Discussiones Mathematicae Graph Theory xx (xxxx) 1–4 https://doi.org/10.7151/dmgt.2517

CORRIGENDUM TO "MINIMUM EDGE CUTS IN DIAMETER 2 GRAPHS"

Allan Bickle

Department of Mathematics
Purdue University
610 Purdue Mall, West Lafayette, IN 47907
e-mail: allanbickle.wordpress.com

AND

ALLEN SCHWENK

Department of Mathematics Western Michigan University 1903 W. Michigan, Kalamazoo, MI 49008 e-mail: schwenk@wmich.edu

Abstract

In [Minimum edge cuts in diameter 2 graphs, Discuss. Math. Graph Theory 39 (2) (2019) 605–608] we proved several results on the structure of diameter 2 graphs with a nontrivial minimum edge cut. An error led to several results being incorrect. Here we state and prove the corresponding correct results.

Keywords: edge connectivity, diameter.

2020 Mathematics Subject Classification: 05C40.

Let G be a graph. For $S, T \subseteq V(G)$, let [S,T] be the set of edges with one end in S and the other in T. An edge cut of a graph G is a set X = [S,T], of edges so that G - X has more components than G. The edge connectivity $\lambda(G)$ of a connected graph is the smallest size of an edge cut. Often we can express an edge cut as $[S,\overline{S}]$, where $\overline{S} = V(G) \setminus S$. A trivial edge cut is an edge cut whose deletion isolates a single vertex. Denote the minimum degree of G by $\delta(G)$.

In [1], we presented a short proof of the result of Plesnik [3] that if a graph G has diameter 2, then $\lambda(G) = \delta(G)$. We also presented several results on the structure of diameter 2 graphs with a nontrivial minimum edge cut. In Theorem 3 of [1], we incorrectly assumed that $n(H_1) = d$, when actually we only have $n(H_1) \leq d$. This led to Theorem 3, Corollary 4, and Corollary 5 being incorrect. Here, we state and prove the corresponding correct results.

Corrected Results

Corollary 1 [2]. If G has diameter 2, then one of the subgraphs on one side of a minimum edge cut is either K_1 or $K_{\delta(G)}$.

Definition. Let \mathbb{G} be the set of graphs that contains the Cartesian product $K_{\frac{n}{2}} \square K_2$, $n \geq 4$, and those graphs with the following structure. The vertices can be partitioned into three sets, S_1 , S_2 , and S_3 . Set S_1 induces K_d , S_2 has $n_2 \leq d$ vertices, and S_3 has n_3 vertices, $n_2 + n_3 > d$. There are d edges joining a vertex of S_1 and a vertex of S_2 so that each vertex in $S_1 \cup S_2$ is incident with at least one edge. All possible edges between S_2 and S_3 are present. There are enough extra edges with both ends in S_2 or S_3 so that $\delta(G) \geq d$.

In the examples of graphs in \mathbb{G} below, the sets (S_1, S_2, S_3) induce graphs $(K_3, P_3, \overline{K}_2)$ at left and $(K_3, \overline{K}_2, K_2)$ at right.

Theorem 2. A graph has diameter 2 and contains a non-trivial minimum edge cut if and only if it is in set \mathbb{G} .

Proof. (\Leftarrow) It is readily checked that a graph $G \in \mathbb{G}$ has $\delta(G) = d = \lambda(G)$, and contains a nontrivial minimum edge cut. Each graph G has diameter 2 since each pair of vertices in S_1 and S_3 has a unique common neighbor.

(⇒) Let G have diameter 2 and contain a non-trivial minimum edge cut $X = [S_1, \overline{S}_1]$, and let $d = \delta(G)$. Then (say) $G[S_1] = K_d$, and the order of \overline{S} is at least d. If it is exactly d, then $G = K_{\frac{n}{3}} \square K_2$.

If not, then \overline{S} contains vertices not adjacent to any vertex of K_d . Let S_3 be the set of these vertices and $S_2 = \overline{S}_1 \setminus S_3$. Then each vertex of S_2 is incident with at least one edge of X, and each vertex of S_1 is incident with exactly one edge of X. Then each vertex of S_3 is adjacent to each vertex of S_2 since otherwise some pair of vertices in S_1 and S_3 will have distance more than 2. Since $\delta(G) = d$, there are enough extra edges with both ends in S_2 or S_3 so that each vertex has degree at least d.

Corollary 3. If $G \in \mathbb{G}$, it has between d and $\max\{n-1, 3d-1\}$ trivial minimum edge cuts.

Proof. The number of trivial minimum edge cuts is the number of vertices of minimum degree. All the vertices of K_d have minimum degree, so this is at least

d. Now $K_{\frac{n}{2}} \square K_2$ has n = 2d such vertices. If G is regular, then it has at most d + d + (d - 1) vertices since each vertex in S_2 has degree at least $1 + |S_3|$. If $|S_3| \ge d$, then each vertex in S_2 has degree more than d, so there are at most n - 1 minimum degree vertices.

Theorem 4. All graphs in set \mathbb{G} have a single non-trivial minimum edge cut except for C_4 and those constructed as follows. Let a vertex v be adjacent to s, $\frac{d}{2} \leq s \leq d$, vertices each in two copies of K_d , $d \geq 2$, and add a matching between d-s vertices in each K_d not adjacent to v.

For d=2, the three possible graphs in \mathbb{G} with more than one non-trivial minimum edge cut are C_4 , C_5 , and K_1+2K_2 .

Proof. Let $G \in \mathbb{G}$, so $\delta(G) \geq 2$. Let $\delta(G) = 2$ and $|S_2| = 2$. Note that C_4 and C_5 have two and five nontrivial edge cuts, respectively. Now $C_5 + e$ has a single non-trivial minimum edge cut. Let u and v be the vertices in S_2 . If there are at least two vertices in S_3 , then G has a spanning subgraph with n - 4 u - v paths of length 2 and one u - v path of length 3. Hence the result holds for $\delta(G) = 2$.

Let $\delta(G) = 2$, $|S_2| = 1$, and $v \in S_2$. If there is another nontrivial edge cut, it must separate $S_1 \cup v$ from K_2 (by Corollary 1). Thus $G = K_1 + 2K_2$.

Let $d = \delta(G) > 2$. Then no nontrivial minimum edge cut separates vertices in K_d . Assume there is another nontrivial edge cut X. One component of G - X contains all vertices of S_1 and at least one of S_2 . Thus the other component of G - X must be $H = K_d$ by Corollary 1. Now there are $s \le d$ vertices of H in S_3 and d - s vertices of H in S_2 . If there are r other vertices in S_2 , then X contains at least $rs + d - s \ge d$ edges. Equality requires r = 1, so let v be the one vertex in $S_2 - H$. Also, each vertex in $S_2 \setminus v$ is adjacent to exactly one vertex of S_1 . Then v is adjacent to exactly s vertices in s_1 , so $s \ge \frac{d}{2}$. Then s can be constructed as described and has exactly two non-trivial minimum edge cuts.

Acknowledgement

Thanks to Mieczyslaw Borowiecki for pointing out the error in our original paper.

REFERENCES

- A. Bickle and A. Schwenk, Minimum edge cuts in diameter 2 graphs, Discuss. Math. Graph Theory 39 (2019) 605–608. https://doi.org/10.7151/dmgt.2097
- [2] G. Chartrand and L. Lesniak, Graphs and Digraphs, 4th Ed. (CRC Press, Boca Raton, 2005).
- [3] J. Plesnik, Critical graphs of a given diameter, Acta Fac. Rerum Natur. Univ. Comenian. Math. **30** (1975) 71–93.

Received 17 April 2023 Revised 30 August 2023 Accepted 30 August 2023 Available online 23 September 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/