ON LINK-IRREGULAR GRAPHS

Akbar Ali
Department of Mathematics, Faculty of Science, University of Ha'il, Ha'il, Saudi Arabia
e-mail: akbarali.maths@gmail.com
Gary Chartrand

AND
Ping Zhang
Western Michigan University
Kalamazoo, Michigan 49008, USA
e-mail: ping.zhang@wmich.edu gary.chartrand@wmich.edu

Abstract

The subgraph of a graph G that is induced by the set of neighbors of a vertex v of G is the link of v. If every two distinct vertices of G have non-isomorphic links, then G is link-irregular. It is shown that there exists a link-irregular graph of order n if and only if $n \geq 6$. The degree set $\mathcal{D}(G)$ of G is the set of degrees of the vertices of G. While there is no link-irregular graph G of order n such that $|\mathcal{D}(G)| \in\{n, n-1\}$, it is shown that there exists a link-irregular graph G of order n such that $|\mathcal{D}(G)|=n-2$ if and only if $n \geq 7$. Further, for each pair (d, n) of integers with $3 \leq d \leq 8$ and $n \geq d+4$, there is a link-irregular graph of order n whose degree set consists of $n-d$ elements. The link-irregular ratio $\operatorname{lir}(G)$ of a link-irregular graph G is defined as $|\mathcal{D}(G)| /|V(G)|$. For the set \mathcal{L} of link-irregular graphs, it is shown that $\sup \{\operatorname{lir}(G): G \in \mathcal{L}\}=1$ and that $0 \leq \inf \{\operatorname{lir}(G): G \in \mathcal{L}\} \leq 1 / 9$. Other results, problems, and conjectures on link-irregular graphs are also presented.

Keywords: degree of a vertex, link of a vertex, link-irregular graph.
2020 Mathematics Subject Classification: 05C07, 05C60, 05C69.

1. Introduction

Of the many classes of graphs that have been popular to study, it is the class of regular graphs that are among the most studied. A graph G is regular if every vertex of G has the same degree. If this degree is r, then G is r-regular. If $r=0$, then G consists only of isolated vertices; if $r=1$, then G is a matching; while if $r=2$, then each component of G is a cycle. Therefore, the situation when $r \geq 3$ has drawn the most interest. The r-regular graphs of minimum order having a specific girth g (the length of a smallest cycle) are (r, g)-cages. These graphs have been studied by many (see [5], for example). A 3-regular graph is often called a cubic graph. A cubic map is a connected cubic bridgeless plane graph. Due to the work of Tait [8], it was known for decades that if it could be shown that every cubic map had a proper 3 -coloring of its edges, then the famous Four Color Problem would have an affirmative solution.

While the vertices of a regular graph have the same degree, this does not mean that these graphs are locally regular in other senses. The link $L(v)$ of a vertex v in a graph G is the subgraph induced by the set of neighbors of v in G, that is, $L(v)=G[N(v)]$. When discussing the links of the vertices of a graph G, we always assume that G has no isolated vertices. If every two vertices of a graph G have the same link, then G is said to be link-regular. If there exists a graph H such that $L(v) \cong H$ for every vertex v of G, then G is H-link-regular. A graph H is a link graph if there exists a graph G that is H-link-regular. Clearly, if G is link-regular, then G is regular. The converse is not true, however. For two vertex-disjoint graphs G_{1} and G_{2}, let $G_{1}+G_{2}$ denote the union of G_{1} and G_{2}. For example, the cubic graph G of Figure 1 is not link-regular; for this graph, $L(u) \cong \bar{K}_{3}, L(v) \cong K_{2}+K_{1}$, and $L(w) \cong P_{3}$.

Figure 1. A regular graph that is not link-regular.
This topic was described in the book [1] and the concept was suggested by the Russian mathematician Alexander Zykov [9], author of the first textbook in graph theory written in Russian. At the symposium in Smolenice on the Theory of Graphs and Its Applications, which took place during 17-20 June 1963, Zykov presented the following problem, namely Problem \#30, which appeared in the proceedings of this conference.

Problem \# 30. Given a finite graph H, does there exist a nonempty (graph) G with all neighbourhoods of its vertices isomorphic to H ?

Every vertex-transitive graph is not only regular, it is link-regular. However, there are link-regular graphs that are not vertex-transitive. For example, the two cubic graphs G_{1} and G_{2} shown in Figure 2 are not vertex-transitive but are link-regular, where $L(v)=\overline{K_{3}}$ for each vertex v of G_{1} and $L(v)=K_{2}+K_{1}$ for each vertex v of G_{2}.

Figure 2. Two link-regular graphs that are not vertex-transitive.
Several familiar classes of graphs are known to be link graphs. For example, every complete graph is a link graph since K_{n} is the link of every vertex of K_{n+1} for each positive integer n. Also, every empty graph is a link graph since \bar{K}_{n} is the link of every vertex of the regular complete bipartite graph $K_{n, n}$. Indeed, for each integer $r \geq 2$, every r-regular triangle-free graph is \bar{K}_{r}-link-regular. More generally, every regular complete multipartite graph is a link graph. For example, $K_{r, r, r}$ is the link of every vertex of the graph $K_{r, r, r, r}$ for each positive integer r.

Since there is a K_{3}-link-regular graph, namely K_{4}, there is a C_{3}-link-regular graph. Also, there is a C_{4}-link-regular graph since $C_{4}=K_{2,2}$ and $K_{2,2,2}$ is a $K_{2,2}$-link-regular graph. In fact, it was shown by Brown and Connelly in [4] that there is a C_{n}-link-regular graph for each integer $n \geq 3$.

Theorem 1.1 [4]. For each integer $n \geq 3$, there is a C_{n}-link-regular graph.
Among the link graphs are the friendship graphs. For each positive integer k, the graph $F_{k}=k K_{2} \vee K_{1}$ (the join of $k K_{2}$ and K_{1}) is called a friendship graph. The following result was obtained in [1].

Theorem 1.2 [1]. For each positive integer k, the friendship graph F_{k} is a link graph.

In addition to the friendship graphs, another well-known class of graphs is that of the Kneser graphs. For positive integers k and n with $n>2 k$, the

Kneser graph $K G_{n, k}$ is that graph whose vertices are the k-element subsets of $[n]=\{1,2, \ldots, n\}$ and where two vertices (k-element subsets) A and B are adjacent if and only if A and B are disjoint. Consequently, the Kneser graph $K G_{n, 1}$ is the complete graph K_{n} and the Kneser graph $K G_{5,2}$ is isomorphic to the Petersen graph. Since the Kneser graph $K G_{n+k, k}$ is $K G_{n, k}$-link-regular for every two positive integers k and n with $n>2 k$, it follows that every Kneser graph is a link graph. In particular, the 10 -regular Kneser graph $K G_{7,2}$ of order 21 is $K G_{5,2}$-link-regular. Therefore, the Petersen graph P is a link graph and $K G_{7,2}$ is P-link-regular. Hall [6] showed that only two other graphs are P-link-regular.

Theorem 1.3 [6]. For the Petersen graph P, there are exactly three non-isomorphic graphs that are P-link-regular.

Other graphs that are link graphs have been obtained in $[3,4,7]$.

2. Link-Irregular Graphs

The graphs that are opposite to the regular graphs in a sense are the irregular graphs. A nontrivial graph G is irregular if no two vertices of G have the same degree. It is well known that no graph is irregular.

Theorem 2.1 [2]. For every integer $n \geq 2$, there is no irregular graph of order n.
The graphs that are opposite to the link-regular graphs are the link-irregular graphs. A graph G is link-irregular if every two vertices of G have distinct links; that is, for every two vertices u and v of $G, L(u) \not \neq L(v)$. Contrary to the situation for irregular graphs, there are link-irregular graphs. For example, the graph G_{6} of order 6 in Figure 3 is link-irregular. Since it can be ready shown that no graph of order 6 or less other than G_{6} is link-irregular, it follows that G_{6} is the unique link-irregular graph of smallest order. The links of the vertices of G_{6} are also shown in Figure 3. Observe that if u and v are vertices of distinct degrees in a graph G, then $L(u)$ and $L(v)$ have different orders and so $L(u) \neq L(v)$. Thus, to verify that G is link-irregular, it suffices to show that the links of every two vertices with the same degree are non-isomorphic.

Not only is there a link-irregular graph of order 6, there is a link-irregular graph of order n for every integer $n \geq 6$.

Theorem 2.2. There exists a link-irregular graph of order n if and only if $n \geq 6$.
Proof. We have already mentioned that no graph of order less than 6 is linkirregular. It therefore remains to show that there is a link-irregular graph G_{n} of order n for each integer $n \geq 6$. We saw that the graph G_{6} of order 6 in Figure 3 is link-irregular. For each integer $n \geq 7$, we construct a graph G_{n} recursively as

Figure 3. The unique link-irregular graph of order 6.
follows. Let $G_{7}=G_{6} \vee K_{1}$ be the join of the graph G_{6} of Figure 3 and K_{1}, and let G_{8} be the graph obtained from G_{7} by adding a pendant edge at a vertex of minimum degree in G_{7}. For an integer $n \geq 9$, the graph G_{n} is constructed from G_{n-1} as follows.
\star If n is odd, let $G_{n}=G_{n-1} \vee K_{1}$ be the join of G_{n-1} and K_{1}. Thus, $\Delta\left(G_{n}\right)=$ $n-1$.

* If n is even, let G_{n} be the graph obtained by adding a pendant edge at a vertex of minimum degree in G_{n-1}. Thus, $\Delta\left(G_{n}\right)=\Delta\left(G_{n-1}\right)=n-2$.

First, observe that for each integer $n \geq 7$, the graph G_{n} is a connected graph of order n. It remains to show that G_{n} is link-irregular. Before doing this, however, we verify the following two claims.

Claim 1. If $n \geq 7$ is odd, then the link of every vertex in G_{n} is a nontrivial connected subgraph of G_{n}.

Proof. Recall, for each odd integer $n \geq 7$, that $G_{n}=G_{n-1} \vee K_{1}$. For a vertex v in G_{n-1}, let $L_{n}(v)$ and $L_{n-1}(v)$ denote the links of v in G_{n} and in G_{n-1}, respectively. Then $L_{n}(v)=L_{n-1}(v) \vee K_{1}$ is a connected nontrivial graph. If $v \in V\left(G_{n}\right) \backslash V\left(G_{n-1}\right)$, then $L_{n}(v)=G_{n-1}$, which is a connected graph of order $n-1$. Thus, Claim 1 holds.

Claim 2. If $n \geq 7$ is odd, then G_{n} has a unique vertex of maximum degree $n-1$.
Proof. Since $\Delta\left(G_{6}\right)=4$ and $G_{7}=G_{6} \vee K_{1}$, it follows that G_{7} has a unique vertex of maximum degree 6 . Let $n \geq 9$ be an odd integer. Then $G_{n-2}=G_{n-3} \vee K_{1}$ and so $\Delta\left(G_{n-2}\right)=n-3$. Since G_{n-1} is obtained from G_{n-2} by adding a pendant edge at a vertex of minimum degree in G_{n-2}, it follows that $\Delta\left(G_{n-1}\right)=\Delta\left(G_{n-2}\right)=$ $n-3$. Therefore, the graph $G_{n}=G_{n-1} \vee K_{1}$ has a unique vertex of maximum degree $n-1$. Thus, Claim 2 holds.

Next, we proceed by induction to show that G_{n} is link-irregular for each integer $n \geq 6$. We saw that G_{6} is link-irregular and so the base step holds. Assume that G_{n-1} is link-irregular for some integer $n \geq 7$. We show that G_{n} is link-irregular.

Let $V\left(G_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ where $v_{n} \notin V\left(G_{n-1}\right)$. For $1 \leq i \leq n-1$, let $L_{n-1}\left(v_{i}\right)$ denote the link of v_{i} in G_{n-1}. For $1 \leq i \leq n$, let $L_{n}\left(v_{i}\right)$ be the link of v_{i} in G_{n}. We consider two cases, according to the parity of n.

Case 1. $n \geq 8$ is even. Then G_{n} is constructed from G_{n-1} by adding the vertex v_{n} and joining v_{n} to a vertex of minimum degree in G_{n-1}, say v_{n} is joined to v_{n-1} in G_{n-1}. Observe that $L_{n}\left(v_{i}\right)=L_{n-1}\left(v_{i}\right)$ for $1 \leq i \leq n-2, L_{n}\left(v_{n-1}\right)=$ $L_{n-1}\left(v_{n-1}\right)+K_{1}$, which is a disconnected graph, and $L_{n}\left(v_{n}\right) \cong K_{1}$, which is the trivial graph. Since G_{n-1} is link-irregular, $L_{n-1}\left(v_{i}\right) \not \equiv L_{n-1}\left(v_{j}\right)$ for every pair i, j of integers with $i \neq j$ and $1 \leq i, j \leq n-2$. Thus, $L_{n}\left(v_{i}\right) \neq L_{n}\left(v_{j}\right)$ if $i \neq j$ and $1 \leq i, j \leq n-2$. By Claim 1, for each integer i with $1 \leq i \leq n-2$, the link $L_{n-1}\left(v_{i}\right)$ of v_{i} in G_{n-1} is a nontrivial connected graph. Hence, $L_{n}\left(v_{i}\right) \not \not L_{n}\left(v_{n}\right)$ and $L_{n}\left(v_{i}\right) \not \neq L_{n}\left(v_{n-1}\right)$ for $1 \leq i \leq n-2$. Furthermore, $L_{n}\left(v_{n}\right) \neq L_{n}\left(v_{n-1}\right)$. Therefore, G_{n} is link-irregular.

Case 2. $n \geq 7$ is odd. Then $G_{n}=G_{n-1} \vee K_{1}$. Thus, $L_{n}\left(v_{i}\right)=L_{n-1}\left(v_{i}\right) \vee K_{1}$ for $1 \leq i \leq n-1$ and $L_{n}\left(v_{n}\right)=G_{n-1}$. Since G_{n-1} is link-irregular, $L_{n-1}\left(v_{i}\right) \neq$ $L_{n-1}\left(v_{j}\right)$ for every pair i, j of integers with $i \neq j$ and $1 \leq i, j \leq n-1$. Thus, $L_{n}\left(v_{i}\right) \not \neq L_{n}\left(v_{j}\right)$ if $i \neq j$ and $1 \leq i, j \leq n-1$. By Claim $2, v_{n}$ is the only vertex of maximum degree $n-1$ in G_{n} and so $\operatorname{deg}_{G_{n}}\left(v_{i}\right) \leq n-2$ for $1 \leq i \leq n-1$. Hence, $L_{n}\left(v_{n}\right) \not \neq L_{n}\left(v_{i}\right)$ for each integer i with $1 \leq i \leq n-1$. Therefore, G_{n} is link-irregular.

A nontrivial graph G has been called antiregular if exactly two vertices of G have the same degree. While no nontrivial graph is irregular, there are antiregular graphs of every order $n \geq 2$ (see [2], for example).

Theorem 2.3 [2]. For every integer $n \geq 2$, there are exactly two non-isomorphic antiregular graphs of order n, one of which is connected and the other is its disconnected complement.

The connected antiregular graph G_{n} of order $n \geq 2$ referred to in Theorem 2.3 can be defined as the unique graph with vertex set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ for which $v_{i} v_{j} \in E\left(G_{n}\right)$ if and only if $i+j \geq n+1$.

Proposition 1. No antiregular graph is link-irregular.
Proof. As we mentioned earlier, no graph of order at most 5 is link-irregular, so only antiregular graphs of order 6 or more need be considered. In the connected antiregular graph G_{n} of order $n \geq 6$, only the two vertices of degree $\lfloor n / 2\rfloor$ have the same degree. Since the links of these two vertices are both $K_{\lfloor n / 2\rfloor}$, it follows
that G_{n} is not link-irregular. The only other antiregular graph of order n is the complement \bar{G}_{n} of G_{n}. The nontrivial component of \bar{G}_{n} is the connected antiregular graph G_{n-1} of order $n-1$ and so \bar{G}_{n} is not link-irregular either.

For a graph G, let $\mathcal{D}(G)$ denote the degree set of G (the set of degrees of the vertices of G). The following is a consequence of Theorem 2.1 and Proposition 1.

Corollary 2. For each integer $n \geq 2$, there is no link-irregular graph G of order n such that $|\mathcal{D}(G)|=n$ or $|\mathcal{D}(G)|=n-1$.

This brings up the question as whether there is a link-irregular graph G of order n such that $|\mathcal{D}(G)|=n-2$. For $n=7$, the graph H_{7} in Figure 4 is a link-irregular graph of order 7 with $\left|\mathcal{D}\left(H_{7}\right)\right|=5$. In order to answer this question in general, we present two lemmas, the first of which is a consequence of the proof of Theorem 2.2.

Figure 4. A link-irregular graph H_{7} of order 7.

Lemma 2.4. Let H be a link-irregular graph of order $n \geq 6$. If $\Delta(H) \leq n-2$, then $H \vee K_{1}$ is also a link-irregular graph.

Proof. Let H be a link-irregular graph of order $n \geq 6$ with $\Delta(H) \leq n-2$ and let $G=H \vee K_{1}$. Thus, G has only one vertex w of degree n in G and $L_{G}(w)=H$. Let u and v be any two vertices of G different from w. Since $L_{H}(u) \not \equiv L_{H}(v)$, it follows that $L_{G}(u)=L_{H}(u) \vee K_{1} \neq L_{H}(v) \vee K_{1}=L_{G}(v)$. Therefore, G is link-irregular.

As we saw in the proof of Theorem 2.2, the graph G_{6} of order 6 in Figure 3 has $\delta\left(G_{6}\right)=2$, and $\Delta\left(G_{6}\right)=4$. By Lemma 2.4, the graph $G_{6} \vee K_{1}$ is a link-irregular graph of order 7 with $\delta\left(G_{6} \vee K_{1}\right)=3$ and $\Delta\left(G_{6} \vee K_{1}\right)=6$.

Lemma 2.5. If H is a link-irregular graph, then $\left(H+K_{1}\right) \vee K_{1}$ is also a linkirregular graph.

Proof. Let $G=\left(H+K_{1}\right) \vee K_{1}$ with $V(G)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$, where $V(H)=$ $\left\{v_{1}, v_{2}, \ldots, v_{n-2}\right\}$, the vertex v_{n-1} is the isolated vertex in $H+K_{1}$, and the vertex
v_{n} is the unique vertex of maximum degree $n-1$ in G_{n}. For $1 \leq i \leq n-2$, the link of v_{i} is $L_{G}\left(v_{i}\right)=L_{H}\left(v_{i}\right) \vee K_{1}$, where $L_{H}\left(v_{i}\right)$ is the link of v_{i} in $H, L_{G}\left(v_{n-1}\right)=K_{1}$, and $L_{G}\left(v_{n}\right)=H+K_{1}$. Since H is link-irregular, $L_{H}\left(v_{i}\right) \neq L_{H}\left(v_{j}\right)$ for every pair i, j of integers with $i \neq j$ and $1 \leq i, j \leq n-2$. Thus, $L_{G}\left(v_{i}\right) \neq L_{G}\left(v_{j}\right)$ if $i \neq j$ and $1 \leq i, j \leq n-2$. Since $L\left(v_{n}\right)$ is the only link of order $n-1$ in G and each $L_{G}\left(v_{i}\right)$ is nontrivial for $1 \leq i \leq n-1$, it follows that $L_{G}\left(v_{n}\right) \not \not L_{G}\left(v_{i}\right)$ for each integer i with $1 \leq i \leq n-1$ and $L_{G}\left(v_{n-1}\right) \not \not L_{G}\left(v_{i}\right)$ for each integer i with $1 \leq i \leq n-2$. Therefore, G is link-irregular.

Theorem 2.6. There exists a link-irregular graph H_{n} of order n such that $\left|\mathcal{D}\left(H_{n}\right)\right|=n-2$ if and only if $n \geq 7$.

Proof. As we mentioned, no graph of order less than 6 is link-irregular and the graph G_{6} of Figure 3 is the only link-irregular graph of order 6 . Since $\left|\mathcal{D}\left(G_{6}\right)\right|=3$, there is no link-irregular graph of order 6 whose degree set has cardinality 4 . It therefore remains to show that there is a link-irregular graph H_{n} of order n such that $\left|\mathcal{D}\left(H_{n}\right)\right|=n-2$ for each integer $n \geq 7$. We saw that the graph H_{7} in Figure 4 is a link-irregular graph of order 7 with $\left|\mathcal{D}\left(H_{7}\right)\right|=5$. For each integer $n \geq 8$, we construct a graph H_{n} recursively as follows. Let $H_{8}=H_{7} \vee K_{1}$ and let $H_{9}=\left(H_{7}+K_{1}\right) \vee K_{1}$. For an integer $n \geq 10$, let $H_{n}=\left(H_{n-2}+K_{1}\right) \vee K_{1}$. Since H_{7} is a link-irregular graph of order 7 with $\Delta\left(H_{7}\right)=5$, it follows by Lemma 2.4 that H_{8} is link-irregular. Furthermore, since H_{7} is link-irregular, it follows by Lemma 2.5 that H_{9} is link-irregular. Therefore, H_{n} is link-irregular for each integer $n \geq 10$ by applying Lemma 2.5 repeatedly.

It remains to show for each integer $n \geq 7$ that $\left|\mathcal{D}\left(H_{n}\right)\right|=n-2$. We proceed by induction. It is not difficult to see that $\left|\mathcal{D}\left(H_{n}\right)\right|=n-2$ for $n=7,8,9$. Suppose that $\left|\mathcal{D}\left(H_{n-2}\right)\right|=n-4$ for some integer n such that $n-2 \geq 9$. Let $a_{1}, a_{2}, \ldots, a_{n-2}$ be the degree sequence of H_{n-2}, where then $1 \leq a_{i} \leq n-3$ for $1 \leq i \leq n-2$. Since the degree sequence of $H_{n}=\left(H_{n-2}+K_{1}\right) \vee K_{1}$ is

$$
1, a_{1}+1, a_{2}+1, \ldots, a_{n-2}+1, n-1
$$

and $1<a_{i}+1<n-1$ for $1 \leq i \leq n-2$, it follows that

$$
\mathcal{D}\left(H_{n}\right)=\{1,2, \ldots, n-1\}-\left\{\lfloor n / 2\rfloor+(-1)^{n+1} \cdot 3\right\},
$$

where there are two vertices of degree $\lfloor n / 2\rfloor$, two vertices of degree $\lfloor n / 2\rfloor+(-1)^{n}$, and one vertex of every other degree. Thus, $\left|\mathcal{D}\left(H_{n}\right)\right|=n-2$.

By Theorem 2.6, it follows that for each integer $n \geq 7$, there exists a linkirregular graph H_{n} of order n such that $\left|\mathcal{D}\left(H_{n}\right)\right|=n-2$. In fact, for each integer $d \in\{3,4,5,6,7,8\}$, there is a link-irregular graph H_{n} of order $n \geq d+4$ such that $\left|\mathcal{D}\left(H_{n}\right)\right|=n-d$. In order to establish this result, we first present some preliminary results.

Observation 3. Let G be a graph of order $n \geq 3$.
\star If $\Delta(G) \leq n-2$, then $\left|\mathcal{D}\left(G \vee K_{1}\right)\right|=|\mathcal{D}(G)|+1$.
\star If $\delta(G) \geq 1$, then $\left|\mathcal{D}\left(\left(G+K_{1}\right) \vee K_{1}\right)\right|=|\mathcal{D}(G)|+2$.
With the aid of Lemmas 2.4 and 2.5 and Observation 3, we are now able to present the following result.

Proposition 4. If there exists a link-irregular graph G of order $p \geq 6$ such that $1 \leq \delta(G) \leq \Delta(G) \leq p-2$, then there exists a link-irregular graph H of order $p+k$ with $|\mathcal{D}(H)|=|\mathcal{D}(G)|+k$ for each positive integer k. Consequently, $|V(H)|-|\mathcal{D}(H)|=|V(G)|-|\mathcal{D}(G)|$.

Proof. Let G be a link-irregular graph of order $p \geq 6$ such that $1 \leq \delta(G) \leq$ $\Delta(G) \leq p-2$ and let k be a positive integer. We consider two cases, according to the parity of k.

Case 1. $k \geq 1$ is odd. For $k=1$, let $H=G \vee K_{1}$. Since $\Delta(G) \leq p-2$, it follows by Lemma 2.4 and Observation 3 that H is a link-irregular graph of order $p+1$ with $|\mathcal{D}(H)|=|\mathcal{D}(G)|+1$. Hence, $|V(H)|-|\mathcal{D}(H)|=|V(G)|-|\mathcal{D}(G)|$. Thus, we may assume that $k=2 \ell+1$ for some integer $\ell \geq 1$. Let $H_{1}=\left(\left(G \vee K_{1}\right)+\right.$ $\left.K_{1}\right) \vee K_{1}$. Since $\delta\left(G \vee K_{1}\right) \geq 1$, it follows by Lemma 2.5 and Observation 3 that H_{1} is a link-irregular graph of order $(p+1)+2$ with $|\mathcal{D}(H)|=(|\mathcal{D}(G)|+1)+2$. For each integer $t \geq 2$, let $H_{t}=\left(H_{t-1}+K_{1}\right) \vee K_{1}$. Then $\delta\left(H_{t}\right) \geq 1$ for each integer $t \geq 1$. Applying Lemma 2.5 and Observation 3 repeatedly, we see that H_{t} is a link-irregular graph of order $(p+1)+2 t$ with $\left|\mathcal{D}\left(H_{t}\right)\right|=\mid(\mathcal{D}(G) \mid+1)+2 t$ for $t \geq 2$. In particular, H_{ℓ} is a link-irregular graph of order $(p+1)+2 \ell=p+k$ with $\left|\mathcal{D}\left(H_{\ell}\right)\right|=(|\mathcal{D}(G)|+1)+2 \ell=|\mathcal{D}(G)|+k$.

Case 2. $k \geq 2$ is even. Then $k=2 \ell$ for some integer $\ell \geq 1$. Let $H_{1}=$ $\left(G+K_{1}\right) \vee K_{1}$ and let $H_{t}=\left(H_{t-1}+K_{1}\right) \vee K_{1}$ for each integer $t \geq 2$. Since $\delta(G) \geq 1$ and $\delta\left(H_{t}\right) \geq 1$ for each integer $t \geq 1$, it follows that H_{t} is a linkirregular graph of order $p+2 t$ with $\left|\mathcal{D}\left(H_{t}\right)\right|=|\mathcal{D}(G)|+2 t$ for $t \geq 1$ (again by applying Lemma 2.5 and Observation 3 repeatedly). In particular, H_{ℓ} is a linkirregular graph of order $p+2 \ell=p+k$ with $\left|\mathcal{D}\left(H_{\ell}\right)\right|=|\mathcal{D}(G)|+2 \ell=|\mathcal{D}(G)|+k$.

We saw for $k=1$ that $H=G \vee K_{1}$ and $|V(H)|-|\mathcal{D}(H)|=|V(G)|-|\mathcal{D}(G)|$. Thus, we may assume that $k \geq 2$. Let $\ell=\lfloor k / 2\rfloor$ and let $H=H_{\ell}$ be defined as in Case 1 or Case 2 according to the parity of k. Then $|V(H)|-|\mathcal{D}(H)|=$ $(p+k)-(|\mathcal{D}(G)|+k)=p-|\mathcal{D}(G)|=|V(G)|-|\mathcal{D}(G)|$.

We are now prepared to present the following result.
Theorem 2.7. For each pair (d, n) of integers with $d \in\{3,4,5,6,7,8\}$ and $n \geq$ $d+4$, there is a link-irregular graph H_{n} of order n such that $\left|\mathcal{D}\left(H_{n}\right)\right|=n-d$.

Proof. First, we show that for each integer $d \in\{3,4,5,6,7,8\}$, there is a linkirregular graph F_{d+4} of order $d+4$ such that $\mathcal{D}\left(F_{d+4}\right)=4$. We consider these six cases.

Case 1. $d=3$. We saw that the graph G_{6} of Figure 3 is a link-irregular graph of order 6 with $\left|\mathcal{D}\left(G_{6}\right)\right|=3$. Let $F_{7}=G_{6} \vee K_{1}$. Since $\Delta\left(G_{6}\right)=4$, it follows by Lemma 2.4 and Observation 3 that F_{7} is a link-irregular graph of order 7 with $\mathcal{D}\left(G_{7}\right)=4$.

Case 2. $d=4$. The graph F_{8} of Figure 5 is a link-irregular graph of order 8 with degree sequence $2,3,3,3,4,4,4,5$. Thus, $\left|\mathcal{D}\left(F_{8}\right)\right|=4$. The links of the vertices of degree 3 or 4 in F_{8} are also shown in Figure 5 .

Figure 5. A link-irregular graph F_{8} of order 8 with $\left|\mathcal{D}\left(F_{8}\right)\right|=4$.

Case 3. $d=5$. By adding a new vertex v and joining v to the vertices v_{3} and v_{7} in the graph F_{8} of Figure 5 , we obtain a link-irregular graph F_{9} of order 9 with degree sequence $2,2,3,3,4,4,4,5,5$. Thus, $\left|\mathcal{D}\left(F_{9}\right)\right|=4$. In this graph, the links of the two vertices of degree 2 are $L(v) \cong K_{2}$ and $L\left(v_{2}\right) \cong \bar{K}_{2}$; the links of the two vertices of degree 3 are $L\left(v_{1}\right) \cong K_{2}+K_{1}$ and $L\left(v_{6}\right) \cong K_{3}$; the links of the three vertices of degree 4 are $L\left(v_{3}\right) \cong P_{2}+\bar{K}_{2}, L\left(v_{4}\right) \cong P_{3}+K_{1}$, and $L\left(v_{5}\right) \cong K_{3} \star K_{1}$ (the graph obtained by adding a pendant edge at a vertex of $\left.K_{3}\right)$; while the links of the two vertices of degree 5 are $L\left(v_{7}\right) \cong K_{3}+K_{2}$ and $L\left(v_{8}\right)$ which is isomorphic to the graph obtained from the 5 -path $\left(v_{7}, v_{6}, v_{5}, v_{4}, v_{1}\right)$ by adding the edge $v_{5} v_{7}$.

Case 4. $d=6$. By adding a new vertex u and joining u to the vertices v_{4}, v_{5}, and v_{6} in the graph F_{9} in Case 3, we obtain a link-irregular graph F_{10} of order 10 with degree sequence $2,2,3,3,4,4,5,5,5,5$. Thus, $\left|\mathcal{D}\left(F_{10}\right)\right|=4$. In this graph, the links of the two vertices of degree 2 are $L(v) \cong K_{2}$ and $L\left(v_{2}\right) \cong \bar{K}_{2}$; the links of the two vertices of degree 3 are $L\left(v_{1}\right) \cong K_{2}+K_{1}$ and $L(u) \cong P_{3}$; the links of the two vertices of degree 4 are $L\left(v_{6}\right) \cong K_{3} \star K_{1}$, and $L\left(v_{3}\right) \cong P_{2}+\bar{K}_{2}$; while the
links of the four vertices of degree 5 are $L\left(v_{4}\right) \cong P_{4}+K_{1}$, and $L\left(v_{5}\right) \cong C_{5}+e$ (the graph obtained from the 5 -cycle $\left(u, v_{6}, v_{7}, v_{8}, v_{4}, u\right)$ by adding the edge $v_{6} v_{8}$), $L\left(v_{7}\right) \cong K_{3}+K_{2}$, and $L\left(v_{8}\right)$ which is isomorphic to the graph obtained from the 5 -path $\left(v_{7}, v_{6}, v_{5}, v_{4}, v_{1}\right)$ by adding the edge $v_{5} v_{7}$.

Case 5. $d=7$. By adding a new vertex w and joining w to the four vertices v_{4}, v_{5}, v_{7}, and v_{8} in degree 5 of the graph F_{10} in Case 4 , we obtain a link-irregular graph F_{11} of order 11 with degree sequence $2,2,3,3,4,4,4,6,6,6,6$. Thus, $\left|\mathcal{D}\left(F_{11}\right)\right|=4$. The graph F_{11} is shown in Figure 6 together with the links of all vertices of F_{11}.

Figure 6. A link-irregular graph F_{11} of order 11 with $\left|\mathcal{D}\left(F_{11}\right)\right|=4$.

Case 6. $d=8$. The graph F_{12} of Figure 7 is a link-irregular graph of order 12 with degree sequence $2,2,3,3,4,4,5,5,5,5,5,5$. Thus, $\left|\mathcal{D}\left(F_{12}\right)\right|=4$. In this graph, the links of the two vertices of degree 2 are $L\left(v_{1}\right) \cong K_{2}$ and $L\left(v_{11}\right) \cong \bar{K}_{2}$; the links of the two vertices of degree 3 are $L\left(v_{5}\right) \cong K_{2}+K_{1}$ and $L\left(v_{9}\right) \cong P_{3}$; the links of the two vertices of degree 4 are $L\left(v_{2}\right) \cong P_{3}+K_{1}$ and $L\left(v_{3}\right) \cong 2 P_{2}$; while the links of the six vertices of degree 5 are $L\left(v_{4}\right) \cong S_{2,3}$ (the double star whose central vertices have degree 2 and 3), $L\left(v_{6}\right) \cong C_{4} \star K_{1}$ (the graph obtained by adding a pendant edge at a vertex of $\left.C_{4}\right), L\left(v_{7}\right) \cong P_{5}, L\left(v_{8}\right) \cong C_{4}+K_{1}$, $L\left(v_{10}\right) \cong P_{4}+K_{1}$, and $L\left(v_{12}\right) \cong P_{2}+\bar{K}_{2}$.

Next, let d and n be integers with $d \in\{3,4,5,6,7,8\}$ and $n \geq d+4$. Since there is a link-irregular graph F_{d+4} of order $d+4$ such that $\mathcal{D}\left(F_{d+4}\right)=4$, it follows by Proposition 4 that there is a link-irregular graph H_{n} of order n such that

$$
\left|V\left(H_{n}\right)\right|-\left|\mathcal{D}\left(H_{n}\right)\right|=\left|V\left(F_{d+4}\right)\right|-\left|\mathcal{D}\left(F_{d+4}\right)\right|=(d+4)-4=d
$$

Consequently, $\left|\mathcal{D}\left(H_{n}\right)\right|=n-d$ where $d \in\{3,4,5,6,7,8\}$ and $n \geq d+4$.

Figure 7. A link-irregular graph G of order 12 with $|\mathcal{D}(G)|=4$.
Corollary 5. There exists a link-irregular graph H_{n} of order n such that $\left|\mathcal{D}\left(H_{n}\right)\right|$ $=n-3$ if and only if $n \geq 6$.

Proof. We have mentioned that no graph of order less than 6 is link-irregular and that the graph G_{6} of Figure 3 is a link-irregular graph of order 6 with $\left|\mathcal{D}\left(G_{6}\right)\right|=3$. By Theorem 2.7, for each integer $n \geq 7$, there is a link-irregular graph G of order n such that $|\mathcal{D}(G)|=n-3$, giving the desired result.

The following problem is suggested by Theorem 2.7.
Problem 2.8. Does there exist a link-irregular graph H_{n} of order n with $\left|\mathcal{D}\left(H_{n}\right)\right|$ $=n-d$ for each pair (d, n) of integers with $n \geq d+4 \geq 7$?

It was observed in [1] that there is no r-regular link-irregular graph for $r=$ 2,3 and proved that there is no 4 -regular link-irregular graph. The following conjecture was stated in [1].

Conjecture 2.9. There is no regular link-irregular graph.
If Conjecture 2.9 is true, then for every link-irregular graph G of order n with $|\mathcal{D}(G)|=k$, it follows that $2 \leq k \leq n-2$. This brings up the following question:

Problem 2.10. For which integers $n \geq 7$, is it true that for every integer k with $2 \leq k \leq n-2$, there exists a link-irregular graph $G_{n, k}$ of order n such that $\left|\mathcal{D}\left(G_{n, k}\right)\right|=k$?

While we are not aware of a link-irregular graph $G_{8,2}$ of order 8 with $\left|\mathcal{D}\left(G_{8,2}\right)\right|$ $=2$, it can be shown that there exists no link-irregular graph $G_{7,2}$ of order 7 such that $\left|\mathcal{D}\left(G_{7,2}\right)\right|=2$. Furthermore, we have the following result on link-irregular graphs of order n for $7 \leq n \leq 10$.

Proposition 6. Let (n, k) be a pair of integers with $7 \leq n \leq 10$ and $2 \leq k \leq n-2$. If $n \in\{7,8\}$ and $3 \leq k \leq n-2$ or $n \in\{9,10\}$ and $2 \leq k \leq n-2$, then there exists a link-irregular graph $G_{n, k}$ of order n such that $\left|\mathcal{D}\left(G_{n, k}\right)\right|=k$.

Proof. First, let $(n, k) \in X=\{(7,3),(8,3),(9,2),(9,3),(10,2),(10,3)\}$ and consider the six graphs $G_{n, k}$ of Figure 8, where $\mathcal{D}\left(G_{7,3}\right)=\mathcal{D}\left(G_{8,3}\right)=\{3,4,5\}$, $\mathcal{D}\left(G_{9,2}\right)=\{4,6\}, \mathcal{D}\left(G_{9,3}\right)=\{4,5,6\}, \mathcal{D}\left(G_{10,2}\right)=\{4,5\}$, and $\mathcal{D}\left(G_{10,3}\right)=\{3,4,5\}$. It is straightforward to verify that for each $(n, k) \in X$, the graph $G_{n, k}$ of order n in Figure 8 is link-irregular with $\left|\mathcal{D}\left(G_{n, k}\right)\right|=k$.

Figure 8. The link-irregular graphs $G_{n, k}$, where $(n, k) \in X$ in the proof of Proposition 6.
Hence, we assume that $7 \leq n \leq 10$ and $4 \leq k \leq n-2$. By Theorems 2.6 and 2.7, it follows that for each integer $d \in\{2,3, \ldots, n-4\}$ (where then $n-4 \leq 6$), there is a link-irregular graph H of order n such that $|\mathcal{D}(H)|=$ $n-d \in\{4,5, \ldots, n-2\}$. Consequently, for each pair (n, k) of integers with $7 \leq n \leq 10$ and $4 \leq k \leq n-2$, there is a link-irregular graph $G_{n, k}$ of order n such that $\left|\mathcal{D}\left(G_{n, k}\right)\right|=k \in\{4,5, \ldots, n-2\}$.

3. Link-Irregular Ratio

Let \mathcal{L} denote the set of link-irregular graphs. For a graph $G \in \mathcal{L}$ with degree set $\mathcal{D}(G)$, the link-irregular ratio $\operatorname{lir}(G)$ of G is defined as

$$
\operatorname{lir}(G)=\frac{|\mathcal{D}(G)|}{|V(G)|}
$$

The following is a consequence of Theorem 2.6.
Corollary 7. $\sup \{\operatorname{lir}(G): G \in \mathcal{L}\}=1$.
Proof. For every graph $G \in \mathcal{L}$ of order n, we have $|\mathcal{D}(G)|<n$. Thus, $\sup \{\operatorname{lir}(G)$: $G \in \mathcal{L}\} \leq 1$. By Theorem 2.6, for each integer $n \geq 7$, there exists a graph $H_{n} \in \mathcal{L}$ of order n such that $|\mathcal{D}(G)|=n-2$. Thus, $\lim _{n \rightarrow \infty} \frac{\left|\mathcal{D}\left(H_{n}\right)\right|}{\left|V\left(H_{n}\right)\right|}=\frac{n-2}{n}=1$ and so $\sup \{\operatorname{lir}(G): G \in \mathcal{L}\} \geq 1$, giving the desired result.

This brings up the question as to the value of $\inf \{\operatorname{lir}(G): G \in \mathcal{L}\}$. The graph G of Figure 9 has order 18 with degree set $\mathcal{D}(G)=\{7,9\}$, where $\operatorname{deg} v_{i}=7$ for $1 \leq i \leq 8$ and $\operatorname{deg} v_{i}=9$ for $9 \leq i \leq 18$. We show that G is link-irregular. For $1 \leq i \leq 18$, let s_{i} denote the degree sequence of $L\left(v_{i}\right)$. Observe that

$$
\begin{aligned}
s_{1} & =(4,3,2,2,2,2,1), s_{2}=(4,4,3,3,2,2,2), s_{3}=(4,3,2,2,2,2,1), \\
s_{4} & =(3,3,2,2,2,2,2), s_{5}=(3,2,2,2,1,1,1), s_{6}=(5,4,4,3,2,2,2), \\
s_{7} & =(2,2,2,2,2,1,1), s_{8}=(6,4,3,3,2,2,2), s_{9}=(5,4,3,2,2,2,2,2,2), \\
s_{10} & =(5,5,5,5,4,4,3,3,2), s_{11}=(5,5,5,5,5,4,3,2,2), s_{12}=(7,4,4,2,2,2,1,1,1), \\
s_{13} & =(6,5,4,3,3,3,2,2,2), s_{14}=(5,4,4,4,4,3,3,3,2), s_{15}=(5,4,4,4,4,3,3,2,1), \\
s_{16} & =(7,4,3,3,2,2,2,2,1), s_{17}=(6,5,5,4,3,3,3,3,2), s_{18}=(6,5,5,4,4,2,2,1,1) .
\end{aligned}
$$

Thus, if $i, j \in\{1,2, \ldots, 18\}, i \neq j$, and $\{i, j\} \neq\{1,3\}$, then $s_{i} \neq s_{j}$ and so $L\left(v_{i}\right) \neq L\left(v_{j}\right)$. Since $L\left(v_{1}\right)$ contains exactly one triangle and $L\left(v_{3}\right)$ contains exactly two triangles, it follows that $L\left(v_{1}\right) \not \not 二 L\left(v_{3}\right)$. Hence, G is a link-irregular graph of order 18 with $|\mathcal{D}(G)|=2$ and so $\operatorname{lir}(G)=1 / 9$. Consequently, $0 \leq$ $\inf \{\operatorname{lir}(G): G \in \mathcal{L}\} \leq 1 / 9$.

In this connection, we have the following problem.
Problem 3.1. Does there exist a positive integer constant c for which there is an infinite class of link-irregular graphs such that $|D(G)| \leq c$ for each graph G in the class?

If the answer to Problem 3.1 is yes, then this would mean that $\inf \{\operatorname{lir}(G)$: $G \in \mathcal{L}\}=0$. In fact, we have the following conjecture.

Conjecture 3.2. $\inf \{\operatorname{lir}(G): G \in \mathcal{L}\}=0$.
By Proposition 6, if $r=p / q$ is a rational number such that either (i) $q \in\{7,8\}$ and $3 \leq p \leq q-2$ or (ii) $q \in\{9,10\}$ and $2 \leq p \leq q-2$, then r is realizable as the link-irregular ratio $\operatorname{lir}(G)$ of some link-irregular graph G. This suggests the following question.

Problem 3.3. For which rational numbers $r \in(0,1)$, does there exist a linkirregular graph G such that $\operatorname{lir}(G)=r$?

Figure 9. A link-irregular graph G of order 18 with $|\mathcal{D}(G)|=2$.

For all of the examples of link-irregular graphs of a certain order n that we have seen, their sizes have been relatively close to $\frac{1}{2}\binom{n}{2}$. Consequently, this suggests that there exist real numbers a and b such that if G is a link-irregular graph of order n, then $a \leq \frac{|E(G)|}{\binom{n}{2}} \leq b$. This leads us to the following problem.

Problem 3.4. Determine real numbers $a<0.5$ and $b>0.5$ such that if G is a graph of order n such that either

$$
\frac{|E(G)|}{\binom{n}{2}}<a \quad \text { or } \frac{|E(G)|}{\binom{n}{2}}>b
$$

then G is not link-irregular.
From the many examples that we have seen, it appears that a and b may be relatively close to 0.3 and 0.7 , respectively.

Acknowledgment

We thank the anonymous referee whose valuable suggestions resulted in an improved paper.

References

[1] A. Ali, G. Chartrand and P. Zhang, Irregularity in Graphs (Springer, New York, 2021).
https://doi.org/10.1007/978-3-030-67993-4
[2] M. Behzad and G. Chartrand, No graph is perfect, Amer. Math. Monthly 74 (1967) 962-963.
https://doi.org/10.2307/2315277
[3] A. Blass, F. Harary and Z. Miller, Which trees are link graphs?, J. Combin. Theory Ser. B 29 (1980) 277-292. https://doi.org/10.1016/0095-8956(80)90085-4
[4] M. Brown and R. Connelly, On graphs with constant link, in: New Directions in the Theory of Graphs, F. Harary (Ed(s)), (Academic Press, New York, 1973) 19-51.
[5] G. Exoo and R. Jajcay, Dynamic cage survey, Electron. J. Combin. (2013) \#DS16. https://doi.org/10.37236/37
[6] J.I. Hall, Locally Petersen graphs, J. Graph Theory 4 (1980) 173-187. https://doi.org/10.1002/jgt. 3190040206
[7] P. Hell, Graphs with given neighbourhoods I, in: Problèmes Combinatoires et Théorie des Graphes, Proc. Colloq. Orsay, (Paris, 1978) 219-223.
[8] P.G. Tait, Remarks on the colouring of maps, in: Proc. Royal Soc. Edinburgh 10 (1880) 729.
[9] A.A. Zykov, Problem 30, in: Theory of Graphs and its Applications, Proc. Symp. Smolenice, (Prague, 1964) 164-165.

Received 19 January 2023
Revised 6 September 2023
Accepted 8 September 2023 Available online 12 October 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licens-es/by-nc-nd/4.0/

