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Abstract

The subgraph of a graph G that is induced by the set of neighbors of
a vertex v of G is the link of v. If every two distinct vertices of G have
non-isomorphic links, then G is link-irregular. It is shown that there exists
a link-irregular graph of order n if and only if n ≥ 6. The degree set D(G) of
G is the set of degrees of the vertices of G. While there is no link-irregular
graph G of order n such that |D(G)| ∈ {n, n − 1}, it is shown that there
exists a link-irregular graph G of order n such that |D(G)| = n − 2 if and
only if n ≥ 7. Further, for each pair (d, n) of integers with 3 ≤ d ≤ 8 and
n ≥ d+4, there is a link-irregular graph of order n whose degree set consists
of n−d elements. The link-irregular ratio lir(G) of a link-irregular graph G is
defined as |D(G)|/|V (G)|. For the set L of link-irregular graphs, it is shown
that sup{ lir(G) : G ∈ L} = 1 and that 0 ≤ inf{ lir(G) : G ∈ L} ≤ 1/9.
Other results, problems, and conjectures on link-irregular graphs are also
presented.
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1. Introduction

Of the many classes of graphs that have been popular to study, it is the class of
regular graphs that are among the most studied. A graph G is regular if every
vertex of G has the same degree. If this degree is r, then G is r-regular. If r = 0,
then G consists only of isolated vertices; if r = 1, then G is a matching; while if
r = 2, then each component of G is a cycle. Therefore, the situation when r ≥ 3
has drawn the most interest. The r-regular graphs of minimum order having a
specific girth g (the length of a smallest cycle) are (r, g)-cages. These graphs have
been studied by many (see [5], for example). A 3-regular graph is often called
a cubic graph. A cubic map is a connected cubic bridgeless plane graph. Due
to the work of Tait [8], it was known for decades that if it could be shown that
every cubic map had a proper 3-coloring of its edges, then the famous Four Color
Problem would have an affirmative solution.

While the vertices of a regular graph have the same degree, this does not
mean that these graphs are locally regular in other senses. The link L(v) of a
vertex v in a graph G is the subgraph induced by the set of neighbors of v in
G, that is, L(v) = G[N(v)]. When discussing the links of the vertices of a graph
G, we always assume that G has no isolated vertices. If every two vertices of a
graph G have the same link, then G is said to be link-regular. If there exists a
graph H such that L(v) ∼= H for every vertex v of G, then G is H-link-regular. A
graph H is a link graph if there exists a graph G that is H-link-regular. Clearly,
if G is link-regular, then G is regular. The converse is not true, however. For two
vertex-disjoint graphs G1 and G2, let G1 + G2 denote the union of G1 and G2.
For example, the cubic graph G of Figure 1 is not link-regular; for this graph,
L(u) ∼= K3, L(v) ∼= K2 +K1, and L(w) ∼= P3.

Figure 1. A regular graph that is not link-regular.

This topic was described in the book [1] and the concept was suggested by
the Russian mathematician Alexander Zykov [9], author of the first textbook in
graph theory written in Russian. At the symposium in Smolenice on the Theory
of Graphs and Its Applications, which took place during 17–20 June 1963, Zykov
presented the following problem, namely Problem #30, which appeared in the
proceedings of this conference.
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Problem # 30. Given a finite graph H, does there exist a nonempty
(graph) G with all neighbourhoods of its vertices isomorphic to H?

Every vertex-transitive graph is not only regular, it is link-regular. However,
there are link-regular graphs that are not vertex-transitive. For example, the
two cubic graphs G1 and G2 shown in Figure 2 are not vertex-transitive but are
link-regular, where L(v) = K3 for each vertex v of G1 and L(v) = K2 + K1 for
each vertex v of G2.

Figure 2. Two link-regular graphs that are not vertex-transitive.

Several familiar classes of graphs are known to be link graphs. For example,
every complete graph is a link graph since Kn is the link of every vertex of Kn+1

for each positive integer n. Also, every empty graph is a link graph since Kn is
the link of every vertex of the regular complete bipartite graph Kn,n. Indeed, for
each integer r ≥ 2, every r-regular triangle-free graph is Kr-link-regular. More
generally, every regular complete multipartite graph is a link graph. For example,
Kr,r,r is the link of every vertex of the graph Kr,r,r,r for each positive integer r.

Since there is a K3-link-regular graph, namely K4, there is a C3-link-regular
graph. Also, there is a C4-link-regular graph since C4 = K2,2 and K2,2,2 is a
K2,2-link-regular graph. In fact, it was shown by Brown and Connelly in [4] that
there is a Cn-link-regular graph for each integer n ≥ 3.

Theorem 1.1 [4]. For each integer n ≥ 3, there is a Cn-link-regular graph.

Among the link graphs are the friendship graphs. For each positive integer
k, the graph Fk = kK2∨K1 (the join of kK2 and K1) is called a friendship graph.
The following result was obtained in [1].

Theorem 1.2 [1]. For each positive integer k, the friendship graph Fk is a link
graph.

In addition to the friendship graphs, another well-known class of graphs is
that of the Kneser graphs. For positive integers k and n with n > 2k, the
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Kneser graph KGn,k is that graph whose vertices are the k-element subsets of
[n] = {1, 2, . . . , n} and where two vertices (k-element subsets) A and B are adja-
cent if and only if A and B are disjoint. Consequently, the Kneser graph KGn,1

is the complete graph Kn and the Kneser graph KG5,2 is isomorphic to the Pe-
tersen graph. Since the Kneser graph KGn+k,k is KGn,k-link-regular for every
two positive integers k and n with n > 2k, it follows that every Kneser graph
is a link graph. In particular, the 10-regular Kneser graph KG7,2 of order 21 is
KG5,2-link-regular. Therefore, the Petersen graph P is a link graph and KG7,2

is P -link-regular. Hall [6] showed that only two other graphs are P -link-regular.

Theorem 1.3 [6]. For the Petersen graph P , there are exactly three non-iso-
morphic graphs that are P -link-regular.

Other graphs that are link graphs have been obtained in [3, 4, 7].

2. Link-Irregular Graphs

The graphs that are opposite to the regular graphs in a sense are the irregular
graphs. A nontrivial graph G is irregular if no two vertices of G have the same
degree. It is well known that no graph is irregular.

Theorem 2.1 [2]. For every integer n ≥ 2, there is no irregular graph of order n.

The graphs that are opposite to the link-regular graphs are the link-irregular
graphs. A graph G is link-irregular if every two vertices of G have distinct links;
that is, for every two vertices u and v of G, L(u) 6∼= L(v). Contrary to the
situation for irregular graphs, there are link-irregular graphs. For example, the
graph G6 of order 6 in Figure 3 is link-irregular. Since it can be ready shown that
no graph of order 6 or less other than G6 is link-irregular, it follows that G6 is the
unique link-irregular graph of smallest order. The links of the vertices of G6 are
also shown in Figure 3. Observe that if u and v are vertices of distinct degrees in
a graph G, then L(u) and L(v) have different orders and so L(u) 6∼= L(v). Thus,
to verify that G is link-irregular, it suffices to show that the links of every two
vertices with the same degree are non-isomorphic.

Not only is there a link-irregular graph of order 6, there is a link-irregular
graph of order n for every integer n ≥ 6.

Theorem 2.2. There exists a link-irregular graph of order n if and only if n ≥ 6.

Proof. We have already mentioned that no graph of order less than 6 is link-
irregular. It therefore remains to show that there is a link-irregular graph Gn of
order n for each integer n ≥ 6. We saw that the graph G6 of order 6 in Figure 3
is link-irregular. For each integer n ≥ 7, we construct a graph Gn recursively as
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Figure 3. The unique link-irregular graph of order 6.

follows. Let G7 = G6 ∨K1 be the join of the graph G6 of Figure 3 and K1, and
let G8 be the graph obtained from G7 by adding a pendant edge at a vertex of
minimum degree in G7. For an integer n ≥ 9, the graph Gn is constructed from
Gn−1 as follows.

? If n is odd, let Gn = Gn−1∨K1 be the join of Gn−1 and K1. Thus, ∆(Gn) =
n− 1.

? If n is even, let Gn be the graph obtained by adding a pendant edge at a
vertex of minimum degree in Gn−1. Thus, ∆(Gn) = ∆(Gn−1) = n− 2.

First, observe that for each integer n ≥ 7, the graph Gn is a connected
graph of order n. It remains to show that Gn is link-irregular. Before doing this,
however, we verify the following two claims.

Claim 1. If n ≥ 7 is odd, then the link of every vertex in Gn is a nontrivial
connected subgraph of Gn.

Proof. Recall, for each odd integer n ≥ 7, that Gn = Gn−1 ∨K1. For a vertex
v in Gn−1, let Ln(v) and Ln−1(v) denote the links of v in Gn and in Gn−1,
respectively. Then Ln(v) = Ln−1(v) ∨ K1 is a connected nontrivial graph. If
v ∈ V (Gn) \V (Gn−1), then Ln(v) = Gn−1, which is a connected graph of order
n− 1. Thus, Claim 1 holds. �

Claim 2. If n ≥ 7 is odd, then Gn has a unique vertex of maximum degree n−1.

Proof. Since ∆(G6) = 4 and G7 = G6∨K1, it follows that G7 has a unique vertex
of maximum degree 6. Let n ≥ 9 be an odd integer. Then Gn−2 = Gn−3∨K1 and
so ∆(Gn−2) = n−3. Since Gn−1 is obtained from Gn−2 by adding a pendant edge
at a vertex of minimum degree in Gn−2, it follows that ∆(Gn−1) = ∆(Gn−2) =
n − 3. Therefore, the graph Gn = Gn−1 ∨K1 has a unique vertex of maximum
degree n− 1. Thus, Claim 2 holds. �
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Next, we proceed by induction to show that Gn is link-irregular for each
integer n ≥ 6. We saw that G6 is link-irregular and so the base step holds.
Assume that Gn−1 is link-irregular for some integer n ≥ 7. We show that Gn is
link-irregular.

Let V (Gn) = {v1, v2, . . . , vn} where vn /∈ V (Gn−1). For 1 ≤ i ≤ n − 1, let
Ln−1(vi) denote the link of vi in Gn−1. For 1 ≤ i ≤ n, let Ln(vi) be the link of
vi in Gn. We consider two cases, according to the parity of n.

Case 1. n ≥ 8 is even. Then Gn is constructed from Gn−1 by adding the
vertex vn and joining vn to a vertex of minimum degree in Gn−1, say vn is joined
to vn−1 in Gn−1. Observe that Ln(vi) = Ln−1(vi) for 1 ≤ i ≤ n− 2, Ln(vn−1) =
Ln−1(vn−1) +K1, which is a disconnected graph, and Ln(vn) ∼= K1, which is the
trivial graph. Since Gn−1 is link-irregular, Ln−1(vi) 6∼= Ln−1(vj) for every pair
i, j of integers with i 6= j and 1 ≤ i, j ≤ n − 2. Thus, Ln(vi) 6∼= Ln(vj) if i 6= j
and 1 ≤ i, j ≤ n− 2. By Claim 1, for each integer i with 1 ≤ i ≤ n− 2, the link
Ln−1(vi) of vi in Gn−1 is a nontrivial connected graph. Hence, Ln(vi) 6∼= Ln(vn)
and Ln(vi) 6∼= Ln(vn−1) for 1 ≤ i ≤ n − 2. Furthermore, Ln(vn) 6∼= Ln(vn−1).
Therefore, Gn is link-irregular.

Case 2. n ≥ 7 is odd. Then Gn = Gn−1 ∨K1. Thus, Ln(vi) = Ln−1(vi)∨K1

for 1 ≤ i ≤ n − 1 and Ln(vn) = Gn−1. Since Gn−1 is link-irregular, Ln−1(vi) 6∼=
Ln−1(vj) for every pair i, j of integers with i 6= j and 1 ≤ i, j ≤ n − 1. Thus,
Ln(vi) 6∼= Ln(vj) if i 6= j and 1 ≤ i, j ≤ n− 1. By Claim 2, vn is the only vertex
of maximum degree n − 1 in Gn and so degGn

(vi) ≤ n − 2 for 1 ≤ i ≤ n − 1.
Hence, Ln(vn) 6∼= Ln(vi) for each integer i with 1 ≤ i ≤ n − 1. Therefore, Gn is
link-irregular.

A nontrivial graph G has been called antiregular if exactly two vertices of G
have the same degree. While no nontrivial graph is irregular, there are antiregular
graphs of every order n ≥ 2 (see [2], for example).

Theorem 2.3 [2]. For every integer n ≥ 2, there are exactly two non-isomorphic
antiregular graphs of order n, one of which is connected and the other is its
disconnected complement.

The connected antiregular graph Gn of order n ≥ 2 referred to in Theorem
2.3 can be defined as the unique graph with vertex set {v1, v2, . . . , vn} for which
vivj ∈ E(Gn) if and only if i+ j ≥ n+ 1.

Proposition 1. No antiregular graph is link-irregular.

Proof. As we mentioned earlier, no graph of order at most 5 is link-irregular, so
only antiregular graphs of order 6 or more need be considered. In the connected
antiregular graph Gn of order n ≥ 6, only the two vertices of degree bn/2c have
the same degree. Since the links of these two vertices are both Kbn/2c, it follows
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that Gn is not link-irregular. The only other antiregular graph of order n is
the complement Gn of Gn. The nontrivial component of Gn is the connected
antiregular graph Gn−1 of order n− 1 and so Gn is not link-irregular either.

For a graph G, let D(G) denote the degree set of G (the set of degrees of the
vertices of G). The following is a consequence of Theorem 2.1 and Proposition 1.

Corollary 2. For each integer n ≥ 2, there is no link-irregular graph G of order
n such that |D(G)| = n or |D(G)| = n− 1.

This brings up the question as whether there is a link-irregular graph G of
order n such that |D(G)| = n − 2. For n = 7, the graph H7 in Figure 4 is a
link-irregular graph of order 7 with |D(H7)| = 5. In order to answer this question
in general, we present two lemmas, the first of which is a consequence of the proof
of Theorem 2.2.

Figure 4. A link-irregular graph H7 of order 7.

Lemma 2.4. Let H be a link-irregular graph of order n ≥ 6. If ∆(H) ≤ n − 2,
then H ∨K1 is also a link-irregular graph.

Proof. Let H be a link-irregular graph of order n ≥ 6 with ∆(H) ≤ n−2 and let
G = H ∨K1. Thus, G has only one vertex w of degree n in G and LG(w) = H.
Let u and v be any two vertices of G different from w. Since LH(u) 6∼= LH(v),
it follows that LG(u) = LH(u) ∨ K1 6∼= LH(v) ∨ K1 = LG(v). Therefore, G is
link-irregular.

As we saw in the proof of Theorem 2.2, the graph G6 of order 6 in Figure
3 has δ(G6) = 2, and ∆(G6) = 4. By Lemma 2.4, the graph G6 ∨ K1 is a
link-irregular graph of order 7 with δ(G6 ∨K1) = 3 and ∆(G6 ∨K1) = 6.

Lemma 2.5. If H is a link-irregular graph, then (H + K1) ∨K1 is also a link-
irregular graph.

Proof. Let G = (H + K1) ∨ K1 with V (G) = {v1, v2, . . . , vn}, where V (H) =
{v1, v2, . . . , vn−2}, the vertex vn−1 is the isolated vertex in H+K1, and the vertex
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vn is the unique vertex of maximum degree n−1 in Gn. For 1 ≤ i ≤ n−2, the link
of vi is LG(vi) = LH(vi)∨K1, where LH(vi) is the link of vi in H, LG(vn−1) = K1,
and LG(vn) = H +K1. Since H is link-irregular, LH(vi) 6∼= LH(vj) for every pair
i, j of integers with i 6= j and 1 ≤ i, j ≤ n−2. Thus, LG(vi) 6∼= LG(vj) if i 6= j and
1 ≤ i, j ≤ n− 2. Since L(vn) is the only link of order n− 1 in G and each LG(vi)
is nontrivial for 1 ≤ i ≤ n− 1, it follows that LG(vn) 6∼= LG(vi) for each integer i
with 1 ≤ i ≤ n− 1 and LG(vn−1) 6∼= LG(vi) for each integer i with 1 ≤ i ≤ n− 2.
Therefore, G is link-irregular.

Theorem 2.6. There exists a link-irregular graph Hn of order n such that
|D(Hn)| = n− 2 if and only if n ≥ 7.

Proof. As we mentioned, no graph of order less than 6 is link-irregular and the
graph G6 of Figure 3 is the only link-irregular graph of order 6. Since |D(G6)| = 3,
there is no link-irregular graph of order 6 whose degree set has cardinality 4. It
therefore remains to show that there is a link-irregular graph Hn of order n such
that |D(Hn)| = n − 2 for each integer n ≥ 7. We saw that the graph H7 in
Figure 4 is a link-irregular graph of order 7 with |D(H7)| = 5. For each integer
n ≥ 8, we construct a graph Hn recursively as follows. Let H8 = H7 ∨K1 and let
H9 = (H7 +K1)∨K1. For an integer n ≥ 10, let Hn = (Hn−2 +K1)∨K1. Since
H7 is a link-irregular graph of order 7 with ∆(H7) = 5, it follows by Lemma
2.4 that H8 is link-irregular. Furthermore, since H7 is link-irregular, it follows
by Lemma 2.5 that H9 is link-irregular. Therefore, Hn is link-irregular for each
integer n ≥ 10 by applying Lemma 2.5 repeatedly.

It remains to show for each integer n ≥ 7 that |D(Hn)| = n− 2. We proceed
by induction. It is not difficult to see that |D(Hn)| = n − 2 for n = 7, 8, 9.
Suppose that |D(Hn−2)| = n − 4 for some integer n such that n − 2 ≥ 9. Let
a1, a2, . . . , an−2 be the degree sequence of Hn−2, where then 1 ≤ ai ≤ n − 3 for
1 ≤ i ≤ n− 2. Since the degree sequence of Hn = (Hn−2 +K1) ∨K1 is

1, a1 + 1, a2 + 1, . . . , an−2 + 1, n− 1

and 1 < ai + 1 < n− 1 for 1 ≤ i ≤ n− 2, it follows that

D(Hn) = {1, 2, . . . , n− 1} −
{
bn/2c+ (−1)n+1 · 3

}
,

where there are two vertices of degree bn/2c, two vertices of degree bn/2c+(−1)n,
and one vertex of every other degree. Thus, |D(Hn)| = n− 2.

By Theorem 2.6, it follows that for each integer n ≥ 7, there exists a link-
irregular graph Hn of order n such that |D(Hn)| = n−2. In fact, for each integer
d ∈ {3, 4, 5, 6, 7, 8}, there is a link-irregular graph Hn of order n ≥ d + 4 such
that |D(Hn)| = n − d. In order to establish this result, we first present some
preliminary results.
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Observation 3. Let G be a graph of order n ≥ 3.

? If ∆(G) ≤ n− 2, then |D(G ∨K1)| = |D(G)|+ 1.

? If δ(G) ≥ 1, then |D((G+K1) ∨K1)| = |D(G)|+ 2.

With the aid of Lemmas 2.4 and 2.5 and Observation 3, we are now able to
present the following result.

Proposition 4. If there exists a link-irregular graph G of order p ≥ 6 such
that 1 ≤ δ(G) ≤ ∆(G) ≤ p − 2, then there exists a link-irregular graph H of
order p+ k with |D(H)| = |D(G)|+ k for each positive integer k. Consequently,
|V (H)| − |D(H)| = |V (G)| − |D(G)|.

Proof. Let G be a link-irregular graph of order p ≥ 6 such that 1 ≤ δ(G) ≤
∆(G) ≤ p − 2 and let k be a positive integer. We consider two cases, according
to the parity of k.

Case 1. k ≥ 1 is odd. For k = 1, let H = G ∨K1. Since ∆(G) ≤ p − 2, it
follows by Lemma 2.4 and Observation 3 that H is a link-irregular graph of order
p+1 with |D(H)| = |D(G)|+1. Hence, |V (H)|−|D(H)| = |V (G)|−|D(G)|. Thus,
we may assume that k = 2` + 1 for some integer ` ≥ 1. Let H1 = ((G ∨K1) +
K1)∨K1. Since δ(G∨K1) ≥ 1, it follows by Lemma 2.5 and Observation 3 that
H1 is a link-irregular graph of order (p+ 1) + 2 with |D(H)| = (|D(G)|+ 1) + 2.
For each integer t ≥ 2, let Ht = (Ht−1 + K1) ∨ K1. Then δ(Ht) ≥ 1 for each
integer t ≥ 1. Applying Lemma 2.5 and Observation 3 repeatedly, we see that
Ht is a link-irregular graph of order (p+ 1) + 2t with |D(Ht)| = |(D(G)|+ 1) + 2t
for t ≥ 2. In particular, H` is a link-irregular graph of order (p+ 1) + 2` = p+ k
with |D(H`)| = (|D(G)|+ 1) + 2` = |D(G)|+ k.

Case 2. k ≥ 2 is even. Then k = 2` for some integer ` ≥ 1. Let H1 =
(G + K1) ∨ K1 and let Ht = (Ht−1 + K1) ∨ K1 for each integer t ≥ 2. Since
δ(G) ≥ 1 and δ(Ht) ≥ 1 for each integer t ≥ 1, it follows that Ht is a link-
irregular graph of order p + 2t with |D(Ht)| = |D(G)| + 2t for t ≥ 1 (again by
applying Lemma 2.5 and Observation 3 repeatedly). In particular, H` is a link-
irregular graph of order p+ 2` = p+ k with |D(H`)| = |D(G)|+ 2` = |D(G)|+ k.

We saw for k = 1 that H = G∨K1 and |V (H)| − |D(H)| = |V (G)| − |D(G)|.
Thus, we may assume that k ≥ 2. Let ` = bk/2c and let H = H` be defined
as in Case 1 or Case 2 according to the parity of k. Then |V (H)| − |D(H)| =
(p+ k)− (|D(G)|+ k) = p− |D(G)| = |V (G)| − |D(G)|.

We are now prepared to present the following result.

Theorem 2.7. For each pair (d, n) of integers with d ∈ {3, 4, 5, 6, 7, 8} and n ≥
d+ 4, there is a link-irregular graph Hn of order n such that |D(Hn)| = n− d.
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Proof. First, we show that for each integer d ∈ {3, 4, 5, 6, 7, 8}, there is a link-
irregular graph Fd+4 of order d + 4 such that D(Fd+4) = 4. We consider these
six cases.

Case 1. d = 3. We saw that the graph G6 of Figure 3 is a link-irregular graph
of order 6 with |D(G6)| = 3. Let F7 = G6 ∨K1. Since ∆(G6) = 4, it follows by
Lemma 2.4 and Observation 3 that F7 is a link-irregular graph of order 7 with
D(G7) = 4.

Case 2. d = 4. The graph F8 of Figure 5 is a link-irregular graph of order
8 with degree sequence 2, 3, 3, 3, 4, 4, 4, 5. Thus, |D(F8)| = 4. The links of the
vertices of degree 3 or 4 in F8 are also shown in Figure 5.

Figure 5. A link-irregular graph F8 of order 8 with |D(F8)| = 4.

Case 3. d = 5. By adding a new vertex v and joining v to the vertices v3
and v7 in the graph F8 of Figure 5, we obtain a link-irregular graph F9 of order 9
with degree sequence 2, 2, 3, 3, 4, 4, 4, 5, 5. Thus, |D(F9)| = 4. In this graph, the
links of the two vertices of degree 2 are L(v) ∼= K2 and L(v2) ∼= K2; the links
of the two vertices of degree 3 are L(v1) ∼= K2 + K1 and L(v6) ∼= K3; the links
of the three vertices of degree 4 are L(v3) ∼= P2 + K2, L(v4) ∼= P3 + K1, and
L(v5) ∼= K3 ? K1 (the graph obtained by adding a pendant edge at a vertex of
K3); while the links of the two vertices of degree 5 are L(v7) ∼= K3+K2 and L(v8)
which is isomorphic to the graph obtained from the 5-path (v7, v6, v5, v4, v1) by
adding the edge v5v7.

Case 4. d = 6. By adding a new vertex u and joining u to the vertices v4, v5,
and v6 in the graph F9 in Case 3, we obtain a link-irregular graph F10 of order 10
with degree sequence 2, 2, 3, 3, 4, 4, 5, 5, 5, 5. Thus, |D(F10)| = 4. In this graph,
the links of the two vertices of degree 2 are L(v) ∼= K2 and L(v2) ∼= K2; the links
of the two vertices of degree 3 are L(v1) ∼= K2 +K1 and L(u) ∼= P3; the links of
the two vertices of degree 4 are L(v6) ∼= K3 ?K1, and L(v3) ∼= P2 +K2; while the
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links of the four vertices of degree 5 are L(v4) ∼= P4 + K1, and L(v5) ∼= C5 + e
(the graph obtained from the 5-cycle (u, v6, v7, v8, v4, u) by adding the edge v6v8),
L(v7) ∼= K3 +K2, and L(v8) which is isomorphic to the graph obtained from the
5-path (v7, v6, v5, v4, v1) by adding the edge v5v7.

Case 5. d = 7. By adding a new vertex w and joining w to the four ver-
tices v4, v5, v7, and v8 in degree 5 of the graph F10 in Case 4, we obtain a
link-irregular graph F11 of order 11 with degree sequence 2, 2, 3, 3, 4, 4, 4, 6, 6, 6, 6.
Thus, |D(F11)| = 4. The graph F11 is shown in Figure 6 together with the links
of all vertices of F11.

Figure 6. A link-irregular graph F11 of order 11 with |D(F11)| = 4.

Case 6. d = 8. The graph F12 of Figure 7 is a link-irregular graph of order
12 with degree sequence 2, 2, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5. Thus, |D(F12)| = 4. In this
graph, the links of the two vertices of degree 2 are L(v1) ∼= K2 and L(v11) ∼= K2;
the links of the two vertices of degree 3 are L(v5) ∼= K2 + K1 and L(v9) ∼= P3;
the links of the two vertices of degree 4 are L(v2) ∼= P3 + K1 and L(v3) ∼= 2P2;
while the links of the six vertices of degree 5 are L(v4) ∼= S2,3 (the double star
whose central vertices have degree 2 and 3), L(v6) ∼= C4 ?K1 (the graph obtained
by adding a pendant edge at a vertex of C4), L(v7) ∼= P5, L(v8) ∼= C4 + K1,
L(v10) ∼= P4 +K1, and L(v12) ∼= P2 +K2.

Next, let d and n be integers with d ∈ {3, 4, 5, 6, 7, 8} and n ≥ d + 4. Since
there is a link-irregular graph Fd+4 of order d + 4 such that D(Fd+4) = 4, it
follows by Proposition 4 that there is a link-irregular graph Hn of order n such
that

|V (Hn)| − |D(Hn)| = |V (Fd+4)| − |D(Fd+4)| = (d+ 4)− 4 = d.

Consequently, |D(Hn)| = n− d where d ∈ {3, 4, 5, 6, 7, 8} and n ≥ d+ 4.
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Figure 7. A link-irregular graph G of order 12 with |D(G)| = 4.

Corollary 5. There exists a link-irregular graph Hn of order n such that |D(Hn)|
= n− 3 if and only if n ≥ 6.

Proof. We have mentioned that no graph of order less than 6 is link-irregular
and that the graph G6 of Figure 3 is a link-irregular graph of order 6 with
|D(G6)| = 3. By Theorem 2.7, for each integer n ≥ 7, there is a link-irregular
graph G of order n such that |D(G)| = n− 3, giving the desired result.

The following problem is suggested by Theorem 2.7.

Problem 2.8. Does there exist a link-irregular graph Hn of order n with |D(Hn)|
= n− d for each pair (d, n) of integers with n ≥ d+ 4 ≥ 7?

It was observed in [1] that there is no r-regular link-irregular graph for r =
2, 3 and proved that there is no 4-regular link-irregular graph. The following
conjecture was stated in [1].

Conjecture 2.9. There is no regular link-irregular graph.

If Conjecture 2.9 is true, then for every link-irregular graph G of order n with
|D(G)| = k, it follows that 2 ≤ k ≤ n− 2. This brings up the following question:

Problem 2.10. For which integers n ≥ 7, is it true that for every integer k
with 2 ≤ k ≤ n− 2, there exists a link-irregular graph Gn,k of order n such that
|D(Gn,k)| = k?

While we are not aware of a link-irregular graph G8,2 of order 8 with |D(G8,2)|
= 2, it can be shown that there exists no link-irregular graph G7,2 of order 7 such
that |D(G7,2)| = 2. Furthermore, we have the following result on link-irregular
graphs of order n for 7 ≤ n ≤ 10.
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Proposition 6. Let (n, k) be a pair of integers with 7 ≤ n ≤ 10 and 2 ≤ k ≤ n−2.
If n ∈ {7, 8} and 3 ≤ k ≤ n − 2 or n ∈ {9, 10} and 2 ≤ k ≤ n − 2, then there
exists a link-irregular graph Gn,k of order n such that |D(Gn,k)| = k.

Proof. First, let (n, k) ∈ X = {(7, 3), (8, 3), (9, 2), (9, 3), (10, 2), (10, 3)} and con-
sider the six graphs Gn,k of Figure 8, where D(G7,3) = D(G8,3) = {3, 4, 5},
D(G9,2) = {4, 6}, D(G9,3) = {4, 5, 6}, D(G10,2) = {4, 5}, andD(G10,3) = {3, 4, 5}.
It is straightforward to verify that for each (n, k) ∈ X, the graph Gn,k of order n
in Figure 8 is link-irregular with |D(Gn,k)| = k.

Figure 8. The link-irregular graphs Gn,k, where (n, k) ∈ X in the proof of Proposition 6.

Hence, we assume that 7 ≤ n ≤ 10 and 4 ≤ k ≤ n − 2. By Theorems
2.6 and 2.7, it follows that for each integer d ∈ {2, 3, . . . , n − 4} (where then
n − 4 ≤ 6), there is a link-irregular graph H of order n such that |D(H)| =
n − d ∈ {4, 5, . . . , n − 2}. Consequently, for each pair (n, k) of integers with
7 ≤ n ≤ 10 and 4 ≤ k ≤ n − 2, there is a link-irregular graph Gn,k of order n
such that |D(Gn,k)| = k ∈ {4, 5, . . . , n− 2}.

3. Link-Irregular Ratio

Let L denote the set of link-irregular graphs. For a graph G ∈ L with degree set
D(G), the link-irregular ratio lir(G) of G is defined as
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lir(G) =
|D(G)|
|V (G)|

.

The following is a consequence of Theorem 2.6.

Corollary 7. sup {lir(G) : G ∈ L} = 1.

Proof. For every graph G ∈ L of order n, we have |D(G)| < n. Thus, sup{lir(G) :
G ∈ L} ≤ 1. By Theorem 2.6, for each integer n ≥ 7, there exists a graph Hn ∈ L
of order n such that |D(G)| = n − 2. Thus, limn→∞

|D(Hn)|
|V (Hn)| = n−2

n = 1 and so

sup{lir(G) : G ∈ L} ≥ 1, giving the desired result.

This brings up the question as to the value of inf{lir(G) : G ∈ L}. The
graph G of Figure 9 has order 18 with degree set D(G) = {7, 9}, where deg vi = 7
for 1 ≤ i ≤ 8 and deg vi = 9 for 9 ≤ i ≤ 18. We show that G is link-irregular.
For 1 ≤ i ≤ 18, let si denote the degree sequence of L(vi). Observe that

s1 = (4, 3, 2, 2, 2, 2, 1), s2 = (4, 4, 3, 3, 2, 2, 2), s3 = (4, 3, 2, 2, 2, 2, 1),
s4 = (3, 3, 2, 2, 2, 2, 2), s5 = (3, 2, 2, 2, 1, 1, 1), s6 = (5, 4, 4, 3, 2, 2, 2),
s7 = (2, 2, 2, 2, 2, 1, 1), s8 = (6, 4, 3, 3, 2, 2, 2), s9 = (5, 4, 3, 2, 2, 2, 2, 2, 2),
s10 = (5, 5, 5, 5, 4, 4, 3, 3, 2), s11 = (5, 5, 5, 5, 5, 4, 3, 2, 2), s12 = (7, 4, 4, 2, 2, 2, 1, 1, 1),
s13 = (6, 5, 4, 3, 3, 3, 2, 2, 2), s14 = (5, 4, 4, 4, 4, 3, 3, 3, 2), s15 = (5, 4, 4, 4, 4, 3, 3, 2, 1),
s16 = (7, 4, 3, 3, 2, 2, 2, 2, 1), s17 = (6, 5, 5, 4, 3, 3, 3, 3, 2), s18 = (6, 5, 5, 4, 4, 2, 2, 1, 1).

Thus, if i, j ∈ {1, 2, . . . , 18}, i 6= j, and {i, j} 6= {1, 3}, then si 6= sj and
so L(vi) 6∼= L(vj). Since L(v1) contains exactly one triangle and L(v3) contains
exactly two triangles, it follows that L(v1) 6∼= L(v3). Hence, G is a link-irregular
graph of order 18 with |D(G)| = 2 and so lir(G) = 1/9. Consequently, 0 ≤
inf{lir(G) : G ∈ L} ≤ 1/9.

In this connection, we have the following problem.

Problem 3.1. Does there exist a positive integer constant c for which there is
an infinite class of link-irregular graphs such that |D(G)| ≤ c for each graph G
in the class?

If the answer to Problem 3.1 is yes, then this would mean that inf{lir(G) :
G ∈ L} = 0. In fact, we have the following conjecture.

Conjecture 3.2. inf {lir(G) : G ∈ L} = 0.

By Proposition 6, if r = p/q is a rational number such that either (i) q ∈ {7, 8}
and 3 ≤ p ≤ q − 2 or (ii) q ∈ {9, 10} and 2 ≤ p ≤ q − 2, then r is realizable as
the link-irregular ratio lir(G) of some link-irregular graph G. This suggests the
following question.

Problem 3.3. For which rational numbers r ∈ (0, 1), does there exist a link-
irregular graph G such that lir(G) = r?
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Figure 9. A link-irregular graph G of order 18 with |D(G)| = 2.

For all of the examples of link-irregular graphs of a certain order n that
we have seen, their sizes have been relatively close to 1

2

(
n
2

)
. Consequently, this

suggests that there exist real numbers a and b such that if G is a link-irregular
graph of order n, then a ≤ |E(G)|

(n2)
≤ b. This leads us to the following problem.

Problem 3.4. Determine real numbers a < 0.5 and b > 0.5 such that if G is a
graph of order n such that either

|E(G)|
(n2)

< a or |E(G)|
(n2)

> b,

then G is not link-irregular.

From the many examples that we have seen, it appears that a and b may be
relatively close to 0.3 and 0.7, respectively.
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