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1. Introduction

For notation and graph theory terminology we, in general, follow the recent
books [9–11]. Specifically, let G = (V (G), E(G)) be a graph with vertex set V (G)
and edge set E(G). For a vertex v of G, its neighborhood , denoted by NG(v), is
the set of all vertices adjacent to v. The closed neighborhood of v, denoted by
NG[v], is the set NG(v)∪{v}. For a set S ⊆ V (G), the open neighborhood of S is
the set NG(S) =

⋃

v∈S NG(v), and the closed neighborhood NG[S] = NG(S) ∪ S.
For a positive integer k, we let [k] = {1, . . . , k}.

A subset D of the vertex set V (G) of a graph G is called a dominating set

of G if every vertex belonging to V (G) \ D is adjacent to at least one vertex
in D. A subset I of V (G) is independent if no two vertices belonging to I are
adjacent in G. The cardinality of a largest (i.e., maximum) independent set of
G, denoted by α(G), is called the independence number of G. Every largest
independent set of a graph is called an α-set of the graph. A dominating set D of
a graph G is called an independent dominating set of G if D is also independent.
The independent domination number of G, denoted by i(G), is the cardinality of
the smallest independent dominating set of G (or equivalently, the cardinality of
a minimummaximal independent set of vertices inG). The common independence

number of a graph G, denoted by αc(G), is the greatest integer r such that every
vertex of G belongs to some independent subset X of V (G) with |X| ≥ r. It
follows immediately from the above definitions that the common independence
number is bounded below by the independent domination number and above by
the independence number. Formally, for any graph G,

(1) i(G) ≤ αc(G) ≤ α(G).

The study of independent sets in graphs was begun by Berge [1,2] (see also [3])
and Ore [12]. We refer the reader to the book [11] and to the survey [8] of results
on independent domination in graphs published in 2013 by Goddard and Henning.
A graph G is said to be well-covered if i(G) = α(G). Equivalently, G is well-
covered if every maximal independent set of G is a maximum independent set
of G. The concept of well-covered graphs was introduced by Plummer [13] in
1970. Since then the well-covered graphs were very extensively investigating in
many papers. We refer the reader to the excellent (but already older) survey
on well-covered graphs by Plummer [14]. We are interested in characterization
of α-excellent graphs, that is, graphs G for which αc(G) = α(G). Thus, if G is
an α-excellent graph, then every vertex belongs to some α-set of G. It follows
from Inequalities (1) that every well-covered graph is an α-excellent graph. The
example of the cycle C6 shows that the set of well-covered graphs is properly
contained in the set of α-excellent graphs. The α-excellent graphs have been
studied in [4–7,15,16] and in [1,2] as B-graphs. In this paper, we begin the study
of α-excellent k-trees.
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2. Preliminary results

A vertex v of a graph G is a simplicial vertex if every two vertices belonging to
NG(v) are adjacent in G. Equivalently, a simplicial vertex is a vertex that appears
in exactly one clique of a graph, where a clique of a graphG is a maximal complete
subgraph of G. A clique of a graph G containing at least one simplicial vertex of
G is called a simplex of G. Note that if v is a simplicial vertex of G, then G[NG[v]]
is the unique simplex of G containing v. We begin with a simple proposition.

Proposition 1. No α-excellent graph contains a vertex belonging to at least two

its simplexes.

Proof. Assume that a vertex v of a graph G belongs to two simplexes of G, say
to G[NG[u]] and G[NG[w]]. If I is a maximum independent set that contains
v, then (I \ {v}) ∪ {u,w} is an independent set of greater cardinality. Thus,
α(G) ≥ |(I \ {v}) ∪ {u,w}| > |I|, implying that v does not belong to any α-set
of G, and proving that G is not an α-excellent graph.

For a positive integer k, a graph G is called a k-tree if it can be obtained
from the complete graph Kk by a finite number of applications of the following
operation: add a new vertex and join it to k mutually adjacent vertices of the
existing graph. Certainly, every 1-tree is a tree and vice versa. In [17], Rose
proved that a graph G is a k-tree if and only if the following conditions are
fulfilled: (i) G is connected, (ii) G contains Kk as a subgraph and does not
contain Kk+2 as a subgraph, (iii) if v and u are nonadjacent vertices of G, then
the subgraph induced by the smallest v−u separator is a complete graph on k
vertices. Recall that a v−u separator in a connected graph G is a subset S of
V (G) such that u and v are in distinct components of G[V (G) \ S]. Note that
Kk and Kk+1 are the only k-trees of order k and k + 1, respectively.

It was proved in [4] that a bipartite graph (and, in particular, a tree) is an
α-excellent graph if and only if it has a perfect matching. On the other hand, it
was observed in [18] that a k-tree G is a well-covered graph if and only if every
vertex of G belongs to exactly one simplex of G. In this paper, we are interested
in possible extensions of that characterization to a characterization of α-excellent
k-trees for every positive integer k. We begin with the following definition.

A set P of complete subgraphs of a graph G is said to be a perfect (k+1)-cover
of G if each subgraph belonging to P is of order k+1 and every vertex of G belongs
to exactly one subgraph in P. It is obvious that for k = 1 there exists a one-to-one
correspondence between perfect 2-covers of a graph and perfect matchings of the
graph. Here we are interested in the existence of perfect (k+1)-covers in k-trees.
First of all, one can prove that every k-tree has at most one perfect (k+1)-cover.
In the following proposition, we present the first relationship between k-trees
having perfect (k + 1)-covers and α-excellent graphs.
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Proposition 2. If a k-tree G has a perfect (k+1)-cover, then G is an α-excellent
graph.

Proof. Let G be a connected k-tree of order n ≥ k + 1. Then G is a (k + 1)-
partite graph, say A1, A2, . . . , Ak+1 are partite sets of G and assume that |A1| ≥
|A2| ≥ · · · ≥ |Ak+1| ≥ 1. In addition, since A1, A2, . . . , Ak+1 are independent sets
of vertices and |A1| + |A2| + · · · + |Ak+1| = n, it follows that |A1| ≥ n/(k + 1),
and, therefore, α(G) ≥ |A1| ≥ n/(k + 1). Let I be an α-set of G. Assume now
that P = {P1, . . . , Pℓ} is a perfect (k + 1)-cover of G. Then, ℓ = n/(k + 1),
|I ∩ V (Pi)| ≤ 1 for each i ∈ [ℓ], and

α(G) = |I| =

∣

∣

∣

∣

∣

I ∩
ℓ
⋃

i=1

V (Pi)

∣

∣

∣

∣

∣

=
ℓ

∑

i=1

|I ∩ V (Pi)| ≤ ℓ =
n

k + 1
.

Consequently, |A1| = |A2| = · · · = |Ak+1| = n/(k + 1) = α(G), and each of
the sets A1, A2, . . . , Ak+1 is an α-set of G. This implies that every vertex of G
belongs to an α-set of G and, therefore, G is an α-excellent graph.

3. α-Excellent 2-Trees

Proposition 2 shows that a k-tree having a perfect (k+1)-cover is an α-excellent
k-tree. It is not clear to us whether the converse of this statement is true. That
is, we do not know if every α-excellent k-tree of order at least k+1 has a perfect
(k + 1)-cover if k ≥ 3. However, when k = 2, we provide in this paper a char-
acterization of α-excellent k-trees. For notational simplicity, in what follows if
three vertices a, b, and c are mutually adjacent in a graph G, then the induced
subgraph G[{a, b, c}] of G is isomorphic to K3 and is called a triangle in G, and
we simply write abc rather than G[{a, b, c}]. To every triangle in a graph G, we
assign label R or B (as red or blue, respectively), and by R(G) and B(G) we
denote the set of all triangles in G that have label R and B, respectively. We
also say that R(G) and B(G) are the sets of all “red” and “blue” triangles in G,
respectively.

We are now in position to present a constructive characterization of α-
excellent 2-trees. For this purpose, let E be the family of labeled 2-trees defined
recursively as follows.

(1) The family E contains the 2-tree of order 3 in which the only triangle is red,
that is, it has label R.

(2) The family E is closed under the operations O1 and O2 defined below.

Operation O1. If a graph G′ belongs to E and v1v2 is an edge of G′, then
O1 = O1(v1, v2) forms a graph G by adding three new vertices u1, u2, u3 to



Characterization of α-Excellent 2-Trees 71

G′ in such a way that v1v2u1, v2u1u2 and u1u2u3 are three new triangles, while
R(G) = R(G′)∪{u1u2u3} and B(G) = B(G′)∪{v1v2u1, v2u1u2}. In this case we
apply the operation O1 to the edge v1v2 of G′.

Operation O2. If a graph G′ belongs to E , v1v2v3 is a red triangle in G′ (that
is, v1v2v3 ∈ R(G′)), and v4 is a neighbor of v3 (it is possible that v4 ∈ {v1, v2} ⊆
NG′(v3)), then O2 = O2(v1v2, v3v4) forms a graph G by adding to G′ three
new vertices u0, u1 and u2 in such a way that u0v1v2, v3v4u1, and v3u1u2 are
new triangles, while R(G) = (R(G′) \ {v1v2v3}) ∪ {u0v1v2, v3u1u2} and B(G) =
B(G′)∪{v1v2v3, v3v4u1}. In this case we apply the operation O2 to the edge v1v2
of the triangle v1v2v3 and to the edge v3v4.

The operationsO1 andO2 are illustrated in Figure 1. Note that the operation
O2 changes “colors” of certain triangles, and the red triangle v1v2v3 in G′ is
recolored blue in G.

G′

v2

v1

u2

u1

u3

G=O1(G′)
v1

v2

v3

u0

v4

u1

u2

G=O2(G′)

G′

Figure 1. The operations O1 and O2.

From the recursive definition of the graphs belonging to the family E it follows
readily that if a 2-tree G belongs to E , then the set R(G) of red triangles in G
is a perfect 3-cover of G. From this and from Proposition 2 it follows that G is
an α-excellent graph. Thus we have the following proposition that we will need
when proving our main theorem.

Proposition 3. Every 2-tree belonging to the family E has a perfect 3-cover and

it is an α-excellent graph.

The following theorem is the main result of this paper, and it presents two
characterizations of the α-excellent 2-trees: a constructive characterization, and
a characterization in terms of perfect 3-covers.

Theorem 4. If G is a 2-tree of order n ≥ 3, then the following statements are

equivalent.

(a) G has a perfect 3-cover.

(b) G belongs to the family E.
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(c) G is an α-excellent graph.

Proof. The implications (a) ⇒ (c), (b) ⇒ (a), and (b) ⇒ (c) are obvious from
Propositions 2 and 3. Thus it suffices to prove the implication (c) ⇒ (b) (but we
prove the implications (c) ⇒ (a) and (c) ⇒ (b) at the same time).

Thus assume that G is an α-excellent 2-tree of order at least 3. By induction
on the order of G we shall prove that G has a perfect 3-cover and that G belongs
to the family E . It is straightforward to observe that the implications (c) ⇒ (a)
and (c) ⇒ (b) are true if G is a 2-tree of order n ≤ 6. Now let G be an α-
excellent 2-tree of order greater than 6 and assume that the implications (c) ⇒
(a) and (c) ⇒ (b) are true for smaller α-excellent 2-trees. Let (T1, T2, . . . , Tp)
be a longest 3-path in G, that is, a longest sequence T1, T2, . . . , Tp of triangles
in G, where |V (Ti) ∩ V (Tj)| = 2 if |i − j| = 1, and |V (Ti) ∩ V (Tj)| ≤ 1 if
|i− j| ≥ 2 (i, j ∈ [p]). From the fact that (T1, T2, . . . , Tp) is a longest 3-path in G
(which is an α-excellent 2-tree of order at least 7) it follows that p ≥ 4. Assume
that a, b, c, d, and e are vertices of G for which V (Tp−3) ∩ V (Tp−2) = {a, b},
V (Tp−2) \ V (Tp−3) = {c}, V (Tp−1) \ V (Tp−2) = {d}, and V (Tp) \ V (Tp−1) = {e}.
From the choice of (T1, . . . , Tp), the vertex e is of degree 2 and Tp is a simplex
in G. Let G′

0, G
′

1, . . . , G
′

ℓ be the components of G − {a, b}, where G′

0 is that
component which contains at least one vertex of T1. It is clear that ℓ is positive
integer.

We now let Gi denote the subgraph of G induced by V (G′

i) ∪ {a, b} for
i ∈ {0}∪ [ℓ]. Among the graphs G1, . . . , Gℓ, let H be the graph that contains the
triangles of the 3-path P0 = (Tp−2, T

0
p−1, T

0
p ), where T 0

p−1 = Tp−1 and T 0
p = Tp.

It is obvious that if Tp−2, Tp−1, and Tp are the only triangles of H, then it is
possible that H is one of the graphs H1, H

′

1, H2, and H ′

2 shown in Figure 2. If
H contains the triangle Tp−2, Tp−1, Tp and a simplex T ′

p−1 that shares an edge
with the triangle Tp−2 in H, then it follows readily from Proposition 1 that H is
one of the graphs H3 or H ′

3 in Figure 2.

Thus assume that no simplex of H shares an edge with the triangle Tp−2.
In this case, H is a subgraph induced by the triangles belonging to P0 and to
some additional 3-paths Pi = (Tp−2, T

i
p−1, T

i
p), where i ∈ [n] and n is a positive

integer. It follows from Proposition 1 that if n = 1, then H is isomorphic to one
of the graphs H4, H5 or H6 in Figure 3. Similarly, if n = 2, then, as can easily be
verified, H is isomorphic to the graph H7 shown in Figure 3. Finally, we claim
that the case n ≥ 3 is impossible. Suppose, to the contrary, that n ≥ 3. Then
let us first observe that if one of the edges ac and bc of the triangle Tp−2 belongs

to at least 3 of the triangles T 0
p−1 = Tp−1, T

1
p−1, . . . , T

n
p−1, say to T i

p−1, T
j
p−1

, T k
p−1

(where 0 ≤ i < j < k ≤ n), then at least two of the simplexes T i
p, T

j
p , T k

p of H
(and of G) have a common vertex, which is impossible in an α-excellent graph G.
Thus assume that neither ac nor bc belongs to three of the triangles T 0

p−1 = Tp−1,
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Figure 2. Graphs H1, H
′

1
, H2, H

′

2
, H3, and H ′

3
.

T 1
p−1, . . . , T

n
p−1. Then necessarily n = 3 and each of the edges ac and bc belongs

to exactly two of the triangles T 0
p−1, T

1
p−1, T

2
p−1, T

3
p−1, say ac belongs to T 0

p−1 and

T 1
p−1, while bc belongs to T 2

p−1 and T 3
p−1. Therefore, as it is easy to verify, if

neither the simplexes T 0
p and T 1

p have a common vertex nor the simplexes T 2
p and

T 3
p have a common vertex, then one of the simplexes T 0

p and T 1
p has a common

vertex with one of the simplexes T 2
p and T 3

p , which again by Proposition 1 is
impossible as G is an α-excellent graph. This proves that the case n ≥ 3 is
impossible.

There are now several cases to consider depending on the structure of H. We
begin showing that H cannot be any of the graphs H1, H

′

1, H4. Suppose, to the
contrary, that H = H1 (where H1 is as illustrated in Figure 2). Then, since G is
an α-excellent graph, there exists an α-set I in G that contains a. However in this
case, (I\{a})∪{c, e} is an independent set inG, and so α(G) ≥ |(I\{a})∪{c, e}| >
|I| = α(G), a contradiction which proves that H 6= H1. Analogously, H 6= H ′

1.
Similarly, suppose that H = H4 (where H4 is shown in Figure 3). Let Id be an
α-set that contains d in G. We note that |Id ∩ {b, f, g}| = 1. If b ∈ Id, then let
I ′d = (Id \ {b, d}) ∪ {c, e, g}. If f ∈ Id, then let I ′d = (Id \ {d, f}) ∪ {c, e, g}. If
g ∈ Id, then let I ′d = (Id \ {d}) ∪ {c, e}. In all cases, the resulting set I ′d is an
independent set in G, and so α(G) ≥ |I ′d| > |Id| = α(G), a contradiction. Hence,
H 6= H4.

In each of the next five cases (corresponding to the possible graphs H, that
is, to the graphs H2 (and H ′

2), H3, H5, H6, and H7) we prove that G belongs to
the family E and has a perfect 3-cover.

Case 1. H = H2 or H = H ′

2. Without loss of generality, assume that
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Figure 3. Graphs H4, H5, H6, and H7.

H = H2 (see Figure 2). In this case, let G′ denote the subgraph G− {c, d, e} of
G. In the following three claims we explain the main relations between properties
of the graphs G and G′, that is, we prove that: (1) α(G′) = α(G) − 1; (2) G′ is
an α-excellent graph; (3) G has a perfect 3-cover and belongs to the family E .

Claim 1.1. α(G′) = α(G)− 1.

If I ′ is an α-set of G′, then I ′∪{e} is an independent set in G (as NG[e]∩I ′ =
{c, d, e} ∩ I ′ = ∅) and therefore α(G) ≥ |I ′ ∪ {e}| = α(G′) + 1. On the other
hand, let I be an α-set of G. In this case, |I ∩ {c, d, e}| = 1 and I \ {c, d, e} is
independent inG′. Thus, α(G′) ≥ |I\{c, d, e}| = |I|−1 = α(G)−1. Consequently,
α(G′) = α(G)− 1.

Claim 1.2. G′ is an α-excellent graph.

Let v be an arbitrary vertex of G′. We show that v belongs to an α-set of
G′. Since α(G′) = α(G) − 1 (by Claim 1.1), it suffices to show that v belongs
to an independent set of cardinality α(G)− 1 = α(G′) in G′. Let Iv be an α-set
of G that contains v, and let I ′v denote the set Iv \ {c, d, e}. Thus, v ∈ I ′v and
the set I ′v is independent in G′. Furthermore, I ′v is an α-set of G′ noting that
|Iv ∩ {c, d, e}| = 1 and |I ′v| = |Iv \ {c, d, e}| = |Iv| − 1 = α(G) − 1 = α(G′). This
proves that G′ is an α-excellent graph.

Claim 1.3. G has a perfect 3-cover and G belongs to the family E.

By Claim 1.2, G′ is an α-excellent graph. Since the order of G′ is less than
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the order of G, applying the induction hypothesis we infer that G′ has a perfect
3-cover and G′ belongs to the family E . Now, if P ′ is a perfect 3-cover of G′, then
P ′∪{cde} is a perfect 3-cover of G. In addition, since G′ belongs to the family E ,
the graph G′ can be obtained recursively from a red triangle by operations O1 and
O2, and, since G can be obtained from G′ by the operation O1 = O1(a, b) (that
is, by O1 applied to the edge ab of G′), the graph G can be obtained recursively
from a red triangle by operations O1 and O2. Thus, G belongs to the family E .

Case 2. H = H3 or H = H ′

3. Without loss of generality, assume that
H = H3 (see Figure 2). This time, let G′ denote the subgraph G − {d, e, f} of
G. As in Case 1, we study desired relations between properties of the graphs G
and G′.

Claim 2.1. α(G′) = α(G)− 1.

Let I ′ be an α-set of G′. In this case, |I ′ ∩ {a, b, c}| = 1 and either a ∈ I ′ or
{b, c}∩I ′ 6= ∅. Consequently, either I ′∪{f} or I ′∪{e} is an independent set in G,
respectively, and therefore α(G) ≥ |I ′∪{f}| = |I ′∪{e}| = α(G′)+1. This proves
that α(G) ≥ α(G′) + 1. Now, let I be an α-set of G. Then |I ∩ {a, b, c}| ≤ 1
and we consider four cases. If I ∩ {a, b, c} = ∅, then |I ∩ {d, e, f}| = 2 and
(I \ {d, e, f}) ∪ {c} is an independent set of cardinality α(G)− 1 in G′. If a ∈ I,
then f ∈ I, and I \ {f} is an independent set of cardinality α(G) − 1 in G′. If
b ∈ I, then |I∩{d, e}| = 1, f /∈ I, and I\{d, e} is an independent set of cardinality
α(G) − 1 in G′. If c ∈ I, then e ∈ I, f /∈ I, and I \ {e} is an independent set of
cardinality α(G) − 1 in G′. Consequently, α(G′) ≥ α(G) − 1. This proves that
α(G′) = α(G)− 1.

Claim 2.2. G′ is an α-excellent graph.

Let v be an arbitrary vertex of G′. As in the proof of Claim 1.2, it suffices to
show that v belongs to an α-set of G′, that is, to an independent set of cardinality
α(G′) = α(G) − 1 in G′. Since G is α-excellent, every vertex of G belongs to
some α-set in G. Let Ix be an α-set of G that contains x, where x ∈ V (G).
We note that Ia ∩ {d, e, f} = {f} and, consequently, Ia \ {f} is an α-set of G′

that contains the vertex a. Similarly, from the fact that |Ib ∩ {d, e}| = 1 and
Ic ∩ {d, e, f} = {e} it follows that Ib \ {d, e} and Ic \ {e} are α-sets of G′ and
they contain b and c, respectively. If v ∈ V (G′) \ {a, b, c} and Iv ∩ {a, b, c} = ∅,
then |Iv ∩ {d, e, f}| = 2 and (Iv \ {d, e, f})∪ {c} is an α-set of G′ and it contains
v. Finally, if v ∈ V (G′) \ {a, b, c} and Iv ∩ {a, b, c} 6= ∅, then |Iv ∩ {a, b, c}| = 1,
|Iv ∩ {d, e, f}| = 1, and, therefore, Iv \ {d, e, f} is an α-set of G′ and it contains
v. Consequently, G′ is an α-excellent graph.

Claim 2.3. G has a perfect 3-cover and G belongs to the family E.

Now, similarly as in the proof of Claim 1.3, since G′ is an α-excellent graph
of order less than the order of G, the induction hypothesis implies that G′ has a
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perfect 3-cover and that G′ belongs to the family E . Certainly, if P ′ is a perfect
3-cover of G′, then abc ∈ P ′ and (P ′ \ {abc}) ∪ {ade, bcf} is a perfect 3-cover of
G. In addition, since G′ belongs to the family E , the graph G′ can be obtained
recursively from a red triangle by operations O1 and O2. From this and from the
obvious fact that G can be obtained from G′ by the operation O2 = O2(bc, ac)
(that is, by O2 applied to the edge bc of the simplex abc of G′ and to the edge ac
incident with the third vertex c of the triangle abc), the graph G can be obtained
recursively from a red triangle by operations O1 and O2. Thus, G belongs to the
family E .

Case 3. H = H5. In this case, we let G′ denote the subgraph G − {e, f, g}
of G and, as before, we study desired relations between properties of the graphs
G and G′.

Claim 3.1. α(G′) = α(G)− 1.

Let I ′ be an α-set of G′. In this case, |I ′ ∩ {a, c, d}| = 1. If a ∈ I ′ or d ∈ I ′,
then the set I ′ ∪ {g} is an independent set of G, while if c ∈ I ′, then the set
I ′ ∪ {e} is an independent set of G, implying that α(G) ≥ α(G′) + 1. It remains
to prove that α(G′) ≥ α(G) − 1. To prove this, let I be an α-set of G. Thus,
|I ∩ {a, d, e}| = 1 and |I ∩ {c, f, g}| = 1. If a ∈ I or d ∈ I, then |I ∩ {f, g}| = 1
and we let I ′ = I \ {f, g}. If e ∈ I and c ∈ I, then we let I ′ = I \ {e}. If
e ∈ I and b ∈ I, then g ∈ I and we let I ′ = (I \ {e, g}) ∪ {d}. If e ∈ I and
I ∩ {b, c} = ∅, then |I ∩ {f, g}| = 1 and we let I ′ = (I \ {e, f, g})∪ {c}. In all the
above cases, the set I ′ is an independent set in G′ and |I ′| = |I| − 1, implying
that α(G′) ≥ |I ′| = |I| − 1 = α(G) − 1. As observed earlier, α(G′) ≤ α(G) − 1.
Consequently, α(G′) = α(G)− 1.

Claim 3.2. G′ is an α-excellent graph.

Since G is an α-excellent graph, every vertex of G belongs to an α-set of G.
Let Ix denote an α-set of G that contains the vertex x of G. Let v be an arbitrary
vertex of G′. We show that v belongs to an α-set of G′, that is, to an independent
set of cardinality α(G′) = α(G) − 1 in G′. We note that |Iv ∩ {a, d, e}| = 1,
|Iv ∩ {c, f, g}| = 1, and |Iv ∩ {a, b, c, d}| ∈ {0, 1, 2}. If |Iv ∩ {a, b, c, d}| = 2, then
Iv ∩ {a, b, c, d} = {b, d}, g ∈ Iv and we let I ′v = Iv \ {g}. If Iv ∩ {a, b, c, d} = ∅,
then e ∈ Iv and |Iv ∩ {f, g}| = 1 and we let I ′v = (Iv \ {e, f, g}) ∪ {c}. If
Iv ∩ {a, b, c, d} = {a} or Iv ∩ {a, b, c, d} = {d}, then |Iv ∩ {f, g}| = 1 and we
let I ′v = Iv \ {f, g}. If Iv ∩ {a, b, c, d} = {b}, then e ∈ Iv, g ∈ Iv, and we
let I ′v = (Iv \ {e, g}) ∪ {d}. If Iv ∩ {a, b, c, d} = {c}, then e ∈ Iv and we let
I ′v = Iv \ {e}. In all cases, the set I ′v is an independent set in G′ that contains
the vertex v and |I ′v| = |Iv| − 1 = α(G)− 1 = α(G′), implying that v belongs to
an α-set of G′, as desired.

Claim 3.3. G has a perfect 3-cover and G belongs to the family E.
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Similarly as in the proofs of Claims 1.3 and 2.3, since G′ is an α-excellent
graph of order less than the order of G, the induction hypothesis implies that G′

has a perfect 3-cover and that G′ belongs to the family E . Now, if P ′ is a perfect
3-cover of G′, then acd ∈ P ′ and (P ′ \ {acd}) ∪ {ade, cfg} is a perfect 3-cover of
G. In addition, since G′ belongs to the family E , the graph G′ can be obtained
recursively from a red triangle by operations O1 and O2, and, since G can be
obtained from G′ by the operation O2 = O2(ad, cb) (that is, by O2 applied to
the edge ad of the simplex acd of G′ and to the edge cb incident with the third
vertex c of the triangle acd), the graph G can be obtained recursively from a red
triangle by operations O1 and O2. Thus, G belongs to the family E .

Case 4. H = H6. In this case, we let G′ denote the subgraph G − {e, f, g}
of G and, as before, we study desired relations between properties of the graphs
G and G′.

Claim 4.1. α(G′) = α(G)− 1.

Let I ′ be an α-set of G′. In this case, |I ′ ∩ {b, c, d}| = 1. If c ∈ I ′ or d ∈ I ′,
then the set I ′ ∪ {g} is an independent set of G, while if b ∈ I ′, then the set
I ′ ∪ {e} is an independent set of G, implying that α(G) ≥ α(G′) + 1. It remains
to prove that α(G′) ≥ α(G)− 1. By supposition, G is an α-excellent graph, and
so every vertex of G belongs to some α-set of G. Let I be an α-set of G that
contains the vertex c. Necessarily, g ∈ I and {b, e, f} ∩ I = ∅. Thus, I \ {g} is an
independent set in G′, implying that α(G′) ≥ |I| − 1 = α(G) − 1. As observed
earlier, α(G′) ≤ α(G)− 1. Consequently, α(G′) = α(G)− 1.

Claim 4.2. G′ is an α-excellent graph.

Since G is an α-excellent graph, every vertex of G belongs to an α-set of G.
Let Ix denote an α-set of G that contains the vertex x of G. Let v be an arbitrary
vertex of G′. We show that v belongs to an α-set of G′, that is, to an independent
set of cardinality α(G′) = α(G)−1 inG′. This time we note that |Iv∩{c, d, e}| = 1,
|Iv ∩ {b, f, g}| = 1, and |Iv ∩ {a, b, c, d}| ∈ {0, 1, 2}. If |Iv ∩ {a, b, c, d}| = 2 (that
is, if Iv ∩ {a, b, c, d} = {a, d}) or Iv ∩ {a, b, c, d} = {d}, then |Iv ∩ {f, g}| = 1 and
we let I ′v = Iv \ {f, g}. If Iv ∩{a, b, c, d} = ∅ or Iv ∩{a, b, c, d} = {a}, then e ∈ Iv,
|Iv ∩ {f, g}| = 1 and we let I ′v = (Iv \ {e, f, g}) ∪ {d}. If Iv ∩ {a, b, c, d} = {b},
then e ∈ Iv and we let I ′v = Iv \ {e}. If Iv ∩ {a, b, c, d} = {c}, then g ∈ Iv and we
let I ′v = Iv \ {g}. In all cases, the set I ′v is an independent set in G′ that contains
the vertex v and |I ′v| = |Iv| − 1 = α(G)− 1 = α(G′), implying that v belongs to
an α-set of G′, as desired.

Claim 4.3. G has a perfect 3-cover and G belongs to the family E.

Similarly as in the proofs of Claims 1.3, 2.3 and 3.3, since G′ is an α-excellent
graph of order less than the order of G, the induction hypothesis implies that G′
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has a perfect 3-cover and that G′ belongs to the family E . Now, if P ′ is a perfect
3-cover of G′, then bcd ∈ P ′ and (P ′ \ {bcd}) ∪ {cde, bfg} is a perfect 3-cover of
G. In addition, since G′ belongs to the family E , the graph G′ can be obtained
recursively from a red triangle by operations O1 and O2, and, since G can be
obtained from G′ by the operation O2 = O2(cd, bc) (that is, by O2 applied to
the edge cd of the simplex bcd of G′ and to the edge bc incident with the third
vertex b of the triangle bcd), the graph G can be obtained recursively from a red
triangle by operations O1 and O2. Thus, G belongs to the family E .

Case 5. H = H7. In this case, we let G′ denote the subgraph G − {e, f, g}
of G. Using identical arguments as in the proof of Case 4, we prove that G has
a perfect 3-cover and it belongs to the family E . We omit the details.

Thus all possible cases have been considered. This completes the proof of
Theorem 4.

It is easy to observe that the corona graph H ◦K1 (the graph formed from
H by adding for each vertex v in H a new vertex v′ and the edge vv′) is an
α-excellent graph for every graph H. This implies that every graph is an induced
subgraph of an α-excellent graph. As a consequence of Theorem 4, we have the
following property of 2-trees.

Corollary 5. Every 2-tree is an induced subgraph of an α-excellent 2-tree.

Proof. Let G be a 2-tree. The statement is obvious if G has order 2. Thus
assume that G is a 2-tree of order at least 3. Let P be a maximal family of
vertex-disjoint triangles of G, and let Q be the set of all vertices in G that do not
belong to any triangle in P. If the set Q is empty, then, by Theorem 4, G is an
α-excellent 2-tree itself (and, therefore, it has the desired property). Thus assume
that Q is nonempty. For each vertex v ∈ Q, we do the following. Let v′ be an
arbitrary neighbor of v in G−Q. We now add two new vertices xvv′ and yvv′ , and
four edges xvv′v, xvv′v

′, yvv′v and yvv′xvv′ . We note that the newly constructed
triangle vxvv′yvv′ covers the vertex v and the two new vertices xvv′ and yvv′ . Let
G′ be a resulting 2-tree obtained from G by performing this operation for all
vertices v ∈ Q. Then the set P ∪

⋃

v∈Q{vxvv′yvv′} is a perfect 3-cover of G′.
Thus, by Theorem 4, the graph G′ is an α-excellent 2-tree. By construction, the
2-tree G is an induced subgraph of the α-excellent 2-tree G′. This completes the
proof of Corollary 5.

We close this paper with the following open question that we have yet to
settle. Is it true that if k ≥ 3 is an integer and G is an α-excellent k-tree of order
at least k + 1, then G has a perfect (k + 1)-cover?
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