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Abstract

An adjacent vertex strongly distinguishing total-coloring of a graph G is
a proper total-coloring such that no two adjacent vertices meet the same
color set, where the color set of a vertex consists of all colors assigned on
the vertex and its incident edges and neighbors. The minimum number
of the colors required is called adjacent vertex strongly distinguishing total
chromatic number, denoted by χast(G). Let mad(G) and ∆(G) denote the
maximum average degree and the maximum degree of graph G, respectively.
In this paper, we prove the following results. (1) If G is a graph with
mad(G)< 7

3 and ∆(G) ≥ 5, then χast(G) ≤ max{∆(G) + 2, 8}. (2) If G is a
graph with mad(G)< 9

4 and 4 ≤ ∆(G) ≤ 5, then χast(G) ≤ ∆(G) + 2. (3)
If G is a graph with mad(G)< 9

4 and ∆(G) = 3, then χast(G) ≤ 6.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let G be a
graph with the vertex set V (G) and the edge set E(G). We use dG(v) to denote
the degree of vertex v in G. Call v ∈ V (G) a k-vertex, or a k+-vertex, or a k−-
vertex if its degree dG(v) is equal to k, or at least k, or at most k, respectively.
A 1-vertex is also said to be a leaf. Denote by ∆(G) = max{d(x)|x ∈ V (G)}
the maximum degree of G and δ(G) = min{d(x)|x ∈ V (G)} the minimum degree
of G. We define the girth g(G) of a graph G to be the length of a shortest
cycle in G. The maximum average degree mad(G) of G is defined by mad(G) =

maxH⊆G
{

2|E(H)|
|V (H)|

}
. The terminologies and notations used but undefined in this

paper can be found in [1].
An adjacent vertex distinguishing edge-coloring of a graph is a proper edge

coloring such that no two adjacent vertices have the same color set, where the
color set of each vertex consists of colors assigned on its incident edges. Let
f be a proper total-coloring of G. Then f is called an adjacent vertex dis-
tinguishing total-coloring of G if Cf (u) 6= Cf (v) for any uv ∈ E(G), where
Cf (u) = {f(u)} ∪ {f(uv)|uv ∈ E(G)}. The minimum number of colors for the
coloring required is called an adjacent vertex distinguishing total chromatic num-
ber, and denoted by χat(G) for short. The adjacent vertex distinguishing total
chromatic number of paths, cycles, trees, complete graphs and complete bipartite
graphs was characterized completely by Zhang et al. [15]. And they proposed the
following conjecture.

Conjecture 1 [15]. If G is a graph with at least two vertices, then χat(G) ≤
∆(G) + 3.

Since then, researchers have conducted a lot of research on Conjecture 1
[2–9,12–14]. Most notably, Wang and Wang [10] showed that if G is a graph with
mad(G)< 3, then χat(G) ≤ max{∆(G)+2, 6}; and if G is a graph with mad(G)<
8
3 and ∆(G) ≤ 3, then χat(G) ≤ 5. After that, they also confirmed the adjacent
vertex distinguishing edge-colorings of graphs with smaller maximum average
degree [11]. In this paper, motivated by the above two articles of Wang [10, 11],
we mainly consider the adjacent vertex strongly distinguishing total coloring of
graphs with lower average degree. Now, we first introduce the concept of adjacent
vertex strongly distinguishing total-coloring of graphs, which was proposed by
Zhang et al. [16] in 2008.

Definition [16]. Let G = (V (G), E(G)) be a simple connected graph with
|V (G)| ≥ 3, and k be a positive integer. If f is a mapping from V (G) ∪E(G) to
{1, 2, . . . , k} such that

(1) for any uv ∈ E(G), f(u) 6= f(v), f(u) 6= f(uv), f(v) 6= f(uv);
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(2) for any adjacent edges uv, uw ∈ E(G) (v 6= w), f(uv) 6= f(uw);

(3) for any edge uv ∈ E(G), Cf 〈u〉 6= Cf 〈v〉

where Cf 〈u〉 = {f(u)} ∪ {f(uv), f(v)|uv ∈ E(G)}. Then f is called adjacent
vertex strongly distinguishing total-coloring of G, denoted by k-AVSDTC of G for
short, and

χast(G) = min {k |G has a k-AVSDTC}

is called the adjacent vertex strongly distinguishing total chromatic number of G.

It is worth noting that adjacent vertex strongly distinguishing total-coloring
of a graph is more complex than its adjacent vertex distinguishing total-coloring
of graphs since the former one whose color set consists of the colors not only
assigned on the vertex and its incident edges, but also on its neighbors. In
addition, if G is a disconnected graph, then G is not allowed to have isolated
edges because the color sets of the endpoints of each isolated edge are always
identical under f , and thus, for any graph G we always consider that G contains
no isolated edges in what follows. Moreover, let f be a proper total-coloring of
G. Suppose that any two adjacent vertices u, v ∈ V (G) satisfy Cf 〈u〉 = Cf 〈v〉,
then we say that u and v are indistinguishable.

Zhang et al. in [16] first investigated the adjacent vertex strongly distinguish-
ing total-coloring of graphs by determining the adjacent vertex distinguishing to-
tal chromatic number for cycles, paths, complete graphs and complete bipartite
graphs. Based on these results, they also proposed the following two conjectures.

Conjecture 2 [16]. Let G be a graph on n (n ≥ 3) vertices. Then χast(G) ≤
n+ dlog2 ne+ 1, and the equality holds if n = 2k − 2.

Conjecture 3 [16]. Let G be a planar graph with maximum degree ∆(G). Then
χast(G) ≤ ∆(G) + 3.

From [7] we present a proposition as follows.

Proposition 4 [7]. Let G be a planar graph. Then

mad(G) <
2g(G)

g(G)− 2
.

In this paper, we prove the following results.

Theorem 5. Let G be a graph with maximum degree ∆(G).

(1) If mad(G) < 7
3 and ∆(G) ≥ 5, then χast(G) ≤ max{∆(G) + 2, 8}.

(2) If mad(G) < 9
4 and 4 ≤ ∆(G) ≤ 5, then χast(G) ≤ ∆(G) + 2.

(3) If mad(G) < 9
4 and ∆(G) = 3, then χast(G) ≤ 6.
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Combining with Proposition 4 one can deduce the following corollary.

Corollary 6. Let G be a planar graph.

(1) If g(G) ≥ 14 and ∆(G) ≥ 5, then χast(G) ≤ max{∆(G) + 2, 8}.
(2) If g(G) ≥ 18 and 4 ≤ ∆(G) ≤ 5, then χast(G) ≤ ∆(G) + 2.

(3) If g(G) ≥ 18 and ∆(G) = 3, then χast(G) ≤ 6.

2. Some Lemmas and Main Results

In this section, we cite some lemmas which will be used in the following proofs.

Lemma 7 [16]. For any connected graph G with |V (G)| ≥ 3, χast(G) ≥ ∆ + 1.
Moreover, if G has adjacent maximum degree vertices, then χast(G) ≥ ∆ + 2.

Lemma 8. For a graph G, suppose f is a proper total coloring of G. Let x
be a leaf of G with d(x) = 1. If y is the neighbor of x with d(y) ≥ 3, then
Cf 〈x〉 6= Cf 〈y〉.

Proof. For a vertex y ∈ V (G), we have |Cf 〈y〉| ≥ d(y)+1. However, |Cf 〈x〉| = 3
for the leaf x. If d(y) ≥ 3, then |Cf 〈y〉| ≥ 4. Therefore, Cf 〈x〉 6= Cf 〈y〉.

Lemma 9 [7]. Let G be a graph.

(1) If v is a leaf of G, then mad(G− v) ≤ mad(G).

(2) If e is an edge of G, then mad(G− e) ≤ mad(G).

We will use the following two theorems to prove that Theorem 5 holds.

Theorem 10. If G is a graph with mad(G) < 9
4 , ∆(G) ≥ 3 and K(G) =

max{∆(G) + 2, 6}, then χast(G) ≤ K(G).

Proof. Our proof proceeds by reductio ad absurdum. Let G be a counterexample
such that |T (G)| = |V (G)|+ |E(G)| is as small as possible. Then, any subgraph
G

′
of G with mad(G

′
) < 9

4 has χast(G
′
) ≤ K(G

′
) ≤ K(G) by the minimality of

T (G), where K(G) ≥ 6.

We will analyze the structure of G with several claims, then derive a con-
tradiction using the discharging method. In the proofs that follow, we usually
construct proper total colorings to deduce contradictions by reductio ad absur-
dum, and then prove the absence of certain substructures.

Claim 11. No vertex of degree at most 3 is adjacent to a leaf.
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Proof. Assume to the contrary that G contains a vertex v with dG(v) ≤ 3
adjacent to a leaf. Since G contains no isolated edges, 2 ≤ dG(v) ≤ 3. Then we
consider the following two cases.

Case 1. dG(v) = 2. Suppose that u1 and u2 are neighbors of v with dG(u1) =
1. Let G

′
= G − u1. Then G

′
is a subgraph with mad(G

′
) ≤ mad(G) < 9

4 by

Lemma 9(1). By the minimality of T (G), there is a K(G)-AVSDTC f
′

of G
′

with the color set C = {1, 2, . . . ,K(G)}. Suppose f
′
(v) = 1, f

′
(vu2) = 2 and

f
′
(u2) = 3, then we have Cf ′ 〈v〉 = {1, 2, 3}. Here we will give an AVSDTC f of

G from f
′
. Not stated otherwise, f(z) = f

′
(z) for any z ∈ T (G) ∩ T (G

′
), so we

would not mention it again in what follows.

From Definition 1 we know that f should first be a proper total coloring of
G. Thus, there are 2 forbidden colors for vu1 since f(vu1) 6= f(v) and f(vu1) 6=
f(vu2); and 2 forbidden colors for u1 since f(u1) 6= f(v) and f(u1) 6= f(vu1).
Therefore, there are at least (6 − 2) × (6 − 2) = 16 available color combinations
for vu1 and u1.

Now, we consider the number of the forbidden color combinations such that
the color set of the vertex v and that of the vertex u1 are the same. One can see
that only if f(vu1) = 3 and f(u1) = 2, then Cf 〈v〉 = Cf 〈u1〉. Hence, there are at
most one forbidden color combination for vu1 and u1 to yield Cf 〈v〉 = Cf 〈u1〉.

Then we consider the number of the forbidden color combinations such that
the color set of the vertex v and that of the vertex u2 are the same. It is obvious
that Cf 〈v〉 6= Cf 〈u2〉 when |Cf ′ 〈u2〉| − |Cf ′ 〈v〉| ≥ 3 and |Cf ′ 〈u2〉| − |Cf ′ 〈v〉| ≤ 0.

(1) If |Cf ′ 〈u2〉|−|Cf ′ 〈v〉| = 2, without loss of generality, we may assume that
Cf ′ 〈u2〉 = {1, 2, 3, x, y}, then there exist at most 2 forbidden color combinations
(x, y) and (y, x) on {f(vu1), f(u1)} such that Cf 〈u2〉 = Cf 〈v〉.

(2) If |Cf ′ 〈u2〉|−|Cf ′ 〈v〉| = 1, without loss of generality, we may assume that
Cf ′ 〈u2〉 = {1, 2, 3, x}. Then Cf 〈v〉 = Cf 〈u2〉 holds only if vu1 and u1 have one
of the corresponding forbidden color combinations (x, 2), (x, 3) and (3, x). Thus,
there are at most 3 forbidden color combinations such that both the color sets of
v and u2 are indistinguishable.

According to (1) and (2), we have at most max{2, 3} = 3 forbidden color
combinations such that Cf 〈v〉 = Cf 〈u2〉. Hence, there are at least 16−1−3 = 12
available color combinations for vu1 and u1. Therefore, one can extend f

′
to be

a K(G)-AVSDTC f of G, it contradicts the choice of G.

Case 2. dG(v) = 3. We assume that u1, u2 and u3 are neighbors of v with
dG(u1) = 1. Let G

′
= G − u1. By the minimality of T (G), there is a K(G)-

AVSDTC f
′

of G
′

with the color set C = {1, 2, . . . ,K(G)}. Suppose f
′
(v) = 1,

f
′
(vu2) = 2 and f

′
(vu3) = 3, then we get Cf ′ 〈v〉 = {1, 2, 3, f ′

(u2), f
′
(u3)}. Next,

we will extend f
′

to be an AVSDTC f of G.
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Clearly, there are 3 forbidden colors for vu1 since f(vu1) 6= f(v) and f(vu1) 6=
f(vui) where i = 2, 3; and 2 forbidden colors for u1. Therefore, there are at least
(6 − 3) × (6 − 2) = 12 available color combinations for vu1 and u1. Meanwhile,
we have Cf 〈u1〉 6= Cf 〈v〉 by Lemma 8.

We consider the number of the forbidden color combinations such that the
color set of the vertex v and that of the vertex u2 are the same. It is easy to see
that Cf 〈v〉 6= Cf 〈u2〉 when |Cf ′ 〈u2〉| − |Cf ′ 〈v〉| ≥ 3 and |Cf ′ 〈u2〉| − |Cf ′ 〈v〉| ≤ 0.

(a) If |Cf ′ 〈u2〉|− |Cf ′ 〈v〉| = 2, we may assume that Cf ′ 〈u2〉 = {1, 2, 3, f ′
(u2),

f
′
(u3), x, y}, then there exist at most 2 forbidden color combinations (x, y) and

(y, x) on {f(vu1), f(u1)} such that Cf 〈u2〉 = Cf 〈v〉.
(b) If |Cf ′ 〈u2〉|− |Cf ′ 〈v〉| = 1, we may assume that Cf ′ 〈u2〉 = {1, 2, 3, f ′

(u2),

f
′
(u3), x}. Then Cf 〈v〉 = Cf 〈u2〉 holds only if vu1 and u1 have one of the

corresponding forbidden color combinations (x, 2), (x, 3), (x, f
′
(u2)), (x, f

′
(u3)),

(f
′
(u2), x), (f

′
(u3), x). Thus, there are at most 6 forbidden color combinations

such that both the color sets of v and u2 are indistinguishable.

According to (a) and (b), we have at most max{2, 6} = 6 forbidden color
combinations such that Cf 〈v〉 = Cf 〈u2〉. Similarly, we assume that Cf ′ 〈u3〉 =

{1, 2, 3, f ′
(u2), f

′
(u3), y}, then Cf 〈v〉 = Cf 〈u3〉 holds only if vu1 and u1 have

one of the corresponding forbidden color combinations (y, 2), (y, 3), (y, f
′
(u2)),

(y, f
′
(u3)), (f

′
(u2), y), (f

′
(u3), y). Noting that 1 6∈ {x, y, f ′

(u2), f
′
(u3)}, there

are at most C2
5 = 10 different binary combinations on {2, 3, 4, 5, 6}, which implies

that 2 of the 12 forbidden color combinations are repeated at least. In other
words, there are at most 10 distinct combinations in these 12 forbidden color
combinations. Hence, we have at least 12−10 = 2 available colors for vu1 and u1
such that Cf 〈v〉 6= Cf 〈u2〉 and Cf 〈v〉 6= Cf 〈u3〉, contrary to the choice of G.

Claim 12. There does not exist a 2-vertex v adjacent to two 2-vertices.

Proof. Assume to the contrary that G contains a 2-vertex v with neighbors
u1, u2 such that dG(u1) = dG(u2) = 2. Let wi be the neighbor of ui different from
v in G for i = 1, 2, and let G

′
= G−v. (See Figure 1.) Then by the minimality of

T (G), there is a K(G)-AVSDTC f
′
of G

′
with the color set C = {1, 2, . . . ,K(G)}.

In the following, we will color the edges u1v, vu2 and the vertex v to extend f
′

to be an AVSDTC f of G. According to whether or not the vertices u1 and u2
have been given the same color, we consider two cases in the following.

w1 w2u1 u2v
...

...

Figure 1. The illustration I.
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Case 1. f
′
(u1) = f

′
(u2). Without loss of generality, we suppose f

′
(u1) =

f
′
(u2) = 1, f

′
(w1u1) = x and f

′
(u2w2) = y. By Definition 1 we know that

f should be a proper total coloring of G firstly. Thus, there are 2 forbidden
colors for u1v since f(u1v) 6= f(w1u1) and f(u1v) 6= f(u1), where f(w1u1) =
f

′
(w1u1) and f(u1) = f

′
(u1), 3 forbidden colors for vu2 since f(vu2) 6= f(u1v),

f(vu2) 6= f(u2) (note that f(u2) = f
′
(u2)) and f(vu2) 6= f(u2w2) (note that

f(u2w2) = f
′
(u2w2)), and 3 forbidden colors for v since f(v) 6= f(u1) (note that

f(u1) = f
′
(u1)), f(v) 6= f(u1v) and f(v) 6= f(vu2). Therefore, there are at least

(6− 2)× (6− 3)× (6− 3) = 36 available color combinations for u1v, vu2 and v.

First, we consider the number of the forbidden color combinations such that
the color sets of the vertex w1 and that of the vertex u1 are the same. Clearly, it
is trivial that Cf 〈w1〉 6= Cf 〈u1〉 when |Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| ≥ 3 and |Cf ′ 〈w1〉| −
|Cf ′ 〈u1〉| ≤ 0.

(i) If |Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| = 2, then there exist at most 2 forbidden color
combinations {f(u1v), f(v)} ⊂ Cf ′ 〈w1〉 \ Cf ′ 〈u1〉 such that Cf 〈w1〉 = Cf 〈u1〉.
Noticing that vu2 has 3 available colors, thus there are at most 2 × 3 = 6 for-
bidden color combinations to yield that both the color sets of w1 and u1 are
indistinguishable.

(ii) If |Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| = 1, then there exist at most 3 forbidden color
combinations for u1v and v such that Cf 〈w1〉 = Cf 〈u1〉. To maximize the number
of forbidden color combinations as exhaustive as possible, we may assume that
f

′
(w1) = z, Cf ′ 〈u1〉 = {1, x, z} and Cf ′ 〈w1〉 = {1, x, z, t}, where x, z and t are

different from each other. Then Cf 〈w1〉 = Cf 〈u1〉 holds only if u1v and v have one
of the corresponding forbidden color combinations (z, t), (t, z) and (t, x). Note
that vu2 has 3 available colors. Hence, there are at most 3×3 = 9 forbidden color
combinations such that both the color sets of w1 and u1 are indistinguishable.

From (i) and (ii) we know that there are at most max{6, 9} = 9 forbidden
color combinations such that Cf 〈w1〉 = Cf 〈u1〉. It is important to remind that
the calculation result is affected by the order of priority. Similarly, there exist at
most 3 forbidden color combinations for vu2 and v such that Cf 〈w2〉 = Cf 〈u2〉.
Note that u1v has 4 available colors. Hence, there are at most 3×4 = 12 forbidden
color combinations for w2 and u2 to yield Cf 〈w2〉 = Cf 〈u2〉.

Next, we consider the number of the forbidden color combinations such that
the color sets of the vertex u1 and that of the vertex v are the same. Suppose
that u1v and v have been colored under f , then 3 ≤ |Cf 〈u1〉| ≤ 5.

(a) If |Cf 〈u1〉| = 3, without loss of generality, we may assume that Cf 〈u1〉 =
{1, x, z}, then f

′
(w1) = f(w1) = f(u1v) = z and f(v) = x. Since f(u2) = 1 we

get f(vu2) 6= 1. Note that f(vu2) 6= x and f(vu2) 6= z, so we have f(vu2) /∈
Cf 〈u1〉. Hence, Cf 〈u1〉 6= Cf 〈v〉.

(b) If |Cf 〈u1〉| = 4, there exist at most 4 forbidden color combinations for
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u1v, v and vu2 such that Cf 〈u1〉 = Cf 〈v〉. In order to obtain the number of
forbidden color combinations as exhaustive as possible, we may suppose that
Cf 〈u1〉 = {1, x, z, t}. Then Cf 〈u1〉 = Cf 〈v〉 holds only if u1v, v and vu2 have one
of the corresponding forbidden color combinations (z, x, t), (z, t, x), (t, x, z) and
(t, z, x). Thus, there are at most 4 forbidden color combinations such that both
the color sets of u1 and v are indistinguishable.

(c) If |Cf 〈u1〉| = 5, then Cf 〈u1〉 6= Cf 〈v〉 since f(u1) = f(u2) = 1 implies
that |Cf 〈v〉| = 4.

According to (a), (b) and (c), we have at most 4 forbidden color combinations
such that Cf 〈u1〉 = Cf 〈v〉. By a similar argument, there are at most 4 forbidden
color combinations to yield Cf 〈u2〉 = Cf 〈v〉. Hence, we have at least 36 − 9 −
12 − 4 × 2 = 7 available color combinations for u1v, vu2 and v. Therefore, one
can extend f

′
to be a K(G)-AVSDTC f of G, contrary to the choice of G.

Case 2. f
′
(u1) 6= f

′
(u2). Without loss of generality, we suppose f

′
(u1) = 1,

f
′
(u2) = 2, f

′
(w1u1) = x and f

′
(u2w2) = y. In order to drive the coloring

employed colors as more as possible, we set x, y 6= 1, 2. By Definition 1 we know
that f should first be a proper total coloring of G. Thus, there are 2 forbidden
colors for v since f(v) 6= f(ui) (note that f(ui) = f

′
(ui)) for i = 1, 2, and 3

forbidden colors for u1v and 4 forbidden colors for vu2. Consequently, there are
at least (6 − 2) × (6 − 3) × (6 − 4) = 24 available color combinations for v, u1v
and vu2.

Firstly, we consider the number of the forbidden color combinations such
that the color sets of the vertex w1 and that of the vertex u1 are the same.
Clearly, it is trivial that Cf 〈w1〉 6= Cf 〈u1〉 when |Cf

′ 〈w1〉| − |Cf
′ 〈u1〉| ≥ 3 and

|Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| ≤ 0.

(1) If |Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| = 2, then there exist at most 2 forbidden color
combinations {f(u1v), f(v)} ⊂ Cf ′ 〈w1〉 \ Cf ′ 〈u1〉 such that Cf 〈w1〉 = Cf 〈u1〉.
Noticing that vu2 has 2 available colors, thus there are at most 2 × 2 = 4 for-
bidden color combinations to yield that both the color sets of w1 and u1 are
indistinguishable.

(2) If |Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| = 1, then there exist at most 3 forbidden color
combinations such that Cf 〈w1〉 = Cf 〈u1〉. Without loss of generality, we may
assume that f

′
(w1) = z, Cf ′ 〈u1〉 = {1, x, z} and Cf ′ 〈w1〉 = {1, x, z, t}. Then

Cf 〈w1〉 = Cf 〈u1〉 holds only if u1v and v have one of the corresponding forbidden
color combinations (z, t), (t, z) and (t, x). Note that vu2 has 2 available colors.
Hence, there are at most 3× 2 = 6 forbidden color combinations such that both
the color sets of w1 and u1 are indistinguishable.

From (1) and (2) we know that there are at most 6 forbidden color combina-
tions such that Cf 〈w1〉 = Cf 〈u1〉. Similar to as above, there are at most 3×3 = 9
forbidden color combinations for w2 and u2 to yield Cf 〈w2〉 = Cf 〈u2〉.
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Next, we consider the number of the forbidden color combinations such that
the color sets of the vertex u1 and that of the vertex v are the same. Suppose
that u1v and v have been colored under f , then 3 ≤ |Cf 〈u1〉| ≤ 5.

(i’) If |Cf 〈u1〉| = 3, there exist at most one forbidden color combination
(2, x, 1) for u1v, v and vu2. Since f

′
(u2) = 2 ∈ Cf 〈v〉, 2 ∈ Cf 〈v〉. In order to

ensure Cf 〈u1〉 = Cf 〈v〉, we have f(u1v) = 2, further we get f(v) = f
′
(w1u1) =

x and f(vu2) = f
′
(u1) = 1. Thus, there exist at most one forbidden color

combination such that both the color sets of u1 and v are indistinguishable.

(ii’) If |Cf 〈u1〉| = 4, there exist at most 3 forbidden color combinations such
that Cf 〈u1〉 = Cf 〈v〉 since f

′
(u2) = 2 implies 2 ∈ Cf 〈u1〉. Without loss of

generality, let Cf 〈u1〉 = {1, 2, x, z}. Then Cf 〈u1〉 = Cf 〈v〉 holds only if u1v,
v and vu2 have one of the corresponding forbidden color combinations (z, x, 1),
(2, z, x) and (2, x, z). Thus if |Cf 〈u1〉| = 4, then there are at most 3 forbidden
color combinations such that both the color sets of u1 and v are indistinguishable.

(iii’) If |Cf 〈u1〉| = 5, without loss of generality, we may assume Cf 〈u1〉 =
{1, 2, x, z, t}. Then Cf 〈u1〉 = Cf 〈v〉 holds only if u1v, v and vu2 have one of the
corresponding forbidden color combinations (z, t, x) and (t, z, x). Thus, there are
at most 2 forbidden color combinations such that both the color sets of u1 and v
are indistinguishable.

According to (a), (b) and (c), we have at most 3 forbidden color combinations
such that Cf 〈u1〉 = Cf 〈v〉. Similarly, there are at most 3 forbidden color combi-
nations to yield Cf 〈u2〉 = Cf 〈v〉. Hence, we have at least 24− 6− 9− 3× 2 = 3
available color combinations for v, u1v and u2v. Therefore, one can extend f

′
to

be a K(G)-AVSDTC f of G, and so, it is a contradiction to the choice of G.

Claim 13. There does not exist a k-vertex v adjacent to (k−2) 1-vertices, where
k ≥ 4.

Proof. Assume to the contrary that G contains a k-vertex v with neighbors
u1, u2, . . . , uk such that dG(ui) = 1, i = 1, 2, . . . , k − 2. Let G

′
= G − u1. By

the minimality of T (G), there is a K(G)-AVSDTC f
′

of G
′

with the color set
C = {1, 2, . . . ,K(G)}. Suppose that f

′
(v) = 1, and f

′
(vui) = i for i = 2, 3, . . . , k,

then we get |Cf ′ 〈v〉| ≥ k, see Figure 2 for instance.

If |Cf ′ 〈v〉| ≥ k + 1, we color f(vu1) with Cf ′ 〈v〉 \ {1, 2, . . . , k}, and color
f(u1) with 2. The purpose is to ensure Cf ′ 〈v〉 = Cf 〈v〉. Hence, we have Cf 〈v〉 6=
Cf 〈uk−1〉 and Cf 〈v〉 6= Cf 〈uk〉.

If |Cf ′ 〈v〉| = k, then Cf ′ 〈v〉 = {1, 2, . . . , k}. One can see that there are
K(G) − d(v) forbidden colors for vu1 since f(vu1) 6= f(v) and f(vu1) 6= f(vui)
for i = 2, 3, . . . , k; and 2 forbidden colors for u1. Consequently, there are (K(G)−
d(v))× (K(G)− 2) ≥ 2∆ available color combinations for vu1 and u1.
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v

u1

uk−2

uk−1

uk

..
.

..
.

..
.

1

u2
2

k − 2

k − 1

k

Figure 2. The illustration II.

We firstly consider the number of the forbidden color combinations such
that the color set of the vertex v and that of the vertex uk−1 are the same.
It is easy to see that Cf 〈v〉 6= Cf 〈uk−1〉 when |Cf ′ 〈uk−1〉| − |Cf ′ 〈v〉| ≥ 3 and
|Cf ′ 〈uk−1〉| − |Cf ′ 〈v〉| ≤ 0.

(1) If |Cf ′ 〈uk−1〉| − |Cf ′ 〈v〉| = 2, we may assume that Cf ′ 〈uk−1〉 = {1, 2, . . . ,
k, x, y}, then there exist at most 2 forbidden color combinations (x, y) and (y, x)
on {f(vu1), f(u1)} such that Cf 〈v〉 = Cf 〈uk−1〉.

(2) If |Cf ′ 〈uk−1〉| − |Cf ′ 〈v〉| = 1, without loss of generality, we assume that
Cf ′ 〈uk−1〉 = {1, 2, . . . , k, x}. Then Cf 〈v〉 = Cf 〈uk−1〉 holds only if vu1 and
u1 have one of the corresponding forbidden color combinations (x, i) where i =
2, 3, . . . , k. Thus, there are at most k− 1 forbidden color combinations such that
both the color sets of v and uk−1 are indistinguishable.

According to (1) and (2), we have at most max{2, k − 1} = k − 1 forbidden
color combinations such that Cf 〈v〉 = Cf 〈uk−1〉. Similarly as above, there are at
most k − 1 forbidden color combinations such that Cf 〈v〉 = Cf 〈uk〉. Hence, we
have 2∆ − 2(k − 1) ≥ 2 available color combinations for vu1 and u1. Therefore,
f

′
can be extended a K(G)-AVSDTC f of G, and so, it contradicts the choice

of G.

Claim 14. Let H be the graph obtained by removing all leaves of G. Then we
have

(i) δ(H) ≥ 2.

(ii) If v ∈ V (G) with 2 ≤ dG(v) ≤ 3, then v ∈ V (H) and dH(v) = dG(v).

(iii) If v ∈ V (H) with dH(v) = 2, then dG(v) = 2.

(iv) If v ∈ V (G) with dG(v) ≥ 4, then dH(v) ≥ 3.

Proof. (i) Assume to the contrary that δ(H) ≤ 1.

When δ(H) = 0, H is a complete graph K1 and G is a star K1,n−1, where
n = |V (G)| ≥ 3. It is easy to check that χast(K1,2) = 4 and χast(K1,n−1) = ∆+1
for n ≥ 4, which contradicts the choice of G.
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Assume now that δ(H) = 1. Suppose that v ∈ V (H) with dH(v) = 1, then
dG(v) ≥ 2 and v adjacent to at least dG(v) − 1 leaves in G. This contradicts
Claims 1 and 3.

The statements (ii), (iii) and (iv) follow immediately from Claims 1 and 3.

We are going to make use of the discharging method to proof the theorem.
First, we define an initial charge function w(v) = dH(v) for every v ∈ V (H).
Next, we design a discharging rule and redistribute weights accordingly. Once
the discharging is finished, a new charge function w

′
is produced. However, the

sum of all charges is kept fixed while the discharging is in progress.

The discharging rule is defined as follows.

(R) Every vertex v of degree at least 3 give 1
4 to neighboring 2-vertices.

Let v ∈ V (H). Then dH(v) ≥ 2 by Claim 14(1). If dH(v) = 2, then v
is adjacent to one vertex of degree at least 3 by Claims 11, 12 and 13. Thus,
w

′
(v) ≥ dH(v) + 1

4 = 9
4 . If dH(v) ≥ 3, then v is adjacent to at most dH(v)

2-vertices and hence w
′
(v) ≥ dH(v)− 1

4dH(v) = 3
4dH(v) ≥ 9

4 by (R).

However, this leads to the following contradiction

9

4
=

9
4 |V (H)|
|V (H)|

≤
∑

v∈V (H)w
′
(v)

|V (H)|
=

∑
v∈V (H)w(v)

|V (H)|
=

2|E(H)|
|V (H)|

≤ mad(H) <
9

4
.

Therefore, the conclusion holds.

Theorem 15. If G is a graph with mad(G)< 7
3 , ∆(G) ≥ 5 and K(G) =

max{∆(G) + 2, 8}, then χast(G) ≤ K(G).

Proof. We use reductio ad absurdum to prove the theorem. Let G be a coun-
terexample such that |T (G)| = |V (G)|+ |E(G)| is as small as possible. It is not
hard to see that G also satisfies Claims 11, 12, 13, and 14.

Claim 16. There does not exist a 3-vertex v adjacent to three 2-vertices.

Proof. Assume to the contrary that G contains a 3-vertex v with neighbors u1, u2
and u3 such that dG(ui) = 2, and wi is the neighbor of ui different from v in G,
where i = 1, 2, 3. Let G

′
= G − v. (See Figure 3.) Then by the minimality of

T (G), there is a K(G)-AVSDTC f
′
of G

′
with the color set C = {1, 2, . . . ,K(G)},

where K(G) ≥ 8. In the following, we keep the coloring f
′

unchange on G
′
, and

then extend f
′

to be an AVSDTC f of G.

Now, we color the vertex v and its incident edges vu1, vu2, vu3 successively.
From Definition 1 we have that f should first be a proper total coloring of G. So,
there are 3 forbidden colors for v since f(v) 6= f(ui) (note that f(ui) = f

′
(ui))

for i = 1, 2, 3, and 3 forbidden colors for vu1, and 4 forbidden colors for vu2 and
5 forbidden colors for vu3. Thus, there are at least 8−3 = 5, 8−3 = 5, 8−4 = 4
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and 8−5 = 3 available colors for v, vu1, vu2 and vu3, respectively. Consequently,
there are at least 5× 5× 4× 3 = 300 available color combinations for v, vu1, vu2
and vu3.

u1

u3

w1

w3

v
u2 w2

...

...

...

Figure 3. The illustration III.

First, we consider the number of the forbidden color combinations such that
the color sets of vertex ui (i = 1, 2, 3) and that of vertex wi are the same. It is
not hard to see that if |Cf ′ 〈wi〉| − |Cf ′ 〈ui〉| ≥ 3 and |Cf ′ 〈wi〉| − |Cf ′ 〈ui〉| ≤ 0,
Cf 〈wi〉 6= Cf 〈ui〉 for i = 1, 2, 3.

(1) For the color sets of u1 and w1, there are two cases to be considered.

(i) If |Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| = 2, then there exist at most 2 forbidden color
combinations {f(vu1), f(v)} ⊂ Cf ′ 〈w1〉 \ Cf ′ 〈u1〉 such that Cf 〈w1〉 = Cf 〈u1〉.
Note that vu2 has 4 available colors and vu3 has 3 available colors. Thus, there
are at most 2× 4× 3 = 24 forbidden color combinations such that both the color
sets of w1 and u1 are indistinguishable.

(ii) If |Cf ′ 〈w1〉| − |Cf ′ 〈u1〉| = 1, then there exist at most 3 forbidden color
combinations for v and vu1 such that Cf 〈w1〉 = Cf 〈u1〉 since, without loss of
generality, let f

′
(u1) = 1, f

′
(u1w1) = 2, f

′
(w1) = 3, Cf ′ 〈u1〉 = {1, 2, 3} and

Cf ′ 〈w1〉 = {1, 2, 3, z}. Then Cf 〈w1〉 = Cf 〈u1〉 holds only if v and vu1 have one of
the corresponding forbidden color combinations (2, z), (3, z) and (z, 3). Noticing
that vu2 has 4 available colors and vu3 has 3 available colors. Hence, there are
at most 3×4×3 = 36 forbidden color combinations such that both the color sets
of w1 and u1 are indistinguishable.

(2) For the color sets of u2 and w2, there are two cases to be considered
similarly.

(a) If |Cf ′ 〈w2〉|−|Cf ′ 〈u2〉| = 2, there are at most 2×5×3 = 30 forbidden color
combinations such that both the color sets of w2 and u2 are indistinguishable.

(b) If |Cf ′ 〈w2〉|−|Cf ′ 〈u2〉| = 1, there are at most 3×5×3 = 45 forbidden color
combinations such that both the color sets of w2 and u2 are indistinguishable.

(3) For the color sets of u3 and w3, there are also two cases to be considerd.

(i’) If |Cf ′ 〈w3〉|−|Cf ′ 〈u3〉| = 2, there are at most 2×5×4 = 40 forbidden color
combinations such that both the color sets of w3 and u3 are indistinguishable.
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(ii’) If |Cf ′ 〈w3〉| − |Cf ′ 〈u3〉| = 1, there are at most 3× 5× 4 = 60 forbidden
color combinations such that both the color sets of w3 and u3 are indistinguishable
similarly.

From (1), (2) and (3) we know that there are at most 36 + 45 + 60 = 141
forbidden color combinations such that Cf 〈ui〉 = Cf 〈wi〉 for i = 1, 2, 3.

Next, we consider the number of the forbidden color combinations such that
the color sets of vertex v and that of the vertex ui are identical. Suppose that vui
and v have been colored by the proper total coloring f , then 3 ≤ |Cf 〈ui〉| ≤ 5.
Taking u1 as an example, we consider the following. Without loss of generality,
we assume that f

′
(u1) = 1, f

′
(u1w1) = 2, f

′
(w1) = 3.

(a) If |Cf 〈u1〉| = 3, then Cf 〈u1〉 6= Cf 〈v〉 since dG(v) = 3 implies that
|Cf 〈v〉| ≥ 4.

(b) If |Cf 〈u1〉| = 4, there exist at most 3 forbidden color combinations for
v and vu1 such that Cf 〈u1〉 = Cf 〈v〉. Without loss of generality, let Cf 〈u1〉 =
{1, 2, 3, z}. Then Cf 〈u1〉 = Cf 〈v〉 holds only if v and vu1 have one of the cor-
responding forbidden color combinations (2, z), (3, z) and (z, 3). Noticing that
vu2 has 4 available colors and vu3 has 3 available colors. Thus, there are at most
3 × 4 × 3 = 36 forbidden color combinations such that both the color sets of u1
and v are indistinguishable.

(c) If |Cf 〈u1〉| = 5, there exist at most 2 forbidden color combinations for v
and vu1 such that Cf 〈u1〉 = Cf 〈v〉. We may suppose Cf 〈u1〉 = {1, 2, 3, z, t}. Then
Cf 〈u1〉 = Cf 〈v〉 holds only if v and vu1 have one of the corresponding forbidden
color combinations (z, t) and (t, z). Noticing that vu2 has 4 available colors and
vu3 has 3 available colors. Thus, there are at most 2× 4× 3 = 24 forbidden color
combinations such that both the color sets of u1 and v are indistinguishable.

According to (a), (b) and (c), we have at most 36 forbidden color combina-
tions such that Cf 〈u1〉 = Cf 〈v〉. Similarly, we can get at most 3 × 5 × 3 = 45
forbidden color combinations such that Cf 〈u2〉 = Cf 〈v〉 and 3 × 5 × 4 = 60 for-
bidden color combinations such that Cf 〈u3〉 = Cf 〈v〉. Hence, there are at least
300−141−36−45−60 = 8 available color combinations for v, vu1, vu2 and vu3,
contrary to the choice of G.

Claim 17. There does not exist a k-vertex v adjacent to (k − 3) 1-vertices and
three 2-vertices, where k ≥ 4.

Proof. Assume to the contrary that G contains a k-vertex v with neighbors
u1, u2, . . . , uk such that dG(ui) = 1, i = 1, 2, . . . , k − 3 and dG(uj) = 2, j =
k − 2, k − 1, k. Let G

′
= G − u1. There is a K(G)-AVSDTC f

′
of G

′
with the

color set C = {1, 2, . . . ,K(G)} by the minimality of T (G), see Figure 4(1) for
instance.
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v

u1

uk−3
..
.u2

uk−2

uk−1

uk

v

u1

u2

u3

u4

(1) (2)

Figure 4. The illustration IV.

From Lemma 8 we know that Cf 〈v〉 6= Cf 〈ui〉 where i = 1, 2, . . . , k−3. Since
dG(uj) = 2 we have 3 ≤ |Cf 〈uj〉| ≤ 5 for j = k − 2, k − 1, k. Note that k ≥ 4. So
|Cf 〈v〉| ≥ 5. It is easy to see that Cf 〈v〉 6= Cf 〈uj〉 when |Cf 〈uj〉| = 3, 4 for j =
k−2, k−1, k. Thus, if k ≥ 5, then we have Cf 〈v〉 6= Cf 〈uj〉 where j = k−2, k−1, k;
if k = 4, see Figure 4(2) for example, then |Cf ′ 〈v〉| ≥ 4 since the color set of

Cf ′ 〈v〉 contains at least {f ′
(v), f

′
(vu2), f

′
(vu3), f

′
(vu4)}. Now we color f(vu1)

and f(u1) with two distinct colors from C\{f ′
(v), f

′
(vu2), f

′
(vu3), f

′
(vu4)}. Here

|Cf 〈v〉| ≥ 6, which leads to Cf 〈v〉 6= Cf 〈uj〉 for j = 2, 3, 4. Hence, it contradicts
the choice of G.

Let H be the graph obtained by removing all leaves of G. Then mad(H) ≤
mad(G) < 7

3 by Lemma 9(1). Again, we define an initial charge w(v) = dH(v)
for every vertex v ∈ V (H) and design the following discharging rule.

(R
′
) Every vertex v of degree at least 3 give 1

3 to neighboring 2-vertices.

Let v ∈ V (H). Then dH(v) ≥ 2 by Claim 14(1). If dH(v) = 2, then w
′
(v) ≥

dH(v) + 1
3 = 7

3 by Claims 11, 12 and 13. If dH(v) = 3, we know v is adjacent to

at most two 2-vertices by Claims 16 and 17, thus w
′
(v) ≥ dH(v)− 2× 1

3 = 7
3 . If

dH(v) ≥ 4, then w
′
(v) ≥ dH(v)− 1

3dH(v) = 2
3dH(v) ≥ 8

3 .

This leads to the following obvious contradiction

7

3
=

7
3 |V (H)|
|V (H)|

≤
∑

v∈V (H)w
′
(v)

|V (H)|
=

∑
v∈V (H)w(v)

|V (H)|
=

2|E(H)|
|V (H)|

≤ mad(H) <
7

3
.

Hence, we complete the proof.
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