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Abstract

A k-proper edge-coloring of a graph G is called adjacent vertex-disting-
uishing if any two adjacent vertices are distinguished by the set of colors
appearing in the edges incident to each vertex. The smallest value k for
which G admits such coloring is denoted by χ′

a(G). We prove that χ′
a(G) =

2R+ 1 for most circulant graphs Cn([[1, R]]).
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1. Introduction

Let G = (V,E) be a simple, finite, connected and undirected graph and C be
a set of colors. We use NG(v) (or simply N(v) if the context makes it clear) to
denote the set of neighbors of the vertex v in G and dG(v) (or d(v)) to denote
the degree of v in G. We call ∆(G) the maximum degree of G. An edge-coloring
ϕ : E → C is an assignment of colors to the edges of G. The mapping ϕ is a
k-edge-coloring if |C| = k. It is said to be proper if any two edges incident to the
same vertex are mapped to different colors. The chromatic index, denoted χ′(G),
of a graph G is the smallest integer k such that G admits a k-edge-coloring.

A proper edge-coloring ϕ is adjacent vertex-distinguishing (AVD-coloring for
short) if for any (u, v) ∈ E, ϕ(N(u)) 6= ϕ(N(v)). The smallest number of colors
required for an AVD-coloring of G is called the AVD-chromatic index of G and
denoted χ′a(G).

Some interest has been shown in non-proper adjacent vertex-distinguishing
edge-colorings. In [1] it was shown that the minimum number of colors necessary

for a non-proper vertex-distinguishing edge-colorings is equivalent to n
1
k for k-

regular graphs of order n. However, a much stronger interest has been shown in
proper adjacent vertex-distinguishing edge-colorings, which are thus most often
only referred to as adjacent vertex-distinguishing.

One may also read the term adjacent strong edge-coloring or 1-strong edge-
colorings as an effort to avoid confusion. The latter is part of the wider concept
of d-strong edge-coloring, which is a proper coloring in which two vertices at
distance lower than d of each other cannot share the same set of incident colors.
This concept introduced in [2] also embraces (when d is larger than the diameter
of the graph) strong edge-colorings (or vertex-distinguishing edge-colorings), in
which any two vertices do not share the same set of incident colors, whatever
their distance.

Strong edge colorings were introduced independently by Fouquet et al. [11,
12] for radio networks and the frequency assignment problem and for graphs in
[10]. They were deeply studied in [8] where the conjecture was made that any
graph of order n ≥ 3 with no isolated edge and at most one isolated vertex admits
an (n+ 1)-strong edge-coloring and in [7] where the conjecture was proven. The
smallest number of colors used to obtain a such coloring, denoted by χ′S , is called
strong edge chromatic index or observability. It was studied for planar graphs in
[9], and additional properties using odd graphs were found in [16] and extended
to multigraphs in [4].

Trivial bounds on the AVD-chromatic index of a graphG are ∆(G) ≤ χ′(G) ≤
χ′a(G) ≤ χ′S(G). In [18], the following conjecture was proposed.

Conjecture 1 [18]. If G is a simple connected graph on at least 3 vertices and
G 6= C5 (a cycle of order 5) then ∆(G) ≤ χ′a(G) ≤ ∆(G) + 2.
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In [3], it is shown that χ′a(G) ≤ 5 for all graph G with maximum degree
∆(G) = 3 and χ′a(G) ≤ ∆(G) + 2 for bipartite graphs. For k-chromatic graphs G
without isolated edges, the authors proved that χ′a(G) = ∆(G) + O(log k). The
study in [6] was done for meshes graphs (the Cartesian product of p paths and
of p cycles). In [5], it was shown that for any integers n ≥ 2 and d ≥ 2, we
have χ′a(Kd

n) = ∆(Kd
n) + 1, where Kd

n is the Cartesian product of the complete
graph Kn by itself d times (also known Hamming graph) and that for direct
products of graphs, χ′a(G × H) ≤ min{χ′(G).χa(H), χ′a(G).χ′(H)}. For graphs
with maximum degree ∆ ≥ 5 and maximum average degree mad < 3 − 2

∆(G) ,

the result χ′a(G) ≤ ∆(G) + 1 is proved in [14] based on results of [17]. A weaker
bound of χ′a(G) ≤ ∆(G) + 300 was proved in [13] for all graphs with ∆(G) large
enough.

For n ∈ N∗ and S ⊂ Zn, the circulant graph Cn(S) is the non-directed graph
whose n vertices are the elements of Zn with an edge (i, j) if and only if |i−j| ∈ S
(modulo n). In this paper we will say two vertices i and j are at distance t and
that an edge (i, j) is of length t if |i− j| = t. We write [[a, b]] = {i ∈ N|a ≤ i ≤ b}.

The notion of d-strong edge-colorings of circulant graphs has been studied in
[15]. An exact value of χd of Cn({1, 2}) is given for d ∈ {1, 2}. We will use an
idea similar to the one they introduced of cutting colored circulant graphs and
merging them together to get colorings for graphs of higher order.

Obviously for a k-regular graph we have χ′a ≥ k + 1. In this paper we will
show that for most R and most n, χ′a(Cn([[1, R]])) = ∆(Cn([[1, R]])) + 1.

Theorem 2. Let R ≥ 1 and n ≥ 21+blogRc(R+ 2)
(
R+ 2blogRc(R+ 2)

)
− 2R. If

R 6= 1 mod 6 or n = 0 mod 3, then χ′a(Cn([[1, R]])) = 2R+ 1.

The main idea behind the proof of Theorem 2 is the following. We build opti-
mal (in the number of colors used) adjacent vertex-distinguishing edge-colorings
of Cmp([[1, R]]) for some m and all p ∈ N and of Ck([[1, R]]) for some k prime with
m such that both can be merged together to form the graph Cmp+k([[1, R]]) and
a coloring for it. Then by varying p and merging multiple times we can reach an
optimal coloring of Cn([[1, R]]) for any n large enough. As in general k << mp
we also call the merging operation adding an extension. The optimal adjacent
vertex-distinguishing edge-colorings of the extendable graph and of the extension
are defined in Section 2. The process of adding extensions is described in Section
3 to complete the proof of Theorem 2. We conclude the paper in Section 4 with
perspectives for future work.

2. Preliminary Results

We first define an optimal proper edge-coloring of circulant graphs with only
edges of odd length (Lemma 3). We also define a proper edge-coloring with only
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one more color and the additional property of distinguishing vertices close to each
other (Lemma 4). Both colorings are periodic, and can be applied only when the
order of the graph is a multiple of their periods, but we show that it is possible to
extend the coloring of Lemma 3 to any even order by adding 2-vertices extensions
(Lemma 5).

We use these colorings to build a periodic and optimal AVD coloring of
Cmp([[1, R]]) for all p ∈ N where m is the period of the coloring, which depends
on R (Lemma 6). The edges of the graph can be partitioned so that the edges of
each set induce a circulant graph with only edges of odd length. Each of these
subgraphs can be colored with the colorings of Lemmas 3, 4 and 5. A careful
choice of colors can ensure that the resulting coloring is proper, that vertices
which are adjacent in Cmp([[1, R]]) can be distinguished by the colors of the edges
on which the coloring of Lemma 4 is applied, and that no such coloring can be
obtained with less colors.

We then define the extension by building vertex-distinguishing colorings for
complete graphs of odd order (Property 1), which can be seen as circulant graphs:
K2R+1 = C2R+1([[1, R]]).

For m ∈ N, let Um = {2p+ 1|0 ≤ p ≤ m}. Let k ≥ 2 and v0 ∈ [[0, 2k(m+ 1)]].
We name ϕv0 the following edge-coloring of C2(m+1)k(Um) using colors in
{li|i ∈ [[0,m]]} ∪ {ri|i ∈ [[0,m]]} (see Figure 1 for an illustration with m = 1).

• For i ∈ [[0,m]], ϕv0(v0 + i, v0 + i+ 1) = ri and ϕv0(v0 − i− 1, v0 − i) = li.

• For any vertex v, ϕv0(v + 2m+ 2, v + 2m+ 3) = ϕv0(v, v + 1).

• For any vertex v and p ≤ m, ϕv0(v − p, v + 1 + p) = ϕv0(v, v + 1).

-1

0

1
2 3

4

5

r1

l1
l0 r0

r1

l1

l1
l0 r0

r1

Figure 1. ϕ2 on a part of C4k(U1), k ≥ 2.

We write ϕ when the choice of v0 is of no importance.

Lemma 3. For m, k integers with k ≥ 2, ϕ is a 2(m + 1)-proper coloring of
C2(m+1)k(Um).
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Proof. In this construction, any colors and any vertices can be swapped without
changing the structure of the graph and coloring, so the proof that the coloring
is proper can be reduced to proving that one vertex does not have the same color
twice in its edge neighbourhood. For m, k integers with k ≥ 2, as C2(m+1)k(Um)
is (2m+ 2)-regular, it is the same as showing that one vertex has 2m+ 2 distinct
colors in its edge neighbourhood, which can be seen by writing all colors in
S(v0): for p ∈ [[0,m]], ϕ(v0, v0 + 2p + 1) = ϕ(v0 + p, v0 + 1 + p) = rp and
ϕ(v0 − (2p+ 1), v0) = ϕ(v0 − 1− p, v0 − p) = lp.

By adding the color 0 to the previous coloring and using a similar structure,
we manage to distinguish the sets of colors of edges incident to nearby vertices.
For a vertex v0 of C(2m+3)k(Um), we name φv0 the following edge-coloring.

• φv0(v0, v0 + 1) = 0.

• For i ∈ [[0,m]], φv0(v0 + 1 + i, v0 + 2 + i) = ri and φv0(v0 − i− 1, v0 − i) = li.

• For any vertex v, φv0(v + 2m+ 3, v + 2m+ 4) = φv0(v, v + 1).

• For any vertex v and p ≤ m, φv0(v − p, v + 1 + p) = φv0(v, v + 1).

Lemma 4. For m, k integers with k ≥ 2, φ is a (2m+ 3)-proper edge-coloring of
C(2m+3)k(Um) which satisfies:

For two vertices i and j, if |i− j| ∈ [[1, 2m+ 2]] then φ(N(i)) 6= φ(N(j)).

Proof. Let m, v0, k be integers with k ≥ 2. In C(2m+3)k(Um) the colors incident
to v0 −m− 1 are

φv0(v0 −m− 1, v0 −m+ 2p) = φv0(v0 + p−m− 1, v0 + p−m)

= lm−p

and

φv0(v0 −m− 2− 2p, v0 −m− 1) = φv0(v0 −m− 2− p, v0 −m− 1− p)
= φv0(v0 + 1 +m− p, v0 + 2 +m− p)
= rm−p

for all p ∈ [[0,m]]. The only color used by φv0 which is not in S(v0 − m − 1)
is 0. We will say this vertex is a 0. The same way, for i ∈ [[0,m]], v0 − i is a
rm−i and v0 + i + 1 is a lm−i, as the vertices are labelled in Figure 2. As the
coloring is (2m+ 3)-periodic, this proves the two properties in the lemma. First,
the fact each vertex has 2m + 2 distinct colors in its edge neighbourhood shows
the coloring is proper. Also, two vertices with the same set of colors in their edge
neighbourhood are at a distance of at least 2m+ 3, so vertices at distance lower
than 2m+ 2 are distinguished.
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Figure 2. φ on a part of C(2m+3)k(Um) for m = 1, k ≥ 2.

This property of φ covers the adjacent vertex-distinguishing property while
adding that vertices at even distance are also distinguished by the colors of their
incident edges.

The proper coloring ϕ of Lemma 3 can only be applied when the order of the
circulant graph n is a multiple of 2(m + 1). We can then build a coloring for a
graph of order n+ 2 by adding a 2-vertices extension to ϕ, and build a coloring
for any even order by adding multiple extensions. The same strategy is used to
prove Theorem 2 in Section 3 with larger extensions.

Lemma 5. For m ∈ N∗ and n ≥ (2m+ 1)m, χ′ (C2n(Um)) = 2(m+ 1).

Proof. Let m ∈ N∗. We will first describe the extension on C4m+4(Um) colored
with ϕm+1 and then compute how many extensions are needed to color C2n(Um)
for n ≥ (2m+ 1)m.

1. • Add vertices x and y.

• Add edges (x, y), (x,m+ 1) and (y,m+ 2).

• Add edges (m+1−2p, x), (x,m+1+2p), (m+2−2p, y) and (y,m+2+2p)

for p ∈ [[1,m]].

2. Remove the 2m + 1 edges of length 2m + 1 with one vertex on each side of
the edge (m+ 1,m+ 2). The colors of these edges are distinct: (li)0≤i≤m−1 and
(ri)0≤i≤m. The resulting graph is isomorphic to C4m+6(Um), as can be seen by
placing x and y between m+1 and m+2 in the way shown in Figure 3 for m = 2.

3. Notice that each vertex of C4m+4(Um) loses and recovers exactly one edge,
except for 3m+ 3 and 3m+ 4 which remain unchanged. Assign the color of the
lost edge to the new one. The two ends of a removed edge are at an odd distance
on C4m+4(Um), which ensures that exactly one is at an even distance of m+1 and
exactly one is at an even distance of m + 2. With the construction in step (1),
both ends get a new edge with a distinct vertex of x, y, so the coloring remains
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proper. Finally, assign c(x, y) = lm, the only color x and y do not have in their
edge neighbourhood (in Step (2), no edge colored with lm is removed).

0 1 2 3 4 5 6 7

l2 r2

x yl1 r2

r2

l2

l1r0 r0

l0r1
r1l0

l2 l1 l0 r0 r1 r2 l2

l1 l0 r0 r1 r2

Figure 3. Extension of ϕ on a part of C12(U2). The color of each edge is written near the
middle of the edge.

This extension does not need to be added at this exact spot on the graph:
before adding it, all vertices and colors have the same role in the construction.
An extension only changes the color of edges of 4m vertices on the original graph,
so on C2(m+1)k(Um), multiple extensions can be added as long as there are always
4m vertices between two of them so they do not interfere with each other.

Now, let n = q(m+ 1) + r with r ≤ min
(
m, q(m+1)

2m

)
. Such integers q and r

exist when n ≥ m(2m + 1) An edge coloring of C2n(Um) can be constructed by
adding r such 2-vertices extensions to C2q(m+1)(Um).

The colorings obtained in this way can be used to color edges of even length
on Cn([[1, R]]). For k, p and m integers, C2pk({2p, 3 ∗ 2p, ..., (2m + 1)2p}) can be
seen as the union of 2p graphs isomorphic to C2pk(Um). Combining them with φ
to color edges of odd length leads to the following result.

Lemma 6. Let R, k ∈ N∗.
• If R is even, Ck(R+1)21+dlogRe([[1, R]]) admits a (2R+1)-adjacent vertex-disting-

uishing edge-coloring.

• If R is odd, Ck(R+2)21+dlogRe([[1, R]]) admits a (2R+ 1)-adjacent vertex-disting-
uishing edge-coloring.

Proof. For an integer d, we write its 2-adic valuation val(d) = max{p ∈ N|2p
divides d}. In the following, we consider the partition of [[1, R]] according to
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the valuation of its elements, [[1, R]] =
⋃blogRc

p=0 Qp(R) where Qp(R) = {d ∈
[[1, R]]|val(d) = p}. When the context is clear, we omit R and only write Qp.

Let R ∈ N and q =

{
(R+ 1) if R is even,
(R+ 2) if R is odd.

We first consider the case k = 1. We divide the edges of Cq21+dlogRe([[1, R]]) ac-
cording to their length with the partition of [[1, R]] given above and consider the
graphs Cq21+dlogRe(Qp) for p ∈ [[0, blogRc]].

p = 0: If R is even, Cq21+dlogRe(Q0) = C(2(R
2
−1+1)+1)21+dlogRe

(
UR

2
−1

)
, for which

φ is a proper coloring in R+ 1 = 2
∣∣Q0
∣∣+ 1 colors. If R is odd, Cq21+dlogRe(Q0) =

C(2(R−1
2

+1)+1)21+dlogRe
(
UR−1

2

)
for which φ is a proper edge-coloring in R + 2 =

2
∣∣Q0
∣∣+ 1 colors.

p > 0: As q ≥ R
2p , the graph Cq21+dlogRe(Qp) has 2p connected components, each

of them isomorphic to Cq21−p+dlogRe
(
U|Qp|−1

)
. If |Qp| = 1, then ϕ is a proper

coloring for each component. Otherwise, q2dlogRe−p ≥ |Qp|(2|Qp|+1) and we can
use Lemma 5 to build a proper coloring for each component. By using the same
2|Qp| colors for each connected component, we build a 2|Qp|-proper coloring for
Cq21+dlogRe(Qp).

Color the edges of Cq21+dlogRe([[1, R]]) with distinct colors for each set of edges
so that the coloring remains proper. In the following, we use the super-index p for
colors used on edges of length d ∈ Qp. Lemma 4 ensures that adjacent vertices are
distinguished by the coloring of edges of odd length (coloring of Cq21+dlogRe(Q0)).
The number of colors used is:

2|Q0|+ 1 +

blogRc∑
p=1

2|Qp| = 1 +

blogRc∑
p=0

2|Qp|(1)

= 1 + 2

∣∣∣∣∣∣
blogRc⋃
p=0

Qp

∣∣∣∣∣∣(2)

= 1 + 2R.(3)

For k ≥ 2, remind all colorings used to color Cq21+dlogRe([[1, R]]) are periodic
and can be applied on Ckq21+dlogRe([[1, R]]).

Notice that we can specify exactly how each set of edges is colored. For edges
of odd length, set the vertex v0 which indices the coloring φv0 . When |Qp| = 1, set
2p vertices (vpi )i in distinct connected components of Cq21+dlogRe(Qp) which index
the colorings (ϕvpi

)i used to color the components. When |Qp| > 1, specifying

2p vertices (vpi )i does not set where the extensions are located. However, we
can guarantee that the coloring on which they are added is ϕvpi

and that they
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are at distance at least 2|Qp| of each vpi on the connected component, so at
distance at least 2p+1|Qp| of each vpi on Cq21+dlogRe(Qp). For a sequence W =
({vpi |i ∈ [[1, 2p]]})0≤p≤logR of sets of vertices such that for all p and i 6= j, vpi 6= vpj
mod 2p, we denote ΦW a coloring obtained in this way.

The next category of graphs, for which we want to find AVD-colorings, are
complete graphs of odd order: notice that for R ∈ N∗, K2R+1 = C2R+1([[1, R]]).
For a sequence of distinct colors C = (ci)1≤i≤2R+1, let ΨC be the coloring of
K2R+1 defined in the following way and illustrated in Figure 4 for R = 3.

• Arrange the vertices of the graph K2R+2 in the form of a regular (2R+1)-gon
with one vertex in the center.

• Color the radial edges following the sequence C.

• Color each remaining edge with the color of the radial edge to which it is
perpendicular.

• Remove the central vertex and the radial edges to get a colored K2R+1 graph.

0

1

2

34

5

6
0

0

0

3

3

3

4

4

4

6

6

6

2

2

2

1

1

15

5

5

Figure 4. ΨC on K2R+1 for R = 3 and C = (0, 1, 2, 3, 4, 5, 6). The color of each edge is
written near the middle of the edge.
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The proof that this coloring is vertex-distinguishing is made in [8]. A direct
consequence is the following property.

Property 1. For any sequence of distinct colors C = (ci)1≤i≤2R+1, the coloring
ΨC of K2R+1 is a (2R+ 1)-adjacent vertex-distinguishing coloring.

3. Fundamental Results

In Lemma 6, we build an optimal adjacent vertex-distinguishing edge-coloring on
Cmp([[1, R]]) where m is the period of the coloring and p ∈ N. In order to prove
Theorem 2, we need to extend this construction to any large enough orders of cir-
culant graphs. We do this by adding extensions to a colored Cmp([[1, R]]), namely
making the union of the colored graphs Cmp([[1, R]]) and Ck([[1, R]]), cutting each
graph’s edges between two vertices, and merging the two graphs by reuniting
half-edges of the same color, resulting in a colored Cmp+k([[1, R]]) graph. After
showing how to add one extension, we compute for any n the value of p and how
many extensions need to be added to Cmp([[1, R]]) to get a colored Cn([[1, R]]).
We divide the proof of Theorem 2 according to the parity of R and start with
the following theorem when R is even.

Theorem 7. For R even and n ≥ (R + 1)21+blogRc (R+ (R+ 1)2blogRc) − 2R,
Cn([[1, R]]) admits a (2R+ 1)-adjacent vertex-distinguishing edge-coloring.

Proof. Let R be an even integer and n ≥ (R+1)21+blogRc (R+ (R+ 1)2blogRc)−
2R. Firstly, we show how to add one extension of (2R+ 1) vertices to

C(R+1)21+dlogRe([[1, R]]).

Secondly, we compute for k ∈ N∗ how many extensions can be added to

Ck(R+1)21+dlogRe([[1, R]])

and how to chose k and u so that Cn([[1, R]]) is the result of adding u extensions
to Ck(R+1)21+dlogRe([[1, R]]).

The two colored graphs which we consider are C(R+1)21+dlogRe([[1, R]]) and
K2R+1. The complete graph K2R+1 is colored with ΨC , where

C =
(

00,(4)

r0
0, r

0
1, . . . , r

0
R
2
−1
,(5)

l1|Q1|−1, l
2
|Q2|−1, l

1
|Q1|−2, l

3
|Q3|−1, . . . , l

val(R−2)
0 , l

val(R)
0 ,(6)

r
val(R)
0 , . . . , r2

|Q2|−1, r
1
|Q1|−1,(7)

l0R
2
−1
, . . . , l01, l

0
0

)
.(8)
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For i ∈
[[
1, R2

]]
the i

th
value in line (6) is l

val(2i)

|Qval(2i)|−
⌈

2i

21+val(2i)

⌉. Line (7) mirrors

line (6) with all l replaced by r.
To color the second graph, let W 0 = {0} and for p ∈ [[1, blogRc]], let

W p = [[1 + 2p−1, 3 ∗ 2p−1]]. Consider the sequence W = (W p)0≤p≤logR and color
C(R+1)21+dlogRe([[1, R]]) with a coloring ΦW .

We now consider the union of both graphs and sequence the vertices such that
the sequence inside each component remains the same, and the vertices of the
extension K2R+1 are inserted between vertices 0 and 1 of C(R+1)21+dlogRe([[1, R]]),

starting and ending with both ends of the edge of length 1 colored with 00. The
sequence of vertices described by the color missing in their neighbourhood is the
following (for the extension, start at the beginning of line (7), go through lines
(8), (4) and (5) and finish at the end of line (6) in the definition of C):

. . . , 00, r0
0, . . . , r

0
R
2
−1,r

val(R)
0 , . . . , r1

|Q1|−1
, . . . , l

val(R)
0 , l0R

2
−1, . . . , l

0
0, 0

0, . . .(9)

Base graph Extension Base graph

We call junction vertices the vertices which in this sequence follow or are
followed by a vertex of the other component. They are in bold in Equation (9).

By changing the sequence of vertices we also change the length of some edges.
In order to recover a circulant graph we cut each edge with length at least R+ 1
in two half-edges each incident to one end of the original edge. Cutting an edge
(a, b) results in two half edges, (a, b) incident to a and (a, b) incident to b. We still
write the vertices they are not incident to so that we can keep track of the edge
they result from, notably to associate both half-edges and to remember their
former color and length. We then show that for each vertex v, each half-edge
incident to v can be merged with a half-edge of the same color so that the new
edges connect v to all remaining vertices at distance at most R. The merging
operation is shown in Figure 5 for R = 2.

This will prove that the extension operation does not change the set of colors
and lengths of incident edges of any vertex, so the result is a proper edge coloring
of C2R+1+(R+1)21+dlogRe([[1, R]]). Its adjacent vertex-distinguishing property can
then be seen by observing in equation (9) that we only add to the sequence of
incident edge color sets one period and R color sets distinct with one another and
with the other color sets.

For each vertex v, let Hv = {(a, v) | v is strictly closer than a to a junction
vertex}. We denote by Hc

v the set of colors of the half-edges in Hv. We are going
to show that for two vertices u on the extension and v on the base graph at the
same position relatively to the cuts, Hc

u = Hc
v . The same is true for the set of

lengths of the cut edges H l
u and H l

v. Thus we can merge the half-edges of Hu to
the complementary half-edges to the ones of Hv. The same way, by merging half-
edges resulting from edges colored with 00 for which both ends are at the same
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Figure 5. The extension before and after the cut for R = 2. The color of each edge is
written near the middle of the edge.
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distance from the junction vertices, each vertex recovers edges of each length and
each color that it lost from cutting edges.

We consider the vertices before the cut on the base graph (on the left in Figure
5). The first vertex v for which Hv 6= ∅ is 1−R

2 (the vertex at distance R
2 −1 of the

junction vertex 0). Indeed, a half-edge is in H−R
2

if the distance between 1 and

the other end b of the corresponding edge is greater than the distance between
−R

2 and 0. This means b > R
2 + 1, so the distance between −R

2 and b is greater
than R+ 2, and the edge

(
− R

2 , b
)

does not exist in C(R+1)21+dlogRe([[1, R]]). The

half-edge in H1−R
2

is obtained by cutting its edge of length R colored with r
val(R)
0 :

ΦW

(
1− R

2
, 1 +

R

2

)
=
(

1− 2val(R)−1, 1 + 2val(R)−1
)(10)

= r
val(R)
0(11)

as ΦW

(
1− 2val(R)−1 − 2val(R), 1− 2val(R)−1

)
= l

val(R)
0 .(12)

We now show that if a vertex u is between a vertex v and the cut then
Hc

u ⊆ Hc
v . Let d ∈ [[1, R]] and c the color of (−j, d − j) ∈ H−j . If d ∈ Qp,

then in the base graph, c is the color of 2p consecutive edges of length d. Let o
be the rank (starting from 0) of vertex −j in this sequence. Let i ≤ j and let
q and r < 2p be the integers such that o + i = 2pq + r. The integer r is the
rank of vertex i− j in the sequence of 2p rightbound edges of color c and length
d− q2p+1. Thus the edge (i− j, i− j+d−2p+1q) is colored with c. We now show
(i− j, i− j+d−2p+1q) ∈ Hi−j by proving that j− i < i− j+d−2p+1q−1 (∗).

If p = 0 then q = i and 2p+1 = 2. Thus we have (−j, d − j) ∈ H−j =⇒
2j + 1 < d, which proves (∗). Otherwise, let qj and qd be the integers such that
j+o = 2p−1(2qj +1)−1 and d = 2p(2qd+1). We have o < 2p so j > 2p−1(2qj−1),
which allows us to write the following implications between d > 2j + 1 and (∗):

d > 2j + 1(13)

2p(2qd + 1) > 2p(2qj − 1) + 1

qd > qj − 1 + 2−p−1

qd ≥ qj
2p(2qd + 1)− 2p(2qj + 1) + 1 > 0

d− 2(j + o)− 1 > 0

d− j − 2(2pq + r − i)− 1 > j

d− 2p+1q + i− j − 1 > j − i .(∗)

For j ∈
[[
1, R2 − 1

]]
, we have |H1−j | − |H−j | = 2. The additional colors in

Hc
1−j are:
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• the color r0
R
2
−1−j from the edge of length R− 1:

ΦW (1− j, R− j) = ΦW

(
R

2
− j, R

2
− j + 1

)
= r0

R
2
−1−j ,(14)

• the
(
R
2 − j

)th
color in the sequence of colors of line (7). If j+ 1 = 2p−1(2q+ 1),

this color is rp|Qp|−q−1, and it comes from the edge of length 2p(2|Qp| − 1)):

ΦW

(
2− 2p−1(2q + 1), 2− 2p−1(2q + 1) + 2p(2|Qp| − 1)(15)

= ΦW

(
2− 2p−1(2q + 1) + 2p(|Qp| − 1), 2− 2p−1(2q + 1) + 2p|Qp|

)
= ΦW

(
2p(|Qp| − q − 1) + 2− 2p−1, 2p(|Qp| − q − 1) + 2 + 2p−1

)
= rp|Qp|−q−1.(16)

Next we prove Hc
−j = Hc

vj where vj is the vertex of the extension at the jth

position before the second junction vertex of the extension (on the right of the
cut in Figure 5). Again, for i ∈ [[0, j]], Hc

vj ⊆ Hc
vj−i

as if c ∈ Hc
vj comes from an

edge of former length d, then the edge of length d − 2i crossing the cut is also
colored with c and generates a half edge in Hc

vj−i
. The set HvR

2 −1
is also the first

non-empty set of half-edges, as it includes the half-edge obtained from an edge

of length R and colored with r
val(R)
0 , the missing color of the first junction vertex

(the vertex at distance R
2 of both ends of the edge of length R). The colors in

Hc
vj−1
\Hc

vj are

• the missing color of the vertex at distance R
2 from vj−1 towards the cut (the(

R
2 − j

)
th color in the sequence (7)), which is coloring the half-edge obtained

from its edge of length R;

• the color of the edge between the vertices at distances R
2 − j − 1 and R

2 − j
away from the left junction vertex

(
r0

R
2
−j−1

)
, which is coloring the half-edge

obtained from its edge of length R− 1.

We proved Hc
−j = Hc

vj . We also have H l
−j = H l

vj = [[2(j + 1), R]]. Notice
that vertex d, which is at distance j + d of vertex −j on the base graph, is at
distance j + d of vj on the extended graph. Thus if (−j, d) ∈ H−j , we can merge
(−j, d) with the half-edge of Hvj of the same color, and this way give an edge of

each length in H l
−j to vertex −j. The same can be done to merge the half-edges

of H−j . Also, it can be shown the same way for the vertices on the other side
of the junction vertices. When cutting edges, there are two possibilities: either
each end is at the same distance from the junction vertices, or one is closer and
the other one is further. Thus after cutting the edges there are exactly as many
half-edges incident to a vertex closer to the junction vertices as there are incident
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to a vertex further from the junction vertices. Notice that we merge all the edges
from the first category to distinct half-edges in the second category, while keeping
the length of the half-edge in the second category.

The only remaining half-edges are obtained by cutting an edge with both
ends at the same distance of the junction vertices. These are all colored with
00 and can be merged with one another to recover their original length. We
have shown that for each vertex, we could merge all half-edges incident to this
vertex with half-edges of the same colors to recover edges of each missing length.
The resulting colored graph is C2R+1+(R+1)21+dlogRe([[1, R]]) and the coloring is
adjacent vertex-distinguishing.

In this construction, all colors attributed to edges of length in one set Qp

play the same role and can be inverted. In order to be able to place an extension,
the cut on the base graph must be between two vertices v and v + 1, where for
all p ∈ [[1, blogRc]], the rightbound edges of length 2p on the vertices between
the vertex at distance 2p−1 − 1 on the left and at distance 2p−1 on the right of
v have the same color. This situation appears for edges of length 2p every 2p

edges, and as it is the case for all p on vertex 0, it is also the case for all p on
vertices 2blogRck for all k. Also, the extension modifies only the rightbound (resp.
leftbound) edges of the R

2 ≤ 2blogRc vertices on the left (resp. right) of the cut
so an extension can be placed on any of these positions. Therefore, it is possible
to add up to k extensions to Ck2blogRc([[1, R]]).

We have
gcd

(
2R+ 1, (R+ 1)21+blogRc

)
= 1.

Therefore,
∀i < (R+ 1)21+blogRc, ∃ !u < (R+ 1)21+blogRc

such that
u(2R+ 1) = i

(
mod (R+ 1)21+blogRc

)
.

So
∀z ∈ Z, ∃! u < (R+ 1)21+blogRc and v ∈ Z

such that
z = u(2R+ 1) + v(R+ 1)21+blogRc.

If u ≤ 2v(R + 1) then a coloring of Cz([[1, R]]) can be obtained by adding u
extensions of 2R + 1 vertices to Cv(R+1)21+blogRc([[1, R]]). The largest value of z
for which u > 2v(R+ 1) is :

zmax = (R+ 1)21+blogRc
(
R+ (R+ 1)2blogRc

)
− (2R+ 1).

So as n ≥ zmax + 1, there exists a (2R + 1)-adjacent vertex-distinguishing edge-
coloring of Cn([[1, R]]).
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Theorem 8. Let R,n ∈ N∗.
• If n ≥ (R+2)21+blogRc (R+ (R+ 2)2blogRc)−2R and R = 3 mod 6 or R = 5

mod 6, then Cn([[1, R]]) admits a (2R+ 1)-adjacent vertex-distinguishing edge-
coloring.

• If R =1 mod 6 and n ≥ R+2
3 21+blogRc (R+ R+2

3 2blogRc)−2R, then C3n([[1, R]])
admits a (2R+ 1)-adjacent vertex-distinguishing edge-coloring.

Proof. The proof of Theorem 8 is the same as the proof of Theorem 7 except
the extension is slightly different and if R = 1 mod 6, 2R + 1 is not prime with
the period of the coloring on the base graph. In this case, the extension is not
sufficient to construct Cn([[1, R]]) for all values of n. The base graph is still colored
with ΦW , where W is defined in the same way as for R even. The sequence C
which is used in ΨC to color K2R+1 is:

C =
(

00,(17)

r0
0, r

0
1, . . . , r

0
R−1
2

,(18)

l1|Q1|−1, l
2
|Q2|−1, l

1
|Q1|−2, l

3
|Q3|−1, . . . , l

val(R−3)
0 , l

val(R−1)
0 ,(19)

r
val(R−1)
0 , . . . , r2

|Q2|−1, r
1
|Q1|−1,(20)

l0R−1
2

, . . . , l01, l
0
0

)
.(21)

The proof that Hc
−j ⊆ Hc

1−j is still valid. Before the cut on the base graph,

the last vertex v for which Hv = ∅ is 1−R
2 . For j ∈

[[
1, R−1

2

]]
, the colors in

Hc
−j \Hc

1−j are

• r0
j−1 (edge of length R);

• and the
(
R+1

2 − j
)th

color in the sequence 19 (if this color is lpk, then it is lost
by cutting an edge of length 2p(1 + 2|Qp| − 1)).

Before the cut on the extension, HvR−1
2

= ∅ and for j ∈
[[
1, R−1

2

]]
, the colors

in Hc
v−j
\ Hc

v1−j
are r0

j−1 (edge of length R) and the
(
R+1

2 − j
)

th color in the
sequence 19 with its edge of length R− 1.

Again, it is possible to add up to k extensions to Ck2blogRc([[1, R]]).
We have

gcd(2R+ 1, (R+ 2)21+blogRc) = gcd(R− 1, 3).

For R 6= 1 mod 3 and n ≥ (R + 2)21+blogRc (R+ (R+ 2)2blogRc) − 2R, there
exists u and v such that

n = u(2R+ 1) + v(R+ 2)21+blogRc
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and Cn([[1, R]]) can be obtained by adding u (2R + 1)-vertices extensions to
Cv(R+2)21+blogRc([[1, R]]).

For R = 1 mod 3 and n ≥ R+2
3 21+blogRc (R+ R+2

3 2blogRc)−2R, there exists
u and v such that

3n = u(2R+ 1) + v(R+ 2)21+blogRc.

Add u (2R + 1)-extensions to Cv(R+2)21+blogRc([[1, R]]) to get a coloring for
C3n([[1, R]]).

4. Perspectives

In this paper, we proved Theorem 2 which states that χ′a(Cn([[1, R]])) = 2R+1 for
most values of R and n. For values of R and n which are not covered by Theorem
2, the value of χ′a(Cn([[1, R]])) is unknown. Mainly, the following question remains.

Question 1. Let R = 1 mod 6 and n 6= 0 mod 3. Does there exist a (2R+ 1)-
adjacent vertex-distinguishing edge-coloring of Cn([[1, R]])?

For n 6= 0 mod 3, it is well known that χ′a(Cn({1})) = 4 as Cn({1}) is a
cycle which admits a 3-adjacent vertex-distinguishing edge-coloring if and only
if n = 0 mod 3. For R ≥ 7, it is unclear whether a (2R + 1)-adjacent vertex-
distinguishing edge-coloring exists for n 6= 0 mod 3. A way to prove its existence
would be to find a extension of k-vertices where k 6= 0 mod 3 which could be
added once or twice to any C3m([[1, R]]) colored in the way we defined to get a
coloring of Cn([[1, R]]). However, such an extension does not necessarily exist.

Another question is for anyR and n ≤ (R+2)21+blogRc (R+ (R+ 2)2blogRc)−
2R whether the theorem holds. The property is not true for all n and R. For
example, χ′a(C7({1, 2}) = 6, as shown in [15]. However, the authors prove that
for any n ≥ 5 and n 6= 7, χ′a(Cn({1, 2}) = 5. As a comparison for R = 2 Theorem
2 only covers n ≥ 68 (the coloring we defined can still be applied for 29 out of 63
values of n ∈ [[5, 67]]).

An interesting idea in the proof of Theorem 2 is highlighted by Lemma 4
which introduces a new type of edge-coloring that can be defined in the following
way.

Definition. Let G = (V,E) and G′ = (V,E′) be two graphs on the same set of
vertices, and ϕ : E → ϕ(E) be an edge-coloring of G. We say ϕ is (G,G′)-vertex-
distinguishing if ϕ is a proper edge-coloring of G and for all u, v ∈ V such that
(u, v) ∈ E′, ϕ(NG(u)) 6= ϕ(NG(v)).

Lemma 4 could be written as φ is a (C(2m+3)k({1, 3, . . . , 2m+ 1}), C(2m+3)k

([[1, 2m+2]])-vertex-distinguishing coloring. This definition unifies the concepts of
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adjacent vertex-distinguishing edge-colorings when G′ = G, strong edge-colorings
when G′ = K|V |, and d-strong edge-colorings when G′ is a d-power of G. Observe
that in the proof of Lemma 6 we color the edges of G = C(2m+3)k({1, 3, . . . , 2m+
1}) with a (G,G′)-vertex-distinguishing coloring where G′ = C(2m+3)k([[1, 2m +
2]]), and we also color the edges of G′ \ G with a proper coloring using colors
distinct from the ones used on G. This concept introduces a new problem for
edge-colorings of graphs.

Problem 9. Given k ∈ N, G = (V,E) and G′ = (V,E′), does there exist a
(G,G′)-vertex-distinguishing coloring using at most k colors?
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