1.

We claim that z has no blue neighbor in W . Suppose it has the neighbor
w ∈ W . Set S = L− {z}, T = W − {w} and let x′3 ∈ L− {z, x′2}. Clearly there
exists an x′2 − x′3 path P in GB 〈S ∪ T 〉 on 2(s − 2) + 1 = 2s − 3 vertices. The
sequence P,w, z, y′1 forms a C2s. It follows that z has no blue neighbors in W .
Set t = 0 and so, by Lemma 15, it follows that |U1| = s − 1 − t = s − 1 = |U |
and each vertex in Y has at least |U1| − 1 = s− 2 = |U | − 1 blue neighbors in U1.
By Lemma 18, recall that GB 〈L ∪ Y 〉 has two disjoint K2’s, say x1y1 and x2y2,
with x1, x2 ∈ L and y1, y2 ∈ Y . Set S = Y and T = U . By Part 1 of Lemma 6,
the graph GB 〈S ∪ T 〉 has a y2 − y1 path P on 2 |T | − 1 = 2(s− 1)− 1 = 2s− 3
vertices. Let w ∈ W . If z ∈ L− {x1, x2}, then the sequence P, x1, w, x2 forms a
C2s. Hence, without loss of generality, z = x2 = x′1. Since z has only one blue
neighbor in Y we have that y2 = y′1. If x1 = x′2 then x1 has 2 blue neighbors in
Y , a contradiction, whence x′2 ∈ L− {x1, x2}. The sequence P, x′2, w, x1 forms a
blue C2s.
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Lemma 20. Let x ∈ L (y ∈ Y , respectively) be a vertex that has exactly t (t′,
respectively) blue neighbors in W (U , respectively), such that t (t′, respectively)
is as small as possible. Then t ≤ s− 3 (t′ ≤ s− 3, respectively).

Proof. Suppose, to the contrary, that t ≥ s − 2 (t′ ≥ s − 2, respectively). For
t (t′, respectively), set, for convenience, S = L, T = W , S′ = Y , T ′ = U and
x = z′ (Y = S, U = T , S′ = L, T ′ = W and y = z′, respectively). Consider
the case where t = s− 1 (t′ = s− 1, respectively). Then GB 〈S ∪ T 〉 = K|S|,s−1.
By Lemma 14 (Lemma 19, respectively), GB 〈S ∪ S′〉 has a K1,2 with central
vertex y′1 ∈ S′ and end vertices x′1, x

′
2 ∈ S. There exists an x′1 − x′2 path P

in GB 〈S ∪ T 〉 on 2s − 1 vertices. The sequence P, y′1 forms a blue C2s, whence
t = s − 2 (t′ = s − 2, respectively), and so Lemma 15 implies the existence of
a set Zz′ ⊂ T ′ with |Zz′ | = s − 1 − t = 1 (|Zz′ | = s − 1 − t′ = 1, respectively).
Let Zz′ = {z}. By Lemma 18, GB 〈S ∪ S′〉 has two disjoint K2’s, say x1y1 and
x2y2, with x1, x2 ∈ S and y1, y2 ∈ S′. If, in GB, both y1 and y2 are adjacent to
the single vertex z, then by Part 1 of Lemma 6, GB 〈S ∪ T 〉 has an x1 − x2 path
P on 2 |T | − 1 = 2(s − 1) − 1 = 2s − 3 vertices, whence P, y1, z, y2 forms a blue
C2s. Thus, at least one vertex of y1 and y2, say y1, is, in GB, adjacent to exactly
|Zz′ | − 1 = 0 vertices in Zz′ . It follows, by Lemma 16, that z′ is adjacent to y1.

We claim that S has |S|−3 (≥ 15) vertices with exactly s−2 blue neighbors
in T . Suppose that S − {x′1, x′2} has two vertices, say u′ snd v′, such that both
have s−1 blue neighbors in T . By Part 4 of Lemma 6, GB 〈S ∪ T 〉 has an x′1−x′2
path P on 2 |T |+ 1 = 2(s− 1) + 1 = 2s− 1 vertices. The sequence P, y′1 forms a
blue C2s. Hence, S − {x′1, x′2} has at most one vertex with s − 1 blue neighbors
in T , and so the claim holds. By the pigeonhole principle, the set S − {x1, x2}
has two vertices with exactly s− 2 blue neighbors in T . Let X ′ = {x′, x′′} be the
set of these two vertices. We can label x′ as z′ or x′′ as z′ and deduce that, in
GB, y1 is adjacent to a vertex in X ′. If, in GB, y2 is adjacent to a vertex in X ′,
then the vertices x1, y1, x

′, y2, x2 and x′′ will form either a P5 with end vertices
in S or two disjoint K1,2’s with end vertices in S. By Lemma 13, GB has a C2s.
We may assume that, in GB, y2 is adjacent to no vertex in X ′. By labeling any
arbitrary vertex in X ′ as z′, we have, by Lemma 16, that, in GB, y2 is adjacent
to the single vertex z in Zz′ .

If, in GB, v ∈ S′ − {y1, y2} is adjacent to both x′ and x′′, then the vertices
x1, y1, x

′, v and x′′ form a P5 with end vertices in S. By Lemma 13, GB has
a C2s. We may assume, without loss of generality, that, in GB, every vertex in
S′−{y1, y2} is not adjacent to some vertex in X ′. Thus, for every v ∈ S′−{y1, y2},
we can, in GB, label the vertex in X ′ that v is not adjacent to as z′, and apply
Lemma 16. Whence, in GB, v is adjacent to the single vertex z in Zz′ . Let
v ∈ S′ − {y1, y2}. If, in GB, v is adjacent to a vertex x3 ∈ S − {x2}, then we can
find, using Part 1 of Lemma 6, an x3−x2 path P in GB 〈S ∪ T 〉 on 2s−3 vertices,
whence P, v, z, y2 forms a blue C2s. It follows that GR 〈S ∪ S′ − {x2, y1, y2}〉 =
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K|S|−1,|S′|−2. If the vertex y2 has a blue neighbor in S − {x2}, then GB 〈S ∪ S′〉
has either a P5 or two disjoint K1,2’s, with end vertices in S. By Lemma 13 a
blue C2s exists, whence GR 〈S ∪ S′ − {x2, y1}〉 = Ks,s−1, and so, by Lemma 17
we are done.

Lemma 21. The graph GB 〈L ∪ Y 〉 has three disjoint K2’s, or either GR or GB

has a C2s.

Proof. Let x ∈ L (y ∈ Y , respectively) have t (t′, respectively) blue neighbors
in W (U , respectively) such that t (t′, respectively) is as small as possible. By
Lemma 18, GB 〈L ∪ Y 〉 has two disjoint K2’s, say x1y1 and x2y2, with x1, x2 ∈ L
and y1, y2 ∈ Y . We may assume that GR 〈L ∪ Y − {x1, x2, y1, y2}〉 = Ks−1,s−2.
By Lemma 20 and 15, there exists a set U1 ⊆ U (W1 ⊆ W , respectively) with
|U1| = s−1− t ≥ 2 (|W1| = s−1− t′ ≥ 2, respectively), such that every vertex in
Y (L, respectively) has |U1|−1 (|W1|−1, respectively) blue neighbors in U1 (W1,
respectively). Thus, x1 and x2 (y1 and y2, respectively) must have at least one
blue neighbor in W (U respectively). Let x′1 ∈W and x′2 ∈W be blue neighbors
of x1 and x2 respectively, and let y′1 ∈ U and y′2 ∈ U be blue neighbors of y1 and
y2 respectively.

We will make the following useful observation. For convenience set D = L,
F = W , x1 = u, x2 = v, x′1 = u′ and x′2 = v′ (D = Y , F = U , y1 = u, y2 = v,
y′1 = u′ and y′2 = v′, respectively). Suppose u′ 6= v′. Let XD (XF , respectively) be
a subset of D− {u, v} (F − {u′, v′}, respectively) consisting of i (j, respectively)
vertices, with i > j > 0. If, in GB, every vertex in XD is adjacent to every
vertex in XF ∪ {u′, v′}, then we claim that there exists a u − v path PD,F (j) in
GB 〈D ∪ F 〉 on 2j + 5 vertices. Let x′, x′′ ∈ XD. Since |XD| = i > j = |XF |,
there exists an x′−x′′ path P in GB 〈XD ∪XF 〉 on 2j + 1 vertices. The sequence
u, u′, P, v′, v forms the desired path.

We claim that x′1 6= x′2. Suppose, to the contrary, that x′1 = x′2. If x1 has
a blue neighbor x′3 ∈ W − {x′2}, then we can relabel x′3 as x′1 and deduce that
x′1 6= x′2. We may assume that both x1 and x2 have one blue neighbor in W ,
whence t ≤ 1, and so |U1| = s−1−t ≥ s−2. Lemma 15 implies that every vertex
in Y has at least s− 3 blue neighbors in U , whence t′ ≥ s− 3. We apply Lemma
11. Let S′ = Y − {y1, y2}, and choose a set T ′ ⊂ L − {x1, x2} of cardinality
s− 2. Recall that GR 〈S′ ∪ T ′〉 = Ks−2,s−2, whence there exists a vertex z which
satisfies either Part 1 or 2 of Lemma 11. Suppose z satisfies Part 1 of Lemma 11.
Then z ∈ S′ and, in GB, every vertex in S′ − {z} is adjacent to every vertex in
U . Set D = Y and F = U . Define XD = Y − {y1, y2, z} and let XF be a subset
of F − {y′1, y′2} of cardinality s − 4. By our earlier observation the mentioned
path exists, and so the sequence PD,F (s− 4), x1, x2, x

′
1 forms a C2s. If z satisfies

Part 2 of Lemma 11 then, in GB, z ∈ U and every vertex in S′ is adjacent to
every vertex in U − {z}. Since t′ ≥ s − 3, we can pick y′1, y

′
2 ∈ U − {z}. Define
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XF = U − {y′1, y′2, z} and XD = Y − {y1, y2}. By our earlier observation, the
sequence PD,F (s− 4), x1, x2, x

′
1 forms a C2s. We may assume that x′1 6= x′2.

Set S′ = L − {x1, x2} and T ′ = Y − {y1, y2}. Recall that GR 〈S′ ∪ T ′〉 =
Ks−1,s−2. There exists a vertex z which satisfies either Part 1 or 2 of Lemma
11. Set D = L and F = W . Suppose first that z ∈ S′ or, in GB, every vertex
in S′ is adjacent to every vertex in W . In both instances there exists a vertex
z ∈ S′ such that, in GB, every vertex in S′ − {z} is adjacent to every vertex
in W. Assume first that y1 and y2 have a common neighbor y′ ∈ {z} ∪ U . Let
XD = L − {x1, x2, z} (|XD| = s − 2) and let XF be a subset of W − {x′1, x′2} of
cardinality s − 4. By our earlier observation the mentioned path exists, whence
the sequence PD,F (s− 4), y1, y

′, y2 forms a C2s. We may assume, in GB, that y1
and y2 have no common neighbor in U ∪ {z}, and so since every vertex in Y has
|U1| − 1 blue neighbors in U1, we have that |U1| = 2. Relabeling if necessary, let
U1 = {y′1, y′2}. Note that x ∈ {x1, x2, z}. By Lemma 16, both y1 and y2 must
be adjacent to x in GB, and so, without loss of generality, x = x2. Let XF be a
subset of W − {x′1, x′2} of cardinality s − 3. The sequence PD,F (s − 3), y1 forms
a C2s.

We may assume that z ∈W and that GR 〈S′ ∪W 〉 has a red edge. We apply
Lemma 10. Set S′ = S and T ′ = T . Recall that GR 〈S′ ∪ T ′〉 = Ks−1,s−2. Hence,
GB 〈T ∪ U〉 = Ks−2,s−1. Suppose first that z ∈W−{x′1, x′2}. In GB, every vertex
in S′ is adjacent to every vertex in W − {z}. If y1 and y2 have a common blue
neighbor y′ ∈ U , then set XD = S′ and XF = W − {x′1, x′2, z}. It follows that
the sequence PD,F (s − 4), y1, y

′, y2 forms a C2s. Again, it follows that |U1| = 2,
since otherwise y1 and y2 will have a common neighbor in U1. Without loss of
generality, U1 = {y′1, y′2}. Pick y3 ∈ Y − {y1, y2} and x′3 ∈ W − {x′1, x′2, z}. Let
XD = S′ and XF = W−{x′1, x′2, x′3, z}. The sequence PD,F (s−5), y1, y

′
1, y3, y

′
2, y2

forms a C2s. We may assume, without loss of generality, that z = x′1. If x1
has a blue neighbor x′3 ∈ W − {x′1, x′2}, then we can relabel x′3 as x′1 and so
z ∈W − {x′1, x′2}, which we already considered. Hence, t ≤ 2 and so, by Lemma
15, |U1| = s−1− t ≥ s−3, implying that every vertex in Y is adjacent to at least
s− 4 vertices in U . Set D = Y , F = U and XD = Y − {y1, y2}. Suppose x1 and
x2 have a common blue neighbor x′ ∈W . Let XF be a subset of cardinality s−4
of U − {y′1, y′2}. The sequence PD,F (s − 4), x1, x

′, x2 forms a C2s. Thus, x1 and
x2 have no common blue neighbor in W , implying that |W1| = 2. Without loss
of generality, assume W1 = {x′1, x′2}. Observe that y ∈ {y1, y2}. By Lemma 16,
both x1 and x2 must be adjacent to y in GB, and so, without loss of generality,
x1 has the two blue neighbors y1 and y2. Set XF = U − {y′1, y′2}, whence the
sequence PD,F (s− 3), x1 forms a C2s.

Lemma 22. The graph G′ = GB 〈L ∪ Y 〉 either has a P4 and K2 (called Config-
uration 1), which are both disjoint, or, two K2’s, and a K1,2 with central vertex
in Y (L, respectively) (called Configuration 2), all of which are disjoint.
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Proof. By Lemma 19 (14, respectively), the graph GB 〈L ∪ Y 〉 has a K1,2, with
central vertex y4 in Y (L, respectively) and two endpoints x4, x5 in L (Y , re-
spectively). By Lemma 21, the graph G′ has three disjoint copies of of K2, say
x1y1, x2y2 and x3y3, where x1, x2 and x3 are in L (Y , respectively), and y1, y2
and y3 are in Y (L, respectively). Suppose first that y4 ∈ {y1, y2, y3}. Without
loss of generality, y4 = y3. If x4, x5 ∈ X −{x1, x2}, then the vertices x1, x2, y1, y2
form two K2’s, and the vertices y4, x4, x5 form a K1,2. If, without loss of gener-
ality, x4 = x2, then the vertices y2, x2, y3, x3 (x1, y1, respectively) form a P4 (K2,
respectively). We may assume that y4 ∈ Y − {y1, y2, y3}.

If x4, x5 ∈ X − {x1, x2, x3}, then the vertices x1, x2, y1, y2 form two K2’s,
and the vertices y4, x4, x5 form a K1,2. If, without loss of generality, x4 = x3
and x5 = x2, then the vertices y2, x2, y4, x3 (x1, y1, respectively) form a P4 (K2,
respectively) and our claim is verified. We may assume that x4 ∈ X−{x1, x2, x3}.
If x5 = x2 then the vertices y2, x2, y4, x4 (x1, y1, respectively) form a P4 (K2,
respectively) and our claim is verified.

Consider, again, two disjoint vertex sets S and T , such that |S| ≥ |T | ≥ 3,
and join each vertex in S to at least |T |−1 vertices in T. Let P ′ (P ′′, respectively)
be two vertex disjoint paths with vertices P ′ : u1, u2, . . . , u` (P ′′ : v1, v2, . . . , vk,
respectively), with ` ≥ 1 (k ≥ 1, respectively) being odd. Join the vertex ui (vj ,
respectively) to at least |T | − 1 vertices in T, for each odd i (j, respectively).

Define S1 =
⋃(`−1)/2

i=0 {u2i+1}, S2 =
⋃(k−1)/2

j=0 {v2j+1}, T1 = V (P ′) − S1 and T2 =
V (P ′′)− S2. Let z be a vertex such that the following construction is made. If a
vertex w ∈ S ∪ S1 ∪ S2 is adjacent to exactly |T | − 1 vertices in T, then join z to
w. The sets S, T, T1, T2, S1, S2 and {z}, are all disjoint. From this construction,
we derive the following necessary lemma.

Lemma 23. Let u, v ∈ S and |T | ≥ 3. There exists a u− v path that alternates
between the sets S ∪ S1 ∪ S2 and T ∪ T1 ∪ T2 ∪ {z}, on 2 |T | − 1 + k + ` vertices.

Proof. If |T | ≥ 4, then pick s1, s2, . . . , s|T |−3 ∈ S − {u, v}. Recall that every
two vertices in S ∪ S1 ∪ S2 have |T | − 2 common neighbors in T. If |T | =
3, then pick t1 ∈ N(u) ∩ N(u1). If |T | ≥ 4, pick a sequence of vertices in
T as follows: t1 ∈ N(u) ∩ N(s1), t2 ∈ N(s1) ∩ N(s2) − {t1}, t3 ∈ N(s2) ∩
N(s3) − {t1, t2}, . . . , t|T |−3 ∈ N(s|T |−4) ∩ N(s|T |−3) − {t1, t2, . . . , t|T |−4}, t|T |−2 ∈
N(s|T |−3) ∩ N(u1) − {t1, t2, . . . , t|T |−3}. We now consider the adjacency of the
vertex z to the end vertices of the paths P ′ and P ′′. By relabeling if necessary,
we need to consider three cases.

Case 1. The vertex z is not adjacent to any of the three vertices u`, v1 and vk.
By our construction, the vertices u`, v1 and vk are adjacent to all vertices in T.
Let t|T | ∈ N(v) ∩ T − {t1, t2, . . . , t|T |−2}. Let t|T |−1 ∈ T − {t1, t2, . . . , t|T |−2, t|T |}.
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The path P : u, t1, s1, t2, s2, t3, . . . , s|T |−3, t|T |−2, u1, u2, . . . , u`, t|T |−1, v1, v2, . . . ,
vk, t|T |, v is a u− v path on 2 |T | − 1 + k + ` vertices.

Case 2. The vertex z is adjacent to vk but not u`. As u` is not adjacent to z, it
must be adjacent to all vertices in T. Let t|T |−1 ∈ N(v1)∩T−{t1, t2, . . . , t|T |−2}. If
v is adjacent to z, then P : u, t1, s1, t2, s2, t3, . . . , s|T |−3, t|T |−2, u1, u2, . . . , u`, t|T |−1,
v1, v2, . . . , vk, z, v is a u−v path on 2 |T |−1+k+` vertices. Hence, we may assume
that v is not adjacent to z and so, by our construction, N(v) = T. If u is adjacent
to z, then P : u, z, vk, . . . , v2, v1, t|T |−1, u`, . . . , u1, t|T |−2, s|T |−3, . . . , s1, t1, v is a
u− v path on 2 |T | − 1 + k + ` vertices, whence, by our construction, N(u) = T.

Let t|T | ∈ T −{t1, t2, . . . , t|T |−1}. If vk is adjacent to t|T |, then P : u, t1, s1, t2,
s2, t3, . . . , s|T |−3, t|T |−2, u1, u2, . . . , u`, t|T |−1, v1, v2, . . . , vk, t|T |, v is a u−v path on
2 |T |−1+k+` vertices, whence N(vk) = {t1, t2, . . . , t|T |−1}. It follows immediately
that P : u, t|T |, u`, . . . , u2, u1, t|T |−2, s|T |−3, . . . , s1, t1, vk, . . . , v2, v1, t|T |−1, v is a
u− v path on 2 |T | − 1 + k + ` vertices.

Case 3. The vertex z is adjacent to u` and v1. Let t|T |−1 ∈ N(vk) ∩ T −
{t1, t2, . . . , t|T |−2}. If v is adjacent to t|T |−1, then P : u, t1, s1, t2, s2, t3, . . . , s|T |−3,
t|T |−2, u1, u2, . . . , u`, z, v1, v2, . . . , vk, t|T |−1, v is a u − v path on 2 |T | − 1 + k + `
vertices. By the pigeonhole principle, there exists a vertex t|T | ∈ T − {t1, t2, . . . ,
t|T |−2} such that N(v) = {t1, t2, . . . , t|T |−2, t|T |}. Pick t|T | ∈ N(v) − {t1, t2, . . . ,
t|T |−2}.

By the same argument, vk cannot be adjacent to t|T |, whence, N(vk) ∩ T =
{t1, t2, . . . , t|T |−2, t|T |−1}. By our construction, v is adjacent to z. If u is adjacent
to t|T |−1, then P : u, t|T |−1, vk, . . . , v2, v1, z, u`, . . . , u2, u1, t|T |−2, s|T |−3, . . . , s2, t2,
s1, t1, v is a path on 2 |T | − 1 + ` + k vertices. It follows that N(u) = {t1, t2, . . . ,
t|T |−2, t|T |}.

Suppose first that u` is adjacent to t|T |. The path P : u, t|T |, u`, . . . , u1, t|T |−2,
s|T |−3, . . . , s2, t2, s1, t1, vk, . . . , v2, v1, z, v, is a u − v path on 2 |T | − 1 + ` + k
vertices. It follows, by the pigeonhole principle, that u` is adjacent to every
vertex in T−{t|T |}. The path P : u, t1, s1, t2, s2, t3, . . . , s|T |−3, t|T |−2, u1, u2, . . . , u`,
t|T |−1, vk, . . . , v2, v1, z, v is a u− v path on 2 |T | − 1 + k + ` vertices.

5. Proof of Lemma 2

Recall the statement of Lemma 2. Consider a blue-red coloring of G = K2s,2s−1
such that GR has a C2s−2, say C. We will show that GB has an C2s. Recall
the defined sets U = L(G) ∩ V (C), W = R(G) ∩ V (C), L = L(G) − U and
Y = R(G) −W . Observe that |U | = |W | = s − 1, |L| = s + 1 and |Y | = s.
By Lemma 21, GB 〈L ∪ Y 〉 has 3 disjoint K2’s. By Lemma 22, GB 〈L ∪ Y 〉 has
either a K2 and a P4, both of which are disjoint, or two K2’s, and a K1,2, all of
which are disjoint. We can also pick the K1,2 to either have the central vertex
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in Y or in L. In what follows, we will only be concerned with the blue graph
GB 〈L ∪ Y ∪ U ∪W 〉. Pick x ∈ L (y ∈ Y , respectively) with t (t′, respectively)
blue neighbors in W (U , respectively) such that t (t′, respectively) is as small as
possible. Applying Lemma 15, we have that there exists a set U1 ⊆ U (W1 ⊆W ,
respectively) such that each vertex in Y (L, respectively) is adjacent to |U1| − 1
(|W1|−1, respectively) vertices in U1 (W1, respectively). Note that |U1| = s−1−t
and |W1| = s− 1− t′. Define W2 = W −W1 and U2 = U − U1.

For convenience, let X be a subset of L with s vertices such that X contains
x and GB 〈X ∪ Y 〉 contains the three disjoint K2’s, the K1,2 with central vertex
in L and the K1,2 with central vertex in Y . Without loss of generality, we may
assume that t ≥ t′. (We can relabel the sets X, Y , U and W if necessary). By
our choice of X and by Lemma 22, Configuration 1 or Configuration 2 holds
for GB 〈X ∪ Y 〉. Let x1, x2, x3, x4 ∈ X and y1, y2, y3 ∈ Y (all distinct vertices).
Let x1y1, x2y2 and x3y3 denote the three disjoint K2’s in GB 〈X ∪ Y 〉. By the
pigeonhole principle, we may assume, for the rest of the paper, that, without loss
of generality, x ∈ X − {x1, x2}. For Configuration 1, the vertices x1, y1, x2, y2
(x3y3, respectively) will denote the P4 (K2, respectively). For Configuration 2,
the vertices x1y1 and x2y2 (x3, x4, y3, respectively) will denote the two K2’s (K1,2,
respectively). By Lemma 20, t′ ≤ t ≤ s−3, implying that |U1| ≥ 2 and |W1| ≥ 2.

Case 1. There exist integers i, j ≥ 1 such that t = bs/2c+i and t′ = bs/2c+j.
As t ≥ t′, we have that i ≥ j. Furthermore, degW (x) = t ≤ s− 3 (degU (y) = t′ ≤
s− 3, respectively) and so i ≤ ds/2e − 3 (j ≤ ds/2e − 3, respectively).

Claim 24. |U1| ≥ 3 (and |W1| ≥ 3).

Proof. Suppose, to the contrary, that |U1| ≤ 2. This implies that degW (x) ≥
|W | − 2. Note that every vertex in X is adjacent to |W | − 2 vertices in W .
Observe that degU (y) = bs/2c+ j ≥ b(s− 1)/2 + 1/2c+ 1 = b|U | /2 + 1/2c+ 1.
If |U | is even (odd, respectively), then degU (y) ≥ d|U |/ 2e + 1. Note that as
degU (y) ≥ d|U |/ 2e+ 1, we have that every vertex in Y has at least d|U |/ 2e+ 1
neighbors in U.

Assume first that Configuration 1 holds. Set S = X−{x2}, T = W and Z1 =
∅. By Part 7 of Lemma 6, there exists an x1−x3 path P , that alternates between
S and T, on 2 |T | − 5 = 2 |W | − 5 = 2s− 7 vertices. Now set S = Y − {y1} and
T = U . As each vertex in S has at least d|T |/ 2e+ 1 neighbors in T and |T | ≥ 8,
we have, by Lemma 8, that there exists a y3−y2 path P ′, that alternates between
S and T , on 5 vertices. The sequence P, P ′, x2, y1 forms a monochromatic C2s.

We may assume that Configuration 2 holds. Let Z1 be the set containing
the K1,2 (with vertices x3, y3, x4). Define S = X − {x3, x4}, T = W and set
|Z1| = k = 1. By Part 7 of Lemma 6, there exists an x1 − x2 path P , that
alternates between S∪{x3, x4} and T∪{y3}, on 2 |T |−5+2 = 2 |W |−5+2 = 2s−5
vertices. Now define S = Y − {y3} and T = U . As each vertex in S has at least
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d|T |/ 2e+ 1 neighbors in T and |T | ≥ 8, we have, by Lemma 8, that there exists
a y2 − y1 path P ′ on 5 vertices. The sequence P, P ′ forms a monochromatic C2s.
It follows that |U1| ≥ 3. Hence degU (y) ≤ degW (x) ≤ |W | − 3 = |U | − 3, whence
|W1| ≥ 3.

Lemma 25. Suppose that s/2− j − 2 > j + 2 (s/2− i− 2 > i + 2, respectively).
Then there exists an x1−x2 (y1−y2, respectively) path P, that alternates between
X (Y , respectively) and W (U , respectively), where P can be chosen to have
2 bs/2c+ 1 vertices or chosen to have 2 bs/2c − 1 vertices.

Proof. Assume that s/2 − j − 2 > j + 2. The case where s/2 − i − 2 > i + 2
is perfectly symmetrical (we can interchange the i’s and j’s in the argument
below and use the vertex y as reference). We can deduce that j < s/4 − 2.
Observe that degW2

(x) ≥ degW (x)− |W1| ≥ t− (s− t′ − 1) = t− s + t′ + 1. Set
S′ = X − {x1, x2}, T ′ = W2 and k′ = t − s + t′ + 1 − i ≥ 0. It follows that, as
i ≥ 1, x (and every vertex in X − {x}) has more than k′ neighbors in T ′. Note
that |S′| − k′ = 2s − 2 − t − t′ − 1 + i ≥ s − 3 − j = s/2 + s/4 + s/4 − 3 − j >
s/2 + s/4 − 1 > bs/2c + j = |W2| = |T ′| . Applying Lemma 7, there exist k′ + 1
disjoint copies of K1,2, all with central vertices in W2 and with end vertices in
X − {x1, x2}. Let X ′′ (W ′′, respectively) denote the set consisting of the end
(central, respectively) vertices of the k′+1 disjoint copies of K1,2, in X−{x1, x2}
(W2, respectively). Let Z1 be the collection of k′ + 1 disjoint copies of K1,2.

Now set S = X −X ′′ and T = W1. Our aim is to apply Part 1 of Lemma 6.
We need to check that the requirements hold. First note that |T | = s− t′ − 1 ≥
ds/2e − j − 1 ≥ s/2 − j − 1 > j + 3 ≥ 4, whence |T | ≥ 5. We claim that
|S| + k′ − 1 ≥ |T | (and |S| + (k′ + 1) − 1 ≥ |T |). Note that |S| + k′ − 1 =
s− 2k′− 2 + k′− 1 ≥ s− j− 4 and |T | = s− t′− 1 = s−bs/2c− j− 1 ≤ s− j− 7
(as s > 12), whence |S|+ k′ − 1 ≥ |T |. We now claim that |T | − 1 ≥ (k′ + 1) + 1
(and |T | − 1 ≥ k′+ 1). Note that |T | − 1 = s− t′− 2 = ds/2e− j− 2 and k′+ 2 =
2 bs/2c+i+j−s+1−i+2 = 2 bs/2c−s+j+3. If s is even, then, as j+2 < s/2−j−2,
we have that j + 3 ≤ s/2− j − 2, whence k′ + 2 = j + 3 ≤ s/2− j − 2 = |T | − 1.
If s is odd, then k′ + 2 = j + 2 < s/2− j − 2 ≤ ds/2e − j − 2 = |T | − 1.

By Part 1 of Lemma 6, there exists an x1−x2 path P , that alternates between
X and W , on 2 |T |−1+2(k′+1) = 2 bs/2c+1 vertices. Alternatively, as |T | ≥ 4,
|S|+k′−1 ≥ |T | and |T |−1 ≥ k′+1, we can modify Z1, to only include k′ copies
of K1,2 and deduce that there exists an x1 − x2 path P , that alternates between
X and W ′, on 2 |T | − 1 + 2k′ = 2 bs/2c − 1 vertices.

Case 1.1. s/2− j − 2 > j + 2.

Case 1.1.1. s/2 − i − 2 > i + 2. Suppose s is odd. By Lemma 25, pick the
x1− x2 (y2− y1, respectively) path P (P ′, respectively), that alternates between
X and W (Y and U , respectively), on 2 bs/2c + 1 vertices. It follows that the
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sequence P, P ′ forms a monochromatic C2s. If s is even, then pick the x1 − x2
(y2 − y1, respectively) path P (P ′, respectively), that alternates between X and
W (Y and U , respectively), on 2 bs/2c + 1 (2 bs/2c − 1, respectively) vertices.
It follows that the sequence P, P ′ forms a monochromatic C2s. Observe that
j < s/4− 2.

Case 1.1.2. s/2 − i − 2 ≤ i + 2. Observe that i ≥ s/4 − 2. As s ≥ 18, we
have that i ≥ 3. Observe that t− s + t′ + 1 ≥ 2. If s is even (odd, respectively),
we have, for every x′ ∈ X − {x, x1, x2}, that degW2

(x′) ≥ degW (x) − |W1| =
t − s + t′ + 1 > i + j (degW2

(x′) ≥ degW (x) − |W1| = t − s + t′ + 1 > i + j − 1,
respectively) and so x′ has at least i+ j (i+ j− 1, respectively) neighbors in W2.

Now set S′′ = Y − {y1, y2} and T ′′ = U2. Set k′′ = 1. Observe that since
i ≥ s/4 − 2 and s ≥ 18, we have, for every vertex y′ ∈ Y, that degU2

(y′) ≥
degU ′(y)− |U1| = bs/2c+ j− (ds/2e− i− 1) ≥ i+ j > 2. This implies that y′ has
more than one neighbor in T ′′. Recall that, by Claim 24, |U1| = s − 1 − t ≥ 3,
which implies that |S′′| − k′′ = s− 3 > t = bs/2c+ i = |T ′′| . By Lemma 7, there
exist k′′+1 = 2 copies of K1,2, say P (1) and P (2), with respective central vertices
in U2 and respective end vertices in Y − {y1, y2}.

Claim 26. For the graph G′ = GB 〈X ∪W2 − {x, x1, x2}〉, one of the following
holds.

1. If s is even, then G′ has disjoint paths P (3), P (4) and P (5) that start and
end in X − {x, x1, x2}, with P (3) = P2(i+j)−3, P (4) = P3 and P (5) = P3.

2. If s is odd then G′ has disjoint paths P (3), P (4), P (5) and P (6) that all
start and end in X − {x, x1, x2} and P (3) = P2(i+j)−7, P (4) = P3, P (5) = P3

and P (6) = P3.

Proof. Define S = X−{x, x1, x2} and T = W2. Let b = |X − {x, x1, x2}| = s−3
and a = |W2| = t′ = bs/2c + j. Observe that b = s − 3 ≥ a = bs/2c + j since
otherwise degU (y) = bs/2c+j ≥ s−2, a contradiction. Recall that each vertex in
X−{x, x1, x2} has more than t−s+t′ = 2 bs/2c+i+j−s neighbors in W2, whence
m(G′) ≥ (s− 3)(t− s+ t′) = (s− 3)(2 bs/2c+ i+ j− s). Since s/2− i− 2 ≤ i+ 2
and s ≥ 18, we have that i ≥ 2 (i ≥ 3, if s is odd). Note that if s is odd and
i + j = 4, then P (3) = P2(i+j)−7 exists and so we are done, whence i + j ≥ 5. If
s is even (odd, respectively), pick c = i + j − 2 (c = i + j − 4, respectively) and
note that as j ≥ 1, we have c > 0. If s is even (odd, respectively), let us assume
that the graph G′ has no path on 2(i+ j− 1) (2(i+ j)− 6, respectively) vertices.

Suppose first that c < a < 2c. Applying the second part of Theorem 1, we
have that if s is even (odd, respectively), then (s − 3)(i + j) ≤ m(G′) ≤ bc =
(s−3)(i+j−2) ((s−3)(i+j−1) ≤ m(G′) ≤ bc = (s−3)(i+j−4), respectively),
a contradiction. If a ≤ c, then, applying the first part of Theorem 1, we have
that if s is even (odd, respectively), then (s − 3)(i + j) ≤ m(G′) ≤ ab ≤ cb =



Bipartite Ramsey Number Pairs Involving Cycles 21

(s − 3)(i + j − 2) ((s − 3)(i + j − 1) ≤ m(G′) ≤ ab ≤ cb = (s − 3)(i + j − 4),
respectively), a contradiction. We may assume that a ≥ 2c. If s is even (odd,
respectively) we have, by the third part of Theorem 1, that m(G′) ≤ (i + j −
2)(s−3+s/2+j−2(i+j−2)) (m(G′) ≤ (i+j−4)(s−3+bs/2c+j−2(i+j−4)),
respectively).

Let us first assume that s is even. To obtain a contradiction, we will prove
that m(G′) ≥ (s − 3)(i + j) > (i + j − 2)(s − 3 + s/2 + j − 2(i + j − 2)), by
showing that (s− 3)(i+ j)− (i+ j− 2)(s− 3 + s/2 + j− 2(i+ j− 2)) > 0. For the
proof see the appendix in Section 6. It follows that G′ has a path, that starts in
X − {x, x1, x2} and ends in W2, on 2(i + j) − 2 vertices. Whence the graph G′

has a path P (3) = P2(i+j)−3 that starts and ends in X − {x, x1, x2}.
Let us assume that s is odd. To obtain a contradiction, we will prove that

m(G′) ≥ (s− 3)(i+ j− 1) > (i+ j− 4)(s− 3 + s/2 + j− 2(i+ j− 4)) by showing
that (s − 3)(i + j − 1) − (i + j − 4)(s − 3 + s/2 + j − 2(i + j − 4)) > 0. For the
proof see the appendix in Section 6. It follows that G′ has a path, that starts in
X − {x, x1, x2} and ends in W2, on 2(i + j) − 6 vertices. Whence the graph G′

has a path P (3) = P2(i+j)−7, that starts and ends in X − {x, x1, x2}.
To complete the proof, we apply Lemma 7. Set S′ = X−{x, x1, x2}−V (P (3))

and T ′ = W2 − V (P (3)). If s is even (odd, respectively), set k′′ = 1 (k′′ = 2,
respectively). If s is even (odd, respectively), every vertex in S′ has at least
i+j− (i+j−2) ≥ 2 > k′′ (i+j−1− (i+j−4) ≥ 3 > k′′, respectively) neighbors
in T ′. Assume first that s is odd. Observe that since j < s/4 − 2, we have that
|S′| − k′′ = s − 3 − (i + j − 3) − 2 = s − (i + j) − 2 = bs/2c + j − (i + j − 4) +
ds/2e−4− j−2 > |T ′|+s/2−6− j > |T ′|+s/4−4 > |T ′| > 0 (as i ≤ ds/2e−3).
By Lemma 7, there exist 3 copies of K1,2 with end vertices in S′ and central
vertex in W2, whence the desired paths P (4), P (5) and P (6) exist. Assume now
that s is even. Then |S′| − k′′ = s − 3 − (i + j − 1) − 1 = s − (i + j) − 2 − 1 =
s/2+j− (i+j−2)+s/2−2−j−3 = |T ′|+s/2−5−j > |T ′|+s/4−3 > |T ′| > 0
(as i ≤ ds/2e − 3). By Lemma 7, there exist k′′ + 1 = 2 copies of K1,2, with end
vertices in S′ and central vertex in W2, whence the desired paths P (4) and P (5)
exist.

Let u = x1 and v = x2. We refer to Claim 26. For s even (odd repectively),
set Z1 = {P (4), P (5)} (Z1 = {P (4), P (5), P (6)}, respectively) with k = |Z1|. It
will now be shown that if s is even (odd, respectively), then there exists a u− v
path P , that alternates between X and W, such that P has s+ 2i− 3 (s+ 2i− 4,
respectively) vertices.

For s even (odd, respectively), we set S = X−V (P (3))−V (P (4))−V (P (5))−
{x} (S = X − V (P (3))− V (P (4))− V (P (5))− V (P (6))−{x}, respectively) and
T = W1. We apply Part 5 of Lemma 6 (or Part 1 of Lemma 6 if s is odd and
i+j = 4). Observe that if s is even (odd, respectively), then |T |−1 = s/2−j−2 >
s/2−(s/4−2)−2 = s/4 ≥ 4 = k+2 (|T |−1 = ds/2e−j−2 > ds/2e−(s/4−2)−2 =
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(s + 2)/4 ≥ 5 = k + 2, respectively). If s is even (odd, respectively), then
|S|+ k + 1 = s− (i + j − 1)− 4− 1 + k + 1 = s− i− j − 1 > s/2− j − 1 = |T |
(|S|+ k + 1 = s− (i + j − 3)− 6− 1 + k + 1 = s− i− j > ds/2e − j − 1 = |T |,
respectively) (as i < s/2).

By Part 5 of Lemma 6 (or Part 1 of Lemma 6 if s is odd and i + j = 4),
we have that if s is even (odd, respectively) there exists an x1 − x2 path P on
2 |T |−1+2k+n(P (3))−1 = 2(s/2− j−1)−1+2.2+2(i+ j)−3−1 = s+2i−3
(2 |T |−1+2k+n(P (3))−1 = 2(ds/2e−j−1)−1+2.3+2(i+j)−7−1 = s+2i−4,
respectively) vertices.

Let u = y2, v = y1, S2 = V (P (2)) ∩ Y and S1 = V (P (1)) ∩ Y . Set S =
Y − V (P (1)) − V (P (2)), T = U1, z = x, k = |V (P (1))| and ` = |V (P (2))| .
Note that |S| ≥ |T | ≥ 3. Recall that each vertex in Y is adjacent to at least
|T | − 1 vertices in T, and, by Lemma 16, every vertex in Y is adjacent to either
x = z, or to every vertex in T. It follows that the construction for Lemma 23 is
satisfied. If s is even (odd, respectively), there exists a y2 − y1 path P ′ that has
2 |T | − 1 + k + ` = 2(s/2 − i − 1) − 1 + 3 + 3 = s − 2i + 3 (2 |T | − 1 + k + ` =
2(ds/2e − i− 1)− 1 + 3 + 3 = s− 2i + 4, respectively) vertices. The sequence of
vertices P, P ′ creates a C2s.

Case 1.2. s/2 − j − 2 ≤ j + 2. Observe that j ≥ s/4 − 2 and, as i ≥ j,
we have that i ≥ s/4 − 2. Note that if s is odd, then i ≥ s/4 − 2 + 1/4 (and
j ≥ s/4 − 2 + 1/4). This implies that degW (x) = bs/2c + i ≥ 3s/4 − 9/4
(degU (y) = bs/2c + j ≥ 3s/4 − 9/4, respectively). Recall that degW (x) ≤ s − 3
and degU (y) ≤ s− 3. To apply Lemma 6, we claim the following.

Claim 27. |U1| ≥ 5 and |W1| ≥ 4, or |U1| ≥ 4 and |W1| ≥ 5.

Proof. Suppose, without loss of generality, that s−1−t = |U1| ≤ 3. This implies
that t = degW (x) ≥ s− 4, whence every vertex in X has at least s− 4 neighbors
in W , and the fact that degU (y) ≥ 3s/4 − 9/4, implies that every vertex in Y
has at least 3s/4 − 9/4 neighbors in U . First set S = X and T = W . For any
u, v ∈ S, observe that NW (u) ∩NW (v) = W − ((W −NW (u)) ∪ (W −NW (v)))
and so |NW (u) ∩NW (v)| ≥ s− 7. (Recall that for every u′ ∈ S, |W −NW (u′)| ≤
s − 1 − t ≤ s − 1 − (s − 4) = 3). By Lemma 5, there exists an x1 − x2 path P ,
that alternates between X and W , on 2s− 13 vertices.

Now set S = Y and T = U. For any u, v ∈ S, observe again that NU (u) ∩
NU (v) = U − ((U −NU (u))∪ (U −NU (v))), with |U −NU (u)| ≤ s− 1− (3s/4−
9/4) = s/4 + 5/4 and |U −NU (v)| ≤ s/4 + 5/4. Hence, |NU (u) ∩NU (v)| ≥
s − 1 − 2(s/4 + 5/4) = s/2 − 7/2 ≥ 11/2. Since |NU (u) ∩NU (v)| is an integer,
we have that |NU (u) ∩NU (v)| ≥ 6. By Lemma 5, there exists a y2 − y1 path P ′,
that alternates between Y and U , on 13 vertices. The sequence P, P ′ forms a
monochromatic C2s. It follows that |U1| ≥ 4 and, by symmetry, |W1| ≥ 4.
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To complete the proof of our claim, assume that |U1| = 4 and |W1| = 4. This
implies that degW (x) = degU (y) = s− 5. Set S = X and T = W1. For any u, v ∈
S, observe, again, that NW (u) ∩NW (v) = W − ((W −NW (u)) ∪ (W −NW (v)))
and so |NW (u) ∩NW (v)| ≥ s− 9. By Lemma 5, there exists an x1 − x2 path P ,
that alternates between X and W , on 2s − 17 vertices. By symmetry, we have,
for any u, v ∈ Y , that |NU (u) ∩NU (v)| ≥ s− 9 > 8. Whence, by Lemma 5, there
exists a y2 − y1 path P ′, that alternates between Y and U , on 17 vertices. The
sequence P, P ′ forms a monochromatic C2s.

Let i′, j′ ∈ {0, 1}. Observe that Claim 27 implies that i ≤ ds/2e − 5 − i′,
j ≤ ds/2e − 5− j′ and that either i′ 6= 0 or j′ 6= 0.

Claim 28. The graph G′ = GB 〈X ∪W2 − {x1, x2}〉 has a path P (1) that starts
and ends in X − {x1, x2} and alternates between X and W2 such that P (1) =
P2j+3.

Proof. Define S = X − {x1, x2} and T = W2. Let b = |X − {x1, x2}| = s − 2
and a = |W2| = t′. It follows that a = t′ = j + bs/2c ≤ s − 2 = b. Recall that
degW2

(x) ≥ degW (x)− |W1| ≥ t− s + t′ + 1 ≥ i + j, and so each vertex in X has
degree at least t − s + t′ + 1 in W2, whence m(G′) ≥ (s − 2)(t − s + t′ + 1) ≥
(s−2)(i+j). Set ` = j+2 and c = j+1. As j ≥ s/4−2 (i ≥ s/4−2, respectively)
and s ≥ 18, we have that c = j + 1 ≥ 4 > 0 (i ≥ 3, respectively). Assume that
the graph G′ has no path on 2(j + 2) vertices. If a ≤ c, then, by the first part of
Theorem 1, (i + j)(s − 2) ≤ m(G′) ≤ ab ≤ cb ≤ (j + 1)(s − 2), a contradiction.
If c < a ≤ 2c, then, by the second part of Theorem 1, (i + j)(s − 2) ≤ m(G′) ≤
bc ≤ (j + 1)(s− 2), a contradiction. Hence, a ≥ 2c.

Applying the third part of Theorem 1, we have that m(G′) ≤ (j + 1)(s −
2 + bs/2c+ j − 2(j + 1)). To obtain a contradiction, we will show that m(G′) ≥
(s − 2)(i + j) > (j + 1)(s − 2 + bs/2c + j − 2(j + 1)). We will start by showing
that (s − 2)(i + j) − (j + 1)(s − 2 + s/2 + j − 2(j + 1)) > 0. Consider the
expression (s− 2)(i + j)− (j + 1)(s− 2 + s/2 + j − 2(j + 1)), which simplifies to
(s − 2)i + j2 − sj/2 − 3s/2 + 3j + 4. As i ≥ j, s ≥ 18 and j ≥ 3, we have that
(s − 2)i + j2 − sj/2 − 3s/2 + 3j + 4 ≥ (s − 2)j + j2 − sj/2 − 3s/2 + 3j + 4 =
j2 + j(s/2 + 1) − 3s/2 + 4 ≥ j2 + 3(s/2 + 1) − 3s/2 + 4 > 0. It immediately
follows that m(G′) ≥ (s − 2)(i + j) > (j + 1)(s − 2 + s/2 + j − 2(j + 1)) ≥
(j + 1)(s − 2 + bs/2c + j − 2(j + 1)) ≥ m(G′), a contradiction. Hence, G′ has
a path on 2(j + 2) vertices. It follows that a path P (1) exists, that alternates
between X and W2 and starts and ends in X−{x1, x2}, and P (1) = P2(j+2)−1.

Claim 29. The graph G′′ = GB 〈Y ∪ U2 − {y1, y2}〉 has a path P (2), that starts
and ends in Y −{y1, y2} and alternates between Y and U2, such that P (2) = P2i−1.

Proof. Define S = Y − {y1, y2} and T = U2. Let b = |Y − {y1, y2}| = s − 2
and a = |U2| = t. It follows that a = t = i + bs/2c < s − 2 = b. Recall that
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degU2
(y) ≥ degU (y) − |U1| ≥ t′ − s + t + 1, and so each vertex in Y has degree

at least t′ − s + t + 1 in U2, whence m(G′′) ≥ (s − 2)(t′ − s + t + 1). Set ` = i
and c = i − 1. As i ≥ s/4 − 2 and s ≥ 18, we have that c = i − 1 > 0. Assume
that the graph G′′ has no path on 2i vertices. As i ≤ ds/2e − 3, we have that
2c = 2(i − 1) ≤ ds/2e − 5 + i ≤ bs/2c + i − 4 = t − 4 < |U2| = a. Applying the
third part of Theorem 1, we have that m(G′) ≤ (i−1)(s−2+bs/2c+ i−2(i−1)).

To obtain a contradiction, we will show that m(G′′) ≥ (s − 2)(t′ − s + t +
1) > (i − 1)(s − 2 + bs/2c + i − 2(i − 1)). We will start by showing that (s −
2)(i + j) − (i − 1)(s − 2 + s/2 + i − 2(i − 1)) > 0. Consider the expression
(s − 2)(i + j) − (i − 1)(s − 2 + s/2 + i − 2(i − 1)), which simplifies to (s −
2)j + i2 − si/2 + 3s/2 − 3i. Let f(i) = i2 − si/2 + 3s/2 − 3i. Using calculus,
f(i) obtains an absolute minimum at i = s/4 + 3/2. Hence, as s ≥ 18 and
j ≥ s/4− 2, we have (s− 2)j + i2 − si/2 + 3s/2− 3i ≥ (s− 2)j + f(s/4 + 3/2) ≥
(s− 2)(s/4− 2) + f(s/4 + 3/2) = 3s2/16− 7s/4 + 7/4 > 0. It immediately follows
that m(G′) ≥ (s−2)(t−s+t′+1) ≥ (s−2)(i+j) > (i−1)(s−2+s/2+i−2(i−1)) ≥
(i− 1)(s− 2 + bs/2c+ i− 2(i− 1)) ≥ m(G′), a contradiction. It follows that G′′

has a path that alternates between Y and U2, on 2i vertices. Whence, G′′ has a
path P (2), that starts and ends in Y − {y1, y2}, alternates between Y − {y1, y2}
and U2, with P (2) = P2i−1.

Claim 30. The graph G′′ = GB 〈X ∪W2 − {x1, x2} − V (P (1))〉 (G′′′ = GB〈Y ∪
U2 − {y1, y2} − V (P (2))〉, respectively) has j′ + 1 (i′ + 1, respectively) P3 path(s)
(disjoint), that start and end in X − {x1, x2} (Y − {y1, y2}, respectively).

Proof. We will apply Lemma 7. Consider the graph G′′ = GB〈X∪W2−{x1, x2}−
V (P (1))〉 (G′′′ = GB 〈Y ∪ U2 − {y1, y2} − V (P (2))〉, respectively). Recall that
for each vertex x′ ∈ X (y′ ∈ Y , respectively), degW2

(x′) ≥ degW (x) − |W1| =
bs/2c+i−(ds/2e−j−1) ≥ i+j (degU2

(y′) ≥ degU (y)−|U1| = bs/2c+j−(ds/2e−
i−1) ≥ i+j, respectively). Set S′ = X−{x1, x2}−V (P (1)), T ′ = W2−V (P (1)),
S′′ = Y − {y1, y2} − V (P (2)) and T ′′ = U2 − V (P (2)).

Whence, each x′ ∈ S′ has at least i + j − (j + 1) = i − 1 ≥ 2(> j′) (as
i ≥ s/4 − 2 ≥ 5/2) neighbors in T ′. Likewise, each y′ ∈ S′′ has at least i + j −
(i − 1) ≥ j + 1 ≥ 4(> i′) (as j ≥ s/4 − 2 ≥ 5/2) neighbors in T ′′. Set k′ = j′

and k′′ = i′. For the graph G′′, observe that as j ≤ ds/2e − 5 − j′, we have
that |S′| − k′ = s − 2 − (j + 2) − j′ = s − 4 − j − j′ = bs/2c + ds/2e − j − j′ −
4 ≥ bs/2c + 1 > |T ′| . For the graph G′′′, we have, as i ≤ ds/2e − 5 − i′, that
|S′′|−k′′ = s−2− i− i′ = bs/2c+ds/2e− i− i′−2 ≥ bs/2c+3 > |T ′′| . By Lemma
7, G′′ (G′′′, respectively) has j′ + 1 (i′ + 1, respectively) P3 path(s) (disjoint).

We now apply Part 5 of Lemma 6. Referring to Claim 30, let Z (Z ′, respec-
tively) denote the set of j′ + 1 (i′ + 1, respectively) P3’s of the graph G′′ (G′′′,
respectively). If s is even (odd, respectively) and i′ = j′ = 1, remove one P3 from
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Z (Z and Z ′, respectively). If s is odd and i′ 6= j′, then remove one P3 from Z.
Set S = X − V (P (1)) − V (Z) and T = W1. We claim that an x1 − x2 path P
exists, that alternates between X and W , on 2 |W1| − 1 + 2 |Z| + |V (P (1))| − 1
vertices. We first check that the requirements for Part 5 of Lemma 6 hold. Ob-
serve that |S| + |Z| + 1 > |S| ≥ s − (j + 2) − 2 |Z| ≥ s − j − 2 − 2j′ − 2 ≥
bs/2c + ds/2e − j − 6 > |T | . Furthermore, as j ≤ ds/2e − 5 − j′, we have that
|T |−1 = ds/2e−j−2 ≥ ds/2e−(ds/2e−j′−5)−2 = j′+3 = j′+1+2 ≥ |Z|+2.
It follows, by Part 5 of Lemma 6, that P exists.

Set S = Y − V (P (2))− V (Z ′) and T = U1. We claim that a y2 − y1 path P ′

exists, that alternates between Y and U ′, on 2 |U1| − 1 + 2 |Z ′| + |V (P (2))| − 1
vertices. Observe that |S| + |Z ′| + 1 > |S| ≥ s − i − 2 |Z ′| ≥ s − i − 2i′ − 2 ≥
bs/2c + ds/2e − i − 4 > |T | . Furthermore, as i ≤ ds/2e − 5 − i′, we have that
|T |−1 = ds/2e− i−2 ≥ ds/2e− (ds/2e− i′−5)−2 = i′+3 = i′+1+2 ≥ |Z ′|+2.
It follows, by Part 5 of Lemma 6, that P ′ exists.

If, in GB, x1 is adjacent to y1 (x1 is not adjacent to y1, respectively), then
the sequence P, P ′ forms a cycle D′ on 2(|U1|+ |W1|) + 2(|Z|+ |Z ′|) + 2j + 2i− 2
vertices. Suppose first that s is even. If 0 ≤ i′, j′ ≤ 1 and i′ 6= j′, then D′ has
2(s−i−j−2)+2(i′+j′+2)+2i+2j−2 = 2s vertices and so D′ = C2s. If i′ = j′ = 1,
then D′ has 2(|U1|+ |W1|)+2(|Z|+ |Z ′|)+2j+2i−2 = 2(s− i−j−2)+2(i′+j′+
1) + 2i + 2j − 2 = 2s vertices and so D′ = C2s. Assume s is odd. If 0 ≤ i′, j′ ≤ 1
and i′ 6= j′, then D′ has 2(|U1|+|W1|)+2(|Z|+|Z ′|)+2j+2i−2 = 2(s−i−j−1)+
2(i′+j′+1)+2i+2j−2 = 2s vertices and so D′ = C2s. If i′ = j′ = 1, then D′ has
2(|U1|+|W1|)+2(|Z|+|Z ′|)+2j+2i−2 = 2(s−i−j−1)+2(i′+j′)+2i+2j−2 = 2s
vertices and so D′ = C2s.

Case 2. There exist integers i, j ≥ 0, such that t = bs/2c+i and t′ = bs/2c−j.
Recall that |U1| = s− 1− t = ds/2e− i− 1, |W1| = s− 1− t′ = ds/2e+ j− 1 > 2,
|W2| = bs/2c − j and degW2

(x) ≥ degW (x)− |W1| ≥ t− s + 1 + t′. Furthermore,
recall that 1 ≤ t′ ≤ t ≤ s− 3, whence i ≤ ds/2e − 3.

Claim 31. Let u, v ∈ {y1, y2, y3} and |U1| = 2. If j ∈ {0, 1, 2}, then, for the
graph G′ = GB 〈X ∪ Y ∪ U〉, we have that for some 1 ≤ i′, j′ ≤ 3 and i′ 6= j′,
there exists a yi′−yj′ path P on 5 vertices, such that, in G′, P alternates between
Y and {x} ∪ U, and V (P ) ∩ {xi′ , xj′} = ∅.

Proof. Let U1 = {u1, u2}. As |U1| = 2, we have that degW (x) = s−3 = |W |−2.
If x ∈ {x1, x2, x3}, then, without loss of generality, let x = x3.

Case A. y1 and y2 have no common neighbors in U1. Let w ∈ Y −{y1, y2, y3}.
Then, without loss of generality, NU1(y1) = {u1} and NU1(y2) = {u2}, and w is
adjacent to say u1. If w is adjacent to u2, then the path P : y2, u2, w, u1, y1 has the
desired properties. If w is not adjacent to u2, then, by Lemma 16, w is adjacent
to x. As y1 and y2 do not have a common neighbor in U1, we can apply Lemma
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16 and deduce that both y1 and y2 are adjacent to x. The path P : y2, x, w, u1, y1
has the desired properties.

Case B. y1 and y2 are adjacent to say u1.

Case B1. y3 is adjacent to u1. If, without loss of generality, y3 and y1
(y2, respectively) have a common neighbor w′, with w′ ∈ U − {u1}, then P :
y1, w

′, y3, u1, y2 (P : y2, w
′, y3, u1, y1, respectively) has the desired properties. If y2

and y1 have a common neighbor w′, with w′ ∈ U −{u1}, then P : y1, w
′, y2, u1, y3

has the desired properties. It follows that each pair of vertices in {y1, y2, y3}
has only one common neighbor in U (in G′), which is u1. This implies that
NU (y1)∪NU (y2)∪NU (y3) has at least 3(bs/2c − 3) + 1 vertices. But, as s ≥ 18,
3(bs/2c − 3) + 1 ≥ s > |U | = s− 1, a contradiction.

Case B2. y3 is adjacent to u2, and not u1. By Lemma 16, y3 is adjacent to
x. If y1 (y2, respectively) and y3 have a common neighbor w′ ∈ U − {u1}, then
P : y3, w

′, y1, u1, y2 (P : y3, w
′, y2, u1, y1, respectively) is a path with the desired

properties. Whence, in G′, neither y1 nor y2 has a common neighbor with y3 in
U. This implies that as y3 is adjacent to u2, both y1 and y2 are not adjacent to
u2. By Lemma 16, y1 and y2 are both adjacent to x. If x ∈ X −{x1, x2, x3}, then
P : y3, x, y1, u1, y2 is a path with the desired properties. Hence, we may assume
that x ∈ {x1, x2, x3} and we can let x = x3. We may therefore assume that each
vertex in X−{x1, x2, x3} must have more neighbors in W than x, since otherwise
some vertex x′ ∈ X − {x1, x2, x3} has degW (x) = degW (x′), and we can simply
relabel x′ as x, and so we are done.

If, without loss of generality, degW (x1) = degW (x), then we can relabel x
as x1. Recall that y2 and y3 have no common neighbors in U1, whence, with an
appropriate relabeling, this translates into Case A. We can deduce that there is a
path P with the desired properties. It follows that each vertex in X −{x3} must
have at least s− 2 neighbors in W. Set S = X − {x3} and T = W . By Part 1 of
Lemma 6, there exists an x1 − x2 path P on 2 |T | − 1 = 2(s − 1) − 1 = 2s − 3
vertices, where x ∈ X − {x1, x2}. Recall that each vertex in {y1, y2} is adjacent
to x or adjacent to the two vertices in U1. Hence, y1 and y2 have a common
neighbor x′ ∈ U1∪{x}. The sequence P, y2, x

′, y1 forms a monochromatic C2s.

Case 2.1. i− j ≥ −1. Define X ′ as a subset of X. Let Z1 be a set (possibly
empty) of disjoint K1,2’s, where each one of these K1,2’s has central vertex in W2,
and end vertices in X ′. Let Z2 be a set of disjoint P5’s, where each one of these
P5’s starts and ends in X ′, and alternates between X ′ and W2. Let the P5’s and
K1,2’s in Z1∪Z2 be disjoint. Let V (Zi) denote the vertices of all the components
in Zi, for 1 ≤ i ≤ 2.

Claim 32. Let i′ ∈ {i+1, i} and suppose that if n is even (odd, respectively), every
vertex in X ′ has at least i′−j+1 (i′−j, respectively) neighbors in W2 and at least
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bs/2c+ i′ neighbors in W . If n is even (odd, respectively) and |X ′|+2j > s/2+ i′

(|X ′|+ 2j + 1 > bs/2c+ i′, respectively), then |Z1| = i′ − j + 1 (|Z1| = i′ − j + 1
if i′ − j = −1 and |Z1| = i′ − j if i′ ≥ j, respectively).

Proof. Suppose that if n is even (odd, respectively), every vertex in X ′ has at
least i′−j+1 (i′−j, respectively) neighbors in W2 and at least bs/2c+i′ neighbors
in W . Assume that if n is even (odd, respectively), then |X ′| + 2j > s/2 + i′

(|X ′| + 2j + 1 > bs/2c + i′, respectively). If s is even (odd, respectively), set
k′ = i′ − j if i′ ≥ j and k′ = i′ − j + 1 if i′ − j = −1 (k′ = i′ − j if i′ ≥ j, and
k′ = i′ − j + 1 if i′ − j = −1, respectively). Set S′ = X ′ and T ′ = W2. Observe
that if |W2| = 0, then j = bs/2c and so r = 0 which will imply that |W1| = s− 1
and so degW (x) = bs/2c + i ≥ s − 2, contradicting the fact that i ≤ ds/2e − 3.
Whence, |T ′| ≥ 1.

Suppose first that n is even. If i′ − j = −1 (i′ − j + 1 = 0) then we are
done as there are at least zero copies of K1,2 in Z1. Suppose i′ − j ≥ 0. Now
|S′|−k′ = |X ′|−i′+j > s/2−j = |T ′| . By Lemma 7, there exist k′+1 = i′−j+1
disjoint copies of K1,2 with central vertices in T ′ and end vertices in X ′.

Suppose now that n is odd. If i′ − j = −1 (i′ − j = 0, respectively), then we
are done as there are at least i′−j+1 = 0 (i′−j = 0) copies of K1,2 in Z1. Assume
that i′−j ≥ 1. Set k′ = i′−j−1. Now |S′|−k′ = |X ′|−i′+j+1 > bs/2c−j = |T ′| .
By Lemma 7, there exist k′+1 = i′−j disjoint copies of K1,2 with central vertices
in T ′ and end vertices in X ′.

Claim 33. Let i′ ∈ {i + 1, i} and suppose that if n is even (odd, respectively),
every vertex in X ′ has at least i′ − j + 1 (i′ − j, respectively) neighbors in W2

and at least bs/2c + i′ neighbors in W . If n is even (odd, respectively) and
|X ′| − 2 + 2j > s/2 + i′ (|X ′| − 1 + 2j > bs/2c+ i′, respectively), then one of the
following holds.

1. If n is even (odd, respectively), then |Z1| = i′ − j + 2 (|Z1| = i′ − j + 1,
respectively).

2. If n is even (odd, respectively), then |Z1| = i′ − j + 1 (|Z1| = i′ − j + 1 if
i′ − j = −1 and |Z1| = i′ − j if i′ ≥ j, respectively) and there are two vertices u′

and v′ in X ′ − V (Z1) that are both adjacent to every vertex in W1.

Proof. Assume that if n is even (odd, respectively), every vertex in X ′ has at
least i′−j+1 (i′−j, respectively) neighbors in W2 and at least bs/2c+i′ neighbors
in W . If n is even (odd, respectively) we have, by Claim 32, that there exists a
set Z1 of i′ − j + 1 (i′ − j + 1 if i′ − j = −1 and i′ − j if i′ ≥ j, respectively)
disjoint K1,2’s, with end vertices in X ′ and central vertices in W2. Let X1 (W ′,
respectively) denote the set of end (central, respectively) vertices of the K1,2’s
in Z1. If two vertices u′, v′ ∈ X ′ − X1 are adjacent to every vertex in W1, then
the second part holds. It follows that at most one vertex, say x′ ∈ X ′ − X1, is
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adjacent to all vertices in W1. Hence, every vertex in X ′ −X1 −{x′} has exactly
|W1| − 1 neighbors in W1.

Suppose first n is even. For each vertex u′ ∈ X ′ −X1 − {x′}, we have that
degW2

(u′) ≥ degW (u′)− (|W1| − 1) = s/2 + i′− (s/2 + j − 2) = i′− j + 2. By the
pigeonhole principle, every vertex in X ′ −X1 − {x′} has a neighbor in W2 −W ′.
Set S′ = X ′ − X1 − {x′} and T ′ = W2 − W ′ (|T ′| ≥ 1, as i ≤ s/2 − 3). Set
k′ = 0. Then, as |X ′| − 2 + 2j > s/2 + i′, |S′| − k′ = |X ′| − 1 − 2(i′ − j + 1) >
s/2− j − (i′ − j + 1) = |W2| − |W ′| = |T ′|. By Lemma 7, there exists k′ + 1 = 1
copy of K1,2 with central (end, respectively) vertex (vertices, respectively) in T ′

(S′, respectively). Add the extra copy of K1,2 to Z1. So there are i′ − j + 2
disjoint copies of K1,2.

We may assume that n is odd. If i′ − j = −1, then |Z1| = i′ − j + 1 = 0
and we are done. It follows that i′ − j ≥ 0 (i′ − j = |Z1|). For each vertex
u′ ∈ X ′ −X1 − {x′}, we have that degW2

(u′) ≥ degW (u′)− (|W1| − 1) = bs/2c+
i′ − (ds/2e + j − 2) = i′ − j + 1. By the pigeonhole principle, every vertex in
X ′−X1−{x′} has a neighbor in W2−W ′. Set S′ = X ′−X1−{x′} and T ′ = W2−W ′
(|T ′| ≥ 1, as i′ ≤ ds/2e − 2). Set k′ = 0. Then, as |X ′| − 1 + 2j > bs/2c + i′,
|S′| − k′ = |X ′| − 1 − 2(i′ − j) > bs/2c − j − (i′ − j) = |W2| − |W ′| = |T ′|. By
Lemma 7, there exists k′ + 1 = 1 copy of K1,2 with central (end, respectively)
vertex (vertices, respectively) in T ′ (S′, respectively). Add the extra copy of K1,2

to Z1. So there are i′ − j + 1 disjoint copies of K1,2 and so we are done.

Claim 34. Suppose n is even and |X ′| = s− 3. If i = s/2− 3 and j ∈ {0, 1, 2},
then for the graph G′ = GB 〈X ′ ∪W2〉, one of the following holds.

1. There are two disjoint paths P and P ′, such that P = P2(i−j)+1 and
P ′ = P3, and both P and P ′ start and end in X ′, and there are two vertices
u′, v′ ∈ X ′ − V (P ) − V (P ′), such that u′ and v′ are both adjacent to all the
vertices in W1.

2. There are three disjoint paths P , P ′ and P ′′, such that P = P2(i−j)+1, both
P ′′ and P ′ are paths on three vertices, and P, P ′ and P ′′ start and end in X ′.

Proof. We claim that G′ does have a path P with the desired property. Suppose
G′ does not have a path on 2(i − j + 1) vertices. Pick c = i − j > 0. Define
S = X ′ and T = W2. Let |X ′| = s − 3 = b and |W2| = s/2 − j = a. Recall that
degW2

(x) ≥ degW (x) − |W1| ≥ i − j + 1, and so every vertex in X ′ has at least
i − j + 1 neighbors in W2. Note that m(G′) ≥ (s − 3)(i − j + 1). If c < a < 2c,
then, applying the second part of Theorem 1, we have that (s − 3)(i − j + 1) ≤
m(G′) ≤ bc = (s−3)(i−j), a contradiction. If a ≤ c, then, applying the first part
of Theorem 1, we have that (s− 3)(i− j + 1) ≤ m(G′) ≤ ab ≤ cb = (s− 3)(i− j),
a contradiction. We may assume that a ≥ 2c. By the third part of Theorem 1,
m(G′) ≤ (i− j)(s− 3 + s/2− j − 2(i− j)).
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To obtain a contradiction, we will prove that m(G′) ≥ (s − 3)(i − j + 1) >
(i − j)(s − 3 + s/2 − j − 2(i − j)). Simplifying, we obtain the inequality 2i2 −
i(s/2 + 3j) + sj/2 + j2 + s − 3 > 0, which, if verified, will prove the desired
result. Observe that f(i) = 2i2 − i(s/2 + 3j) + sj/2 + j2 + s − 3 is a parabola
with minimum value occurring at i = s/8 + 3j/4. Since f(i) is increasing on
the interval [s/8 + 3j/4,+∞) and i = s/2 − 3 ≥ s/8 + 3j/4, we have that
f(i) ≥ f(s/2− 3). If j = 0, then, as s ≥ 18, f(s/2− 3) = s2/4− 7s/2 + 15 > 0.
If j = 1, then, as s ≥ 18, f(s/2 − 3) = s2/4 − 9s/2 + 25 > 0. If j = 2, then,
as s ≥ 18, f(s/2 − 3) = s2/4 − 11s/2 + 37 > 0. It follows that there exists a
path in G′ on 2(i− j + 1) vertices, whence there exists the desired path P in G′.
Let S′ = X ′ − V (P ) and T ′ = W2 − V (P ). Then |S′| = s − 3 − (i − j + 1) and
|T ′| = |W2|−(i−j) = s/2−j−(i−j) ≥ 3. Set k′ = 0. By the pigeonhole principle,
every vertex in S′ has more than k′ neighbors in T ′. Clearly, |S′| − k′ > |T ′|. By
Lemma 7, a path P ′ = P3 (a K1,2) with the desired property exists.

If there are two vertices u′, v′ ∈ X ′ − V (P ) − V (P ′) such that u′ and v′

are both adjacent to all the vertices in W1, then the first property holds. It
follows that at most one vertex u′ ∈ X ′ − V (P ) − V (P ′) has |W1| neighbors
in W1. Hence, for each vertex x′ ∈ X ′ − V (P ) − V (P ′) − {u′}, we have that
degW2

(x′) ≥ degW (x)−|NW1(x′)| ≥ s/2+i−(s/2+j−2) = i−j+2. It follows that
each x′ has 1 neighbor in W2−V (P )−V (P ′). Set S′ = X ′−V (P )−V (P ′)−{u′},
T ′ = W2−V (P )−V (P ′) and set k′ = 0. Then |S′|−k′ = s− 4− (i− j + 1 + 2) >
s/2− j − (i− j + 1) = |T ′| ≥ 2. By Lemma 7, a path P ′′ = P3 with the desired
property exists.

Claim 35. Suppose n is odd and |X ′| = s− 3. If i = ds/2e− 3 and j ∈ {0, 1, 2},
then, for the graph G′ = GB 〈X ′ ∪W2〉, we have that |Z1| = i−j−1 and |Z2| = 1.

Proof. Define S = X ′ and T = W2. Let |X ′| = s−3 = b and |W2| = bs/2c− j =
a. Recall that degW2

(x) ≥ degW (x) − |W1| ≥ i − j, and so every vertex in
X ′ has at least i − j neighbors in W2. Note that m(G′) ≥ (s − 3)(i − j) =
(ds/2e − 3 − j)(s − 3). We claim that G′ has a path on 6 vertices. Suppose
it does not. Pick c = 2. Observe that a > 5 > 4 = 2c. By the third part of
Theorem 1, m(G′) ≤ c(a + b − 2c) = 2(s − 3 + (s − 1)/2 − j − 4). Observe that
2(s− 3 + (s− 1)/2− j − 4) < (ds/2e − 3− j)(s− 3) ≤ m(G′), a contradiction. It
follows that a path P6 exists. The end vertex of this path that is in W2 can be
deleted, and so a P5 will result that starts and ends in X ′ and alternates between
X ′ and W2. We can place this path in Z2 and so we may assume that |Z2| = 1.

Set S′ = X ′ − V (Z2) and T ′ = W2 − V (Z2). Let k′ = i − j − 2. By the
pigeonhole principle, every vertex in S′ has more than i − j − 2 (at least i − j)
neighbors in T ′. As i = ds/2e−3, we have that |S′|−k′ = s−3−3− (i− j−2) >
bs/2c− j−2 = |T ′| > 0. By Lemma 7, the graph GB 〈S′ ∪ T ′〉 has i− j−1 copies
of K1,2, whence we can let |Z1| = i− j − 1.
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Recall that GB 〈X ∪ Y 〉 has 3 disjoint K2’s. By the pigeonhole principle, we
may assume that x ∈ X − {x1, x2}.

Case 2.1.1. |U1| ≥ 3. Observe that if degW (x) = t = bs/2c + i ≥ s − 3,
then |U1| = s − 1 − t ≤ 2, a contradiction. Hence degW (x) = bs/2c + i < s − 3,
implying that i < ds/2e − 3.

Case 2.1.1.1. i ≥ ds/2e+2j−5. If j ≥ 1, then i ≥ ds/2e−3, contradicting the
fact that i < ds/2e − 3. It follows that j = 0, whence i ∈ {ds/2e − 4, ds/2e − 5}.
Hence, i− j ≥ 1 and so i− j + 1 ≥ 2. Observe that degU2

(y) ≥ degU (y)− |U1| ≥
bs/2c − j − (ds/2e − i − 1). It follows that if s is even (odd, respectively), then
degU2

(y) ≥ i− j + 1 ≥ 2 (degU2
(y) ≥ i− j ≥ 1, respectively) and so every vertex

in Y has at least 2 (1, respectively) neighbors (neighbor, respectively) in U2. If
s is even (odd, respectively), let S′ = Y − {y1, y2}, T ′ = U2 and k′ = 1 (k′ = 0,
respectively). Then |S′| − k′ ≥ s − 3 > bs/2c + i = |U2| = |T ′| . By Lemma 7,
we have, if s is even (odd, respectively), that the graph GB 〈Y ∪ U2 − {y1, y2}〉
has two disjoint copies of K1,2 (a copy of K1,2 and K1, both being disjoint,
respectively), say P ′ and P ′′, such that both P ′ and P ′′ start and end in Y −
{y1, y2}. Let X ′ = X−{x, x1, x2}. By Claim 32 (we can check that the conditions
hold using i < ds/2e − 3) there exists a set Z1 of i − j disjoint copies of K1,2,
where each K1,2 has central vertex in W2 and end vertices in X ′. Set S =
X − {x} − V (Z1), T = W1 and k = i − j. We apply Part 1 of Lemma 6.
Observe that |T | − 1 = ds/2e + j − 2 ≥ k + 1 = i − j + 1, since otherwise
i > ds/2e + 2j − 3 ≥ ds/2e − 3. By Lemma 6, there exists an x1 − x2 path P ′′′,
that alternates between X and W , on 2 |T |−1+2k = 2(ds/2e+j−1)−1+2(i−j)
vertices.

Recall the paths P ′ and P ′′. Set S = Y −V (P ′)−V (P ′′) and T = U1. Define
S1 = V (P ′)∩ Y , S2 = V (P ′′)∩ Y, u = y2, v = y1 and z = x. By Lemma 16, each
vertex in Y is adjacent to z or adjacent to every vertex in T. The construction
for the application of Lemma 23 is satisfied. If s is even (odd, respectively), then
there exists a y2−y1 path P , on 2 |T |−1+3+3 = 2(s/2−i−1)−1+6 = s−2i+3
(2 |T | − 1 + 1 + 3 = 2(ds/2e − i− 1)− 1 + 4 = s− 2i + 2, respectively) vertices.
The sequence P, P ′′′ forms a monochromatic C2s.

Case 2.1.1.2. i < ds/2e + 2j − 5. Define X ′ = X − {x, x1, x2}. We will
first check that the requirements of Claim 33 hold and then apply it. Recall the
definition of the set Z1 in the statement. Observe that as i < ds/2e+ 2j − 5, we
have that i+bs/2c < ds/2e+bs/2c+2j−5 = s−5+2j = |X ′|−2+2j. . Suppose
the first part of Claim 33 holds. Note that if s is even (odd, respectively), then
|Z1| = i− j + 2 = k (|Z1| = i− j + 1 = k, respectively). Set S = X−{x}−V (Z1)
and T = W1. Note that |S| + k = s − 1 − 2k + k = s − k − 1 ≥ s − i +
j − 3 ≥ ds/2e + j − 1 = |T |. We apply Part 1 of Lemma 6. Observe that
|T | − 1 = ds/2e+ j − 2 ≥ i− j + 3 ≥ k + 1. If s is even (odd, respectively), then,
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by Lemma 6, there exists an x1−x2 path P ′′′, that alternates between X and W ,
on 2 |T | − 1 + 2k = 2(s/2 + j − 1)− 1 + 2(i− j + 2) = s+ 1 + 2i (2 |T | − 1 + 2k =
2(ds/2e + j − 1) − 1 + 2(i − j + 1) = s + 2i, respectively) vertices. Suppose the
second part of Claim 33 holds. Note that if s is even (odd, respectively) then
|Z1| = i−j+1 = k (|Z1| = i−j+1 = k if i−j = −1 and |Z1| = i−j = k if i ≥ j,
respectively), and there are two vertices u′, v′ ∈ X ′−V (Z1), that are adjacent to
all vertices in W1. Set S = X−{x}−V (Z1) and T = W1. Note that |S|+k−1 =
s−1−2k+k−1 = s−k−2 ≥ s− i+j−3 ≥ ds/2e+j−1 = |T |. We apply Part 4
(or Part 1) of Lemma 6. Observe that |T |− 1 = ds/2e+ j− 2 > i− j + 3 ≥ k+ 2.
Suppose s is even. There exists an x1 − x2 path P ′′′, that alternates between X
and W , on 2 |T |+1+2k = 2(s/2+ j−1)+1+2(i− j+1) = s+1+2i vertices. If
s is odd, then if k = i− j (k = i− j+1, respectively), we have, by Part 4 (Part 1,
respectively) of Lemma 6, that there exists an x1 − x2 path P ′′′, that alternates
between X and W , on 2 |T | + 1 + 2k = 2(ds/2e + j − 1) + 1 + 2(i − j) = s + 2i
(2 |T |−1 + 2k = 2(ds/2e+ j−1)−1 + 2(i− j + 1) = s+ 2i, respectively) vertices.

Set S = Y and T = U1. Choose two disjoint one vertex paths P ′ and P ′′

in Y − {y1, y2}. Define S1 = V (P ′) ∩ Y , S2 = V (P ′′) ∩ Y, u = y2, v = y1 and
z = x. By Lemma 16, each vertex in S is adjacent to z or adjacent to every
vertex in T. The construction for the application of Lemma 23 is satisfied. If s
is even (odd, respectively), there exists a y2 − y1 path P , on 2 |T | − 1 + 1 + 1 =
2(s/2−i−1)−1+2 = s−2i−1 (2 |T |−1+1+1 = 2(ds/2e−i−1)−1+2 = s−2i,
respectively) vertices. The sequence P, P ′′′ forms a monochromatic C2s.

Case 2.1.2. |U1| ≤ 2. Observe that if degW (x) = t = bs/2c + i ≤ s − 4,
then |U1| = s − 1 − t ≥ 3, a contradiction. Hence degW (x) = bs/2c + i ≥ s − 3,
implying that i = ds/2e − 3, and so |U1| = 2.

Case 2.1.2.1. i < ds/2e+ 2j− 7. Recall the definition of Configuration 1 and
2. Let us assume first that for Configuration 1 (Configuration 2, respectively), we
have that for every x′ ∈ X −{x1, x2, x3} (x′ ∈ X −{x1, x2, x3, x4}, respectively),
degW (x′) ≥ degW (x)+1 = bs/2c+(i+1). Note that if s is even (odd, respectively)
degW2

(x′) ≥ degW (x′) − |W1| ≥ s/2 + i + 1 − (s/2 + j − 1) = (i + 1) − j + 1
(degW2

(x′) ≥ degW (x′) − |W1| ≥ bs/2c + i + 1 − (ds/2e + j − 1) = (i + 1) − j,
respectively).

Consider first the case where Configuration 1 holds. We focus our attention
on the three disjoint K2’s with edges x1y1, x2y2 and x3y3. Without loss of
generality, x3 = x. We apply Lemma 16 and conclude that every vertex in Y is
adjacent to either the two vertices in U1, or to x. This implies that y1 and y2
have a common neighbor x′′ ∈ {x} ∪ U1. If s is even (odd, respectively), there
exists a y2 − y1 path P on 3 = 2 |U1| − 1 = 2(s/2 − i − 1) − 1 = s − 2i − 3
(3 = 2(ds/2e − i− 1)− 1 = s− 2i− 2, respectively) vertices.

Consider the case where Configuration 2 holds. It is clear that x ∈ {x1, x2,
x3, x4}. If one vertex of y1 and y2 is not adjacent to x, then, by Lemma 16, y1
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and y2 have a common neighbor u1 ∈ U1. If s is even (odd, respectively), there
exists a y2 − y1 path P on 3 = 2 |U1| − 1 = 2(s/2 − i − 1) − 1 = s − 2i − 3
(3 = 2(ds/2e− i−1)−1 = s−2i−2, respectively) vertices. We may assume that
both y1 and y2 are adjacent to x. It follows that GB 〈X ∪ Y 〉 has a disjoint P4

and a K2. This reverts back to Configuration 1, and this will be treated in what
follows.

For Configuration 1 (Configuration 2, respectively), set X ′ = X −{x, x1, x2}
(X ′ = X − {x1, x2, x3, x4}, respectively). Observe that |X ′| ≥ s − 4 and as
i < ds/2e + 2j − 7, we have that |X ′| − 1 + 2j > |X ′| − 2 + 2j ≥ s − 6 + 2j >
bs/2c+(i+1). If s is even (odd, respectively), then each vertex in X ′ has at least
(i + 1) − j + 1 ((i + 1) − j, respectively) neighbors in W2. We apply Claim 33.
Suppose the first part of Claim 33 holds. If s is even (odd, respectively), then
|Z1| = (i+1)−j+2 = i−j+3 (|Z1| = (i+1)−j+1 = i−j+2, respectively). We
apply Part 1 of Lemma 6. For Configuration 1 (Configuration 2, respectively),
set S = X −{x3}−V (Z1) (S = X −V (Z1), respectively), T = W1 and k = |Z1| .
Note that as i = ds/2e−3, |S|+k ≥ s−1−2k+k ≥ ds/2e+j−1 = |T |. Observe
that |T |−1 = ds/2e+j−2 > i−j+4 ≥ k+1. If s is even (odd, respectively), there
exists an x1−x2 path P ′ on 2 |T |−1+2k = 2(s/2+j−1)−1+2(i−j+3) = s+2i+3
(2 |T | − 1 + 2k = 2(ds/2e + j − 1) − 1 + 2(i − j + 2) = s + 2i + 2, respectively)
vertices. The sequence P, P ′ forms a monochromatic C2s.

Suppose the second part of Claim 33 holds. Then if s is even (odd, respec-
tively) |Z1| = (i + 1) − j + 1 (|Z1| = (i + 1) − j, respectively) and there are
two vertices u′, v′ ∈ X ′ − V (Z1) that are adjacent to every vertex in W1. We
apply Part 4 of Lemma 6. For Configuration 1 (Configuration 2, respectively),
set S = X −{x3}−V (Z1) (S = X −V (Z1), respectively), T = W1 and k = |Z1| .
Note again that |S|+k−1 ≥ s−1−2k+k−1 ≥ ds/2e+j−1 = |T | . In addition, as
i < ds/2e+2j−7, |T | = ds/2e+j−1 > i−j+6 > k+3. If s is even (odd, respec-
tively), then there exists an x1−x2 path P ′ on 2 |T |+1+2k = 2(s/2+j−1)+1+
2(i−j+2) = s+2i+3 (2 |T |+1+2k = 2(ds/2e+j−1)+1+2(i−j+1) = s+2i+2,
respectively) vertices. The sequence P ′, P forms a monochromatic C2s.

We may assume that for Configuration 1 (Configuration 2, respectively),
x ∈ X − {x1, x2, x3} (x ∈ X − {x1, x2, x3, x4}, respectively).

Case A. Configuration 1 holds. We apply Lemma 16 and conclude that
every vertex in Y is adjacent to either the two vertices in U1, or to x. This
implies that y2 and y3 have a common neighbor x′ ∈ {x} ∪ U1. If s is even (odd,
respectively), there exists a y3−y2 path P on 3 = 2 |U1|−1 = 2(s/2− i−1)−1 =
s − 2i − 3 (3 = 2(ds/2e − i − 1) − 1 = s − 2i − 2, respectively) vertices. Let
X ′ = X − {x1, x2, x3, x}. Observe that |X ′| = s − 4 and as i < ds/2e + 2j − 7,
we have that |X ′| − 1 + 2j > |X ′| − 2 + 2j > bs/2c+ i.

We apply Claim 33. Suppose the first part of Claim 33 holds. If s is even (odd,
respectively), then |Z1| = i− j + 2 (|Z1| = i− j + 1, respectively). We apply Part
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1 of Lemma 6. Set S = X−{x2, x}−V (Z1), T = W1 and k = |Z1| . Note that, as
i = ds/2e−3, |S|+k = s−2−2k+k = s−2−k ≥ |T | = ds/2e+j−1. Observe that
|T |−1 = ds/2e+j−2 > i−j+5 > k+1. If s is even (odd, respectively), there exists
an x1−x3 path P ′ on 2 |T |−1 + 2k = 2(s/2 + j−1)−1 + 2(i− j + 2) = s+ 2i+ 1
(2 |T | − 1 + 2k ≥ 2(ds/2e + j − 1) − 1 + 2(i − j + 1) = s + 2i, respectively)
vertices. The sequence P ′, P, x2, y1 forms a monochromatic C2s. Suppose the
second part of Claim 33 holds. Then if s is even (odd, respectively), |Z1| = i−j+1
(|Z1| = i − j + 1 if i − j = −1 and |Z1| = i − j if i ≥ j, respectively) and there
are two vertices u′, v′ ∈ X ′ − V (Z1) that are adjacent to every vertex in W1. We
apply Part 4 (or Part 1) of Lemma 6. Set S = X − {x2, x} − V (Z1), T = W1

and k = |Z1| . Observe that |T | − 1 = ds/2e+ j − 2 > i− j + 5 > k + 2. Suppose
s is even. Note that |S| + k − 1 = s − 2 − 2k + k − 1 ≥ s − 3 − (i − j + 1) ≥
ds/2e + j − 1 = |T |. By Part 4 of Lemma 6, there exists an x1 − x3 path P ′

on 2 |T | + 1 + 2k = 2(s/2 + j − 1) + 1 + 2(i − j + 1) = s + 2i + 1 vertices.
Suppose s is odd. If |Z1| = i − j (|Z1| = i − j + 1, respectively), note that
|S| + k − 1 = s − 2 − 2k + k − 1 ≥ s − 3 − (i − j) ≥ ds/2e + j − 1 = |T |
(|S|+ k = s− 2− 2k + k ≥ s− 2− (i− j + 1) ≥ ds/2e+ j− 1 = |T |, respectively)
and so, by Part 4 (part 1, respectively) of Lemma 6, there exists an x1− x3 path
P ′ on 2 |T |+ 1 + 2k = 2(ds/2e+ j − 1) + 1 + 2(i− j) = s + 2i (2 |T | − 1 + 2k =
2(ds/2e+ j − 1)− 1 + 2(i− j + 1) = s + 2i, respectively) vertices. The sequence
P ′, P, x2, y1 forms a monochromatic C2s.

Case B. Configuration 2 holds. We apply Lemma 16 and conclude that
every vertex in Y is adjacent to either the two vertices in U1, or to x. This
implies that y2 and y1 have a common neighbor x′ ∈ {x} ∪ U1. If s is even (odd,
respectively), there exists a y2−y1 path P on 3 = 2 |U1|−1 = 2(s/2− i−1)−1 =
s − 2i − 3 (3 = 2(ds/2e − i − 1) − 1 = s − 2i − 2, respectively) vertices. Let
X ′ = X −{x1, x2, x3, x4, x}. Observe that |X ′| = s− 5 and as i < ds/2e+ 2j− 7,
we have that |X ′| − 1 + 2j > |X ′| − 2 + 2j > bs/2c+ i.

We apply Claim 33. Suppose the first part of Claim 33 holds. Add the
K1,2, with vertices x3, y3, x4, to Z1. Then if s is even (odd, respectively), |Z1| =
i − j + 3 (|Z1| = i − j + 2, respectively). We apply Part 1 of Lemma 6. Set
S = X − {x} − V (Z1), T = W1 and k = |Z1| . Note that as i = ds/2e − 3,
|S| + k = s − 1 − 2k + k = s − k − 1 ≥ |T | = ds/2e + j − 1. Observe that
|T | − 1 = ds/2e+ j − 2 > i− j + 5 > k + 1. If s is even (odd, respectively), there
exists an x1−x2 path P ′ on 2 |T |−1+2k = 2(s/2+j−1)−1+2(i−j+3) = s+2i+3
(2 |T | − 1 + 2k = 2(ds/2e + j − 1) − 1 + 2(i − j + 2) = s + 2i + 2, respectively)
vertices. The sequence P ′, P forms a monochromatic C2s.

Suppose the second part of Claim 33 holds. If s is even or s is odd and
|Z1| = i − j, add the K1,2 with vertices x3, y3, x4 to Z1. Then if s is even (odd,
respectively), |Z1| = i − j + 2 (|Z1| = i − j + 1, respectively) and there are
two vertices u′, v′ ∈ X ′ − V (Z1) that are adjacent to every vertex in W1. We
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apply Part 4 of Lemma 6. Set S = X − {x} − V (Z1), T = W1 and k = |Z1| .
Note that, as i = ds/2e − 3, |S| + k − 1 = s − 1 − 2k + k − 1 = s − k − 2 ≥
|T | = ds/2e + j − 1. If s is even (odd, respectively), there exists an x1 − x2
path P ′ on 2 |T | + 1 + 2k = 2(s/2 + j − 1) + 1 + 2(i − j + 2) = s + 2i + 3
(2 |T | + 1 + 2k = 2(ds/2e + j − 1) + 1 + 2(i − j + 1) = s + 2i + 2, respectively)
vertices. The sequence P ′, P forms a monochromatic C2s.

Case 2.1.2.2. i ≥ ds/2e + 2j − 7. As i = ds/2e − 3 ≥ ds/2e + 2j − 7, we
have that j ∈ {0, 1, 2}. We apply Claims 31, 34 and 35. By Claim 31, the graph
GB 〈Y ∪ U ∪ {x}〉 has, without loss of generality, a y2−y1 path P : y2, u, u

′, x′′, y1,
such that {x2, x1} ∩ V (P ) = ∅ and y1, y2, u

′ ∈ Y and u, x′′ ∈ {x} ∪ U . Note that
if s is even (odd, respectively) the path P has 5 = 2 |U1| + 1 = 2(s/2 − i − 1) +
1 = s − 2i − 1 (5 = 2 |U1| + 1 = 2(ds/2e − i − 1) + 1 = s − 2i, respectively)
vertices. Let x′ ∈ X − {x1, x2} such that if x ∈ X − {x1, x2}, then x = x′. Set
X ′ = X − {x1, x2, x′}.

Suppose that s is even and that the first part of Claim 34 holds. The graph
GB 〈X ′ ∪W 〉 has paths P ′ = P2(i−j)+1 and P ′′ = P3, both of which are disjoint,
with both starting and ending in X ′, and with two vertices u′, v′ ∈ X ′ − (P ′) −
V (P ′′) such that u′ and v′ are adjacent to all vertices in W1. We apply Part 6 of
Lemma 6. Set S = X−{x′}−V (P ′)−V (P ′′) and T = W1. Set Z1 = {P ′′}, with
k = |Z1| = 1. Observe that as s ≥ 18, we have that |T | = s/2+ j−1 ≥ k+4 = 5.
We have, as i = ds/2e − 3, that |S| + k + 1 = s − 1 − (i − j + 1) − 2 + 2 =
s− i+ j− 2 ≥ s/2 + j− 1 + 1 = |T |+ 1. By Part 6 of Lemma 6, we have that the
graph GB 〈X ∪W 〉 has an x1 − x2 path P ′′′ on 2 |T |+ 2k + ` = 2(s/2 + j − 1) +
2+2(i− j)+1 = s+2i+1 vertices. The sequence P ′′′, P forms a monochromatic
C2s. We may assume that if s is even then the second part of Claim 34 holds.

If s is even (odd, respectively), then by Claim 34 (Claim 35, respectively),
GB 〈X ′ ∪W 〉 has three paths P ′ = P2(i−j)+1, P ′′ = P3 and P ′′′ = P3 (has a
P ′ = P5 and a set Z1 of i − j − 1 copies of K1,2, respectively), all of which are
disjoint, and with all ending and starting in X ′. If s is even (odd, respectively),
set S = X − {x′} − V (P ′) − V (P ′′) − V (P ′′′) (S = X − {x′} − V (P ′) − V (Z1),
respectively) and T = W1. If s is even, then let Z1 = {P ′′, P ′′′} and |Z1| = k = 2.
If s is odd then recall that |Z1| = i − j − 1 = k. We apply Part 5 of Lemma 6.
Observe that as s ≥ 18, we have, for s even, that |T |−1 = s/2+j−2 ≥ k+2 = 4.
If s is odd, then, as j ∈ {0, 1, 2} and i = ds/2e − 3, |T | − 1 = ds/2e + j − 2 ≥
i−j−1+2 = k+2. In addition, if s is even (odd, respectively), then |S|+k+1 ≥
s−1−(i−j+1)−2−2+2+1 = s−i+j−3 ≥ s/2+j−1+1 = |T |+1 (|S|+k+1 =
s−1−2k−3+k+1 = s−3−(i−j−1) = s−i+j−2 ≥ ds/2e+j−1+1 = |T |+1,
respectively). If s is even (odd, respectively), then the graph GB 〈X ∪W 〉 has an
x1−x2 path P ′′′′ on 2 |T |−1+2k+`−1 = 2(s/2+j−1)−1+2(i−j)+4 = s+2i+1
(2 |T | − 1 + 2k + ` − 1 = 2(ds/2e + j − 1) − 1 + 2(i − j − 1) + 5 − 1 = s + 2i,
respectively) vertices. The sequence P ′′′′, P forms a monochromatic C2s.
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Case 2.2. i− j ≤ −2.

Case 2.2.1. |U1| ≥ 3. Observe that j ≥ i + 2. Recall that we assumed much
earlier that x ∈ X−{x1, x2}. Set S = X−{x}. If s is even (odd, respectively), let
T be a subset of W1, of cardinality s/2+ i+2−1 (ds/2e+ i+1−1, respectively).
Observe that as every vertex in X has at least |W1|− 1 neighbors in W1, we have
that every vertex in X has |T |−1 neighbors in T. If s is even (odd, respectively),
then, by Part 1 of Lemma 6 (|S| ≥ |T |, as i ≤ ds/2e − 3), there exists an x1 − x2
path P, that alternates between S and W, on 2 |T | − 1 = 2(s/2 + i+ 2− 1)− 1 =
s + 2i + 1 (2 |T | − 1 = 2(ds/2e+ i + 1− 1)− 1 = s + 2i, respectively) vertices.

We apply Lemma 23. Pick two one vertex paths P ′ and P ′′ in Y . Set
S = Y −V (P ′)−V (P ′′), T = U1, S1 = Y ∩V (P ′) and S2 = Y ∩V (P ′′). Set x = z,
u = y2 and v = y1. Observe that every vertex w ∈ S∪S1∪S2 is adjacent to |T |−1
vertices in T, and is either adjacent to z, or adjacent to |T | vertices in T . If s is
even (odd, respectively), then there exists a y2−y1 path P ′′′ on 2 |T |−1+1+1 =
2(s/2−i−1)−1+1+1 = s−2i−1 (2 |T |−1+1+1 = 2(ds/2e−i−1)+1 = s−2i,
respectively). The sequence P, P ′′′ forms a monochromatic C2s.

Case 2.2.2. |U1| ≤ 2. If degW (x) = t ≤ s − 4, then |U1| = s − 1 − t ≥ 3,
a contradiction. Hence degW (x) ≥ s − 3, and as degW (x) ≤ s − 3, we have
degW (x) = bs/2c+ i = s− 3, and so i = ds/2e − 3. Recall that j ≥ i + 2. If s is
even, then |W1| = s/2 + j− 1 ≥ s/2 + i+ 2− 1 = s/2 + s/2− 3 + 2− 1 = s− 2. If
|W1| = s−1, then every vertex in X has at least |W1|−1 = s−2 neighbors in W.
This contradicts the fact that degW (x) = s− 3, whence |W1| = s− 2. If s is odd,
then |W1| = ds/2e+ j− 1 ≥ ds/2e+ i+ 2− 1 = ds/2e+ ds/2e− 3 + 2− 1 = s− 1.
This implies that every vertex in X has at least |W1| − 1 ≥ s− 2 neighbors in W.
This contradicts the fact that degW (x) = s− 3, whence s is even.

We claim that for any two vertices y′, y′′ ∈ Y , there exists, within GB, a
y′− y′′ path P , that alternates between Y ∪ {x} ∪U , on s− 2i− 3 vertices. Now
each vertex in Y is adjacent to either x, or to the two vertices in U1. Then both
y′, y′′ have a common neighbor x′′′ ∈ {x} ∪ U1. Thus, P : y′, x′′′, y′′ is a path on
3 = 2 |U1| − 1 = 2(s/2 − i − 1) − 1 = s − 2i − 3 vertices. Let T be a subset of
W1 of cardinality s/2 + i + 2 − 1. Let us assume first that for Configuration 1
(Configuration 2, respectively), x ∈ X − {x1, x2, x3} (x ∈ X − {x1, x2, x3, x4},
respectively).

Let us deal with Configuration 1 first. Set y′ = y3, y′′ = y2 and S =
X−{x, x2}. By Part 1 of Lemma 6, there exists an x1−x3 path P ′, that alternates
between X and W, on 2 |T | − 1 = 2(s/2 + i+ 2− 1)− 1 = s+ 2i+ 1 vertices. The
sequence P ′, P, x2, y1 forms a monochromatic C2s. Let us deal with Configuration
2. Let y′ = y2 and y′′ = y1. Now set S = X − {x, x3, x4} and let Z1 be the set
containing the K1,2 with vertices x3, x4, y3. Observe that k = |Z1| = 1. Then
|S|+ k = s− 3 + 1 = s− 2 ≥ s/2 + i + 2− 1 = s/2 + s/2− 3 + 2− 1 = s− 2 =
|T |. By Part 1 of Lemma 6, there exists an x1 − x2 path P ′, that alternates
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between X and W, on 2 |T | − 1 + 2k = 2(s/2 + i + 2 − 1) − 1 + 2 = s + 2i + 3
vertices. The sequence P ′, P forms a monochromatic C2s. Let us assume now
that for Configuration 1 (Configuration 2, respectively), x ∈ {x1, x2, x3} (x ∈
{x1, x2, x3, x4}, respectively).

This implies that for every vertex x′ ∈ X −{x1, x2, x3} (x′ ∈ X −{x1, x2, x3,
x4}, respectively), we have that degW (x′) ≥ s − 2 > s − 3 = degW (x), since
otherwise we can relabel x′ as x. It follows that X has at least |X| − 4 = s− 4 ≥
18 − 4 = 14 vertices that have at least s − 2 neighbors in W. Let y′ = y2 and
y′′ = y1. By the pigheonhole principle, the set X − {x1, x2, x} has at least
14 − 3 = 11 vertices (let X ′ be the set of these 11 vertices) that have at least
s− 2 neighbors in W.

Suppose that there are two vertices x′, x′′ ∈ X ′ that have s − 2 = |W1|
neighbors in W1. Set S = X − {x} and T = W1. By Part 4 of Lemma 6, there
exists an x1−x2 path P ′, that alternates between X and W, on 2 |T |+1 = 2s−3
vertices. The sequence P ′, P forms a monochromatic C2s. We may assume that
at most one vertex in X ′ has s − 2 = |W1| neighbors in W1. It follows that two
vertices x′, x′′ ∈ X ′ have s−3 neighbors in W1 and one neighbor in W2 (|W2| = 1).
For w ∈W2, the vertices x′, w, x′′ form a K1,2, say K. Set S = X −{x}− V (K),
T = W1 and let Z1 = {K} (where k = 1). By Part 1 of Lemma 6, there exists
an x1− x2 path P ′, that alternates between X and W, on 2 |T | − 1 + 2k = 2s− 3
vertices. The sequence P ′, P forms a monochromatic C2s.

Case 3. There exist integers i, j ≥ 1 such that t = bs/2c−i and t′ = bs/2c−j.
Observe that |W1| = s−1− t′ = ds/2e+ j−1 and |U1| = s−1− t = ds/2e+ i−1.
Assume first that s is odd. Let S = X and let T be a subset of W1 of cardinality
ds/2e. Observe that every vertex in X has |T | − 1 neighbors in T . By Part
1 of Lemma 6, there exists an x1 − x2 path P , that alternates between S and
T , on 2 |T | − 1 = s vertices. Likewise, set S = Y and let T be a subset of U1

of cardinality ds/2e. By Part 1 of Lemma 6, there exists a y2 − y1 path P ′ on
2 |T | − 1 = s vertices. The sequence P, P ′ forms a monochromatic C2s. We may
assume that s is even.

For Configuration 1 (Configuration 2, respectively), let S = X − {x2} (S =
X − {x3, x4}, respectively) and let T be a subset of W1 of cardinality s/2, and
for Configuration 2 let Z1 be the set containing the K1,2 with vertices x3, y3, x4.
For Configuration 1 (Configuration 2, respectively), by Part 1 of Lemma 6, there
exists an x1 − x3 (x1 − x2, respectively) path P , that alternates between X and
W , on 2 |T |−1 = s−1 (2 |T |−1+2k = s−1+2, respectively) vertices. Now, for
Configuration 1 (Configuration 2, respectively), let S = Y −{y1} (S = Y −{y3},
respectively) and let T be a subset of U1 of cardinality s/2. By Part 1 of Lemma 6,
there exists a y3−y2 (y2−y1, respectively) path P ′ on 2 |T |−1 = s−1 vertices. For
Configuration 1 (Configuration 2, respectively), the sequence P, P ′, x2, y1 (P, P ′,
respectively) forms a monochromatic C2s.
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6. Appendix

Proof of Parts 2 to 7 of Lemma 6.

Proof of Part 2. Pick the vertices s1, s2, . . . , s|T |−3 ∈ S−{u, v}, and recall that
any two vertices in S have |T |−2 common neighbors in T. Let t1, t2, . . . , t|T |−2 ∈ T
be a sequence of vertices such that t1 ∈ N(u) ∩ N(s1), t2 ∈ N(s1) ∩ N(s2) −
{t1}, t3 ∈ N(s2) ∩ N(s3) − {t1, t2}, . . . , t|T |−2 ∈ N(s|T |−3) ∩ N(v) − {t1, t2, . . . ,
t|T |−3}. Let y ∈ N(u)− {t1, t2, . . . , t|T |−2} and x ∈ N(v)− {t1, t2, . . . , t|T |−2}.

If u is adjacent to x, then C : u, t1, s1, t2, s2, . . . , s|T |−3, t|T |−2, v, x, u is a cycle
on 2 |T |−2 vertices. Hence, u is not adjacent to x and, by symmetry, v is not adja-
cent to y. By the pigeonhole principle, both u and v are adjacent to t1 and t2. If s1
is adjacent to x then C : u, t1, s1, x, v, t|T |−2, s|T |−3, . . . , s2, t2, u is a cycle on 2 |T |−
2 vertices. If s1 is adjacent to y then C : u, y, s1, t1, v, t|T |−2, s|T |−3, . . . , t3, s2, t2, u
is a cycle on 2 |T | − 2 vertices.

Proof of Part 3. Let us assume that |Z1| = 2 (|Z2| 6= ∅, respectively). Recall
that any two vertices in S ∪

(⋃2
i=1{zi, z′i}

)
(S ∪ {z1, z′1, z′2}, respectively) have

|T | − 2 common neighbors in T. If |Z1| = 2, then, as |T | − 3 ≥ 3, we pick vertices
s3, s4, . . . , s|T |−3 ∈ S − {u, v}. If Z2 6= ∅, then pick vertices s2, s3, . . . , s|T |−3 ∈
S − {u, v}.

Pick a sequence of vertices t1, t2, . . . , t|T |−2 ∈ T as follows. For the case where
we deal with the set Z1, pick t1 ∈ N(u)∩NT (z1), t2 ∈ NT (z′1)∩NT (z2)−{t1}, t3 ∈
NT (z′2)∩N(s3)− {t1, t2}, . . . , t|T |−2 ∈ N(s|T |−3)∩N(v)− {t1, t2, . . . , t|T |−3}. For
the set Z2, pick t1 ∈ N(u) ∩ NT (z1), t2 ∈ NT (z′2) ∩ N(s2) − {t1}, t3 ∈ N(s2) ∩
N(s3)−{t1, t2}, . . . , t|T |−2 ∈ N(s|T |−3)∩N(v)−{t1, t2, . . . , t|T |−3}. Let y ∈ N(u)−
{t1, t2, . . . , t|T |−2} and x ∈ N(v)− {t1, t2, . . . , t|T |−2}.

If u is adjacent to x, then C : u, t1, z1, z
′′
1 , z
′
1, . . . , s|T |−3, t|T |−2, v, x, u is a

cycle on 2 |T | + 2 vertices. Hence, u is not adjacent to x and, by the same
argument, v is not adjacent to y. By the pigeonhole principle, both u and v are
adjacent to t1 and t2. Assume first that |Z1| = 2. If z′1 is adjacent to x then
C : u, t1, z1, z

′′
1 , z
′
1, x, v, t|T |−2, s|T |−3, . . . , z

′′
2 , z2, t2, u is a cycle on 2 |T |+2 vertices.

If z′1 is adjacent to y then C : u, y, z′1, z
′′
1 , z1, t1, v, t|T |−2, s|T |−3, . . . , z

′′
2 , z2, t2, u is

a cycle on 2 |T |+ 2 vertices.
In the case of the set Z2, we have that if z′2 is adjacent to x, then C : z′2,

x, v, t|T |−2, s|T |−3, t|T |−3, . . . , s3, t3, s2, t2, u, t1, z1, z
′′
1 , z
′
1, z
′′
2 , z
′
2 is a cycle on 2 |T |+2

vertices. If z′2 is adjacent to y, then C : z′2, z
′′
2 , z
′
1, z
′′
1 , z1, t1, v, t|T |−2, s|T |−3, t|T |−3,

. . . , s3,t3, s2, t2, u, y, z
′
2 is a cycle on 2 |T |+ 2 vertices.

Proof of Part 4. Assume that |T | ≥ k + 3 and that u′ and v′ both have |T |
neighbors in T. Recall that |S| + k − 1 ≥ |T |, and that any two vertices in
S′ = S ∪

(⋃k
i=1{zi, z′i}

)
have |T | − 2 common neighbors in T. If |T | > k + 3, pick

vertices sk+1, sk+2, . . . , s|T |−3, u
′, v′, v ∈ S − {u}. If |T | = k + 3 label z′k as s|T |−3.
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We pick a sequence of vertices t1, t2, . . . , t|T |−2, t|T |−1 ∈ T as follows. If k ≥ 1,
then pick t1 ∈ N(u)∩NT (z1), t2 ∈ NT (z′1)∩NT (z2)−{t1}, t3 ∈ NT (z′2)∩NT (z3)−
{t1, t2}, . . . , tk+1 ∈ NT (z′k) ∩ N(sk+1) − {t1, t2, . . . , tk}, . . . , t|T |−2 ∈ N(s|T |−3) ∩
N(u′) − {t1, t2, . . . , t|T |−3}, t|T |−1 ∈ N(u′) ∩ N(v′) − {t1, t2, . . . , t|T |−2}. If k = 0,
then pick t1 ∈ N(u) ∩ N(s1), t2 ∈ N(s1) ∩ N(s2) − {t1}, t3 ∈ N(s2) ∩ N(s3) −
{t1, t2}, . . . , t|T |−2 ∈ N(s|T |−3) ∩ N(u′) − {t1, t2, . . . , t|T |−3}, t|T |−1 ∈ N(u′) ∩
N(v′)− {t1, t2, . . . , t|T |−2}. Let z ∈ N(v′) ∩ T − {t1, t2, . . . , t|T |−1}.

If v is adjacent to z then P : u, t1, . . . , t|T |−2, u
′, t|T |−1, v

′, z, v is a u − v
path on 2 |T | + 1 + 2k vertices, whence N(v) = {t1, t2, . . . , t|T |−1}. If k ≥ 1
(k = 0, respectively) then if u is adjacent to z, then P : u, z, v′, t|T |−1, u

′, . . . , sk+1,
tk+1, z

′
k, . . . , z2, t2, z

′
1, z
′′
1 , z1, t1, v (P : u, z, v′, t|T |−1, u

′, . . . , s2, t2, s1, t1, v, respec-
tively) is a u − v path on 2 |T | + 1 + 2k vertices. It follows that N(u) =
{t1, t2, . . . , t|T |−1}. Hence, as u′ and v′ both are adjacent to z, we have, if k ≥ 1
(k = 0, respectively) that P : u, t|T |−1, v

′, z, u′, t|T |−2, . . . , z
′
k, z

′′
k , zk, . . . , z

′
2, z
′′
2 , z2,

t2, z
′
1, z
′′
1 , z1, t1, v (P : u, t|T |−1, v

′, z, u′, t|T |−2, . . . , s2, t2, s1, t1, v, respectively) is a
u− v path on 2 |T |+ 1 + 2k vertices.

Proof of Part 5. If ` > 3 we modify the path P ′ by deleting the vertices
w2, . . . , w`−2, and joining w1 to w`−1. Label zk+1 = w1, z′′k+1 = w`−1 and
z′k+1 = w`. Now add the K1,2 with vertices zk+1, z

′′
k+1 and z′k+1, to the set Z1.

As |T | − 1 ≥ (k + 1) + 1, we can apply Part 1 and deduce that there exists a
u − v path P on 2 |T | − 1 + 2k + 2 vertices. Since deg(z′′k+1) = 2, the path P
must contain the edges zk+1z

′′
k+1 and z′′k+1z

′
k+1. On the path P, delete the edge

zk+1z
′′
k+1, and insert the section of P ′ that comprises of vertices w2, w3, . . . , w`−2.

A new u− v path arises on 2 |T | − 1 + 2k + `− 1 vertices.

Proof of Part 6. If ` > 3 we modify the path P ′ by deleting the vertices
w2, . . . , w`−2, and joining w1 to w`−1. Label zk+1 = w1, z′′k+1 = w`−1 and
z′k+1 = w`. Now add the K1,2 with vertices zk+1, z

′′
k+1 and z′k+1, to the set Z1.

As |T | − 1 ≥ (k + 1) + 3, we can apply Part 4 and deduce that there exists a
u − v path P on 2 |T | + 1 + 2k + 2 vertices. Since deg(z′′k+1) = 2, the path P
must contain the edges zk+1z

′′
k+1 and z′′k+1z

′
k+1. On the path P, delete the edge

zk+1z
′′
k+1, and insert the section of P ′ that comprises of vertices w2, w3, . . . , w`−2.

A new u− v path arises on 2 |T |+ 2k + ` vertices.

Proof of Part 7. Observe that any two vertices in S ∪ {z1, z′1} have at least
|T |−4 common neighbors in T. Pick a sequence of vertices sk+1, sk+2, . . . , s|T |−4 ∈
S−{u, v}. If k = 1 pick vertices in T as follows: t1 ∈ N(u)∩NT (z1), t2 ∈ NT (z′1)∩
N(s2)−{t1}, . . . , t|T |−4 ∈ N(s|T |−5)∩N(s|T |−4)−{t1, t2, . . . , t|T |−5}. For the case
where k = 0, pick t1 ∈ N(u) ∩ N(s1), t2 ∈ N(s1) ∩ N(s2) − {t1}, . . . , t|T |−4 ∈
N(s|T |−5) ∩ N(s|T |−4) − {t1, t2, . . . , t|T |−5}. Let x1, x2 ∈ N(s|T |−4) − {t1, t2, . . . ,
t|T |−4} and y1, y2 ∈ N(v)− {t1, t2, . . . , t|T |−4}.



Bipartite Ramsey Number Pairs Involving Cycles 39

If x1 = y1 then P : u, t1, . . . , s|T |−5, t|T |−4, s|T |−4, x1, v is a path on 2 |T | −
5 + 2k vertices. Hence, {x1, x2} ∩ {y1, y2} = ∅. By the pigeonhole principle
N(v) ⊇ {y1, y2, t1, t2, . . . , t|T |−4} and N(s|T |−4) ⊇ {x1, x2, t1, t2, . . . , t|T |−4}. Sup-
pose u is adjacent to say x1. If k = 1 (k = 0, respectively), the path P :
u, x1, s|T |−4, t|T |−4, . . . , s2, t2, z

′
1, z
′′
1 , z1, t1, v (P : u, x1, s|T |−4, t|T |−4, . . . , s2, t2, s1,

t1, v, respectively) is a path on 2 |T | − 5 + 2k vertices. It follows that N(u) ⊇
{y1, y2, t1, t2, . . . , t|T |−4}. If k = 1 (k = 0, respectively), and z′1 (s1, respectively)
is adjacent to say x1, then P : u, t1, z1, z

′′
1 , z
′
1, x1, s|T |−4, t|T |−4, . . . , s2, t2, v (P :

u, t1, s1, x1, s|T |−4, t|T |−4, . . . , t3, s2, t2, v, respectively) is a path on 2 |T | − 5 + 2k
vertices, whence NT (z′1) ⊇ {y1, y2, t1, t2, . . . , t|T |−4} (N(s1) ⊇ {y1, y2, t1, t2, . . . ,
t|T |−4}, respectively). It follows immediately that for k = 1 (k = 0, respectively),
P : u, y1, z

′
1, z
′′
1 , z1, t1, s|T |−4, t|T |−4, . . . , s2, t2, v (P : u, y1, s1, t2, s2, . . . , t|T |−4,

s|T |−4, t1, v, respectively) is a path with the desired property.

Proof of the mentioned inequalities in Claim 26. We first prove the in-
equality (s − 3)(i + j) − (i + j − 2)(s − 3 + s/2 + j − 2(i + j − 2)) > 0 when
s is even. Let h(i) = (s − 3)(i + j) − (i + j − 2)(s − 3 + s/2 + j − 2(i + j −
2)). Observe that h(i) = h(i) + (i + j) − (i + j − 2) − 2. We will show that
g(i) = h(i) + (i + j) − (i + j − 2) > 3, implying that h(i) > 0. Note that
g(i) = (s − 2)(i + j) − (i + j − 2)(s − 2 + s/2 + j − 2(i + j − 2)) simplifies to
g(i) = s(−i/2− j/2 + 3) + 2 + (i + j)2 + ij + i2 − 6j − 8i + 2. Note that g(i) is a
parabola with minimum value occurring at i = s/8− 3j/4 + 2.

Assume first that s/8 − 3j/4 + 2 ≤ s/4 − 2 ≤ i. As g(i) is increasing on
the interval [s/8 − 3j/4 + 2,+∞), we have, as s ≥ 18, that g(i) ≥ g(s/4 − 2) =
j2 + j(s/4 − 12) + 28 ≥ j2 − 8j + 26 > 3 > 0, for j ≥ 1. We may assume
that s/8 − 3j/4 + 2 > s/4 − 2. This implies that 1 ≤ j ≤ 2. Observe that
g(s/8−3j/4+2) = s(−s/32− j/8+2)−4− j2/8. If j = 1, then 18 ≤ s ≤ 25, and
so g(i) ≥ g(s/8−3j/4 + 2) = s(−s/32−1/8 + 2)−4−1/8 > 3 > 0. If j = 2, then
18 ≤ s ≤ 19, and so g(i) ≥ g(s/8−3j/4+2) = s(−s/32−2/8+2)−4−4/8 > 3 > 0.

We now prove the inequality (s−3)(i+j−1)−(i+j−4)(s−3+s/2+j−2(i+j−
4)) > 0 when s is odd. Let h(i) = (s−3)(i+j−1)−(i+j−4)(s−3+s/2+j−2(i+j−
4)). Simplifying, we obtain h(i) = s(−i/2−j/2+5)+(i+j)2+i2+ij−16i−12j+23.
Note that h(i) is a parabola with minimum value occurring at i = s/8−3j/4+4.
Assume first that s/4 − 2 ≥ s/8 − 3j/4 + 4. Since h(i) is increasing on the
interval [s/8 − 3j/4 + 4,+∞), we have, as j ≥ 1, that h(i) ≥ h(s/4 − 2) =
j2 − 18j + sj/4 + 63 ≥ j2 − 14j + 63 > 0. We may assume that s/8− 3j/4 + 4 >
s/4 − 2, and so, as s ≥ 19, we have that 1 ≤ j ≤ 4, and s ≤ 41. Observe that
h(s/8−3j/4+4) = s(−s/32+3−j/8)−j2/8−9 ≥ −s2/32+3s−4s/8−16/8−9 > 0
(using calculus).
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