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Abstract

Let κ′(G) denote the edge connectivity of a graph G. For any disjoint
subsets X,Y ⊆ E(G) with |Y | ≤ κ′(G) − 1, a necessary and sufficient
condition for G − Y to be a contractible configuration for G containing
a spanning closed trail is obtained. We also characterize the structure of a
graph G that has a spanning closed trail containing X and avoiding Y when
|X| + |Y | ≤ κ′(G). These results are applied to show that if G is (s, t)-
supereulerian (that is, for any disjoint subsets X,Y ⊆ E(G) with |X| ≤ s
and |Y | ≤ t, G has a spanning closed trail that contains X and avoids Y )
with κ′(G) = δ(G) ≥ 3, then for any permutation α on the vertex set V (G),
the permutation graph α(G) is (s, t)-supereulerian if and only if s+t ≤ κ′(G).
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1. Introduction

Graphs considered are finite and loopless. We follow [5] for undefined terms and
notations. A graph G is nontrivial if it contains at least one edge. As in [5], the
connectivity, the edge connectivity and the minimum degree of a graph G are
denoted by κ(G), κ′(G) and δ(G), respectively. For a subset X of V (G) or of
E(G), let G[X] denote the subgraph induced by X. For notational convenience,
we often also use an edge subset X to denote the induced subgraph G[X]. When
X ⊆ V (G), we denote G−X = G[V (G)−X]; when X ⊆ E(G), we denote G−X
to be a graph with the vertex set V (G) and the edge set E(G)−X. If X = {x},
we write G− x for G− {x} shortly.

Let O(G) denote the set of all odd degree vertices of a graph G. A graph
G is eulerian if G is connected with O(G) = ∅. A graph is supereulerian if it
has a spanning eulerian subgraph. Thus a graph G is supereulerian if and only
if G has a spanning closed trail. The supereulerian problem was initiated by
Boesch, Suffel and Tindell in [4], which seeks to characterize all supereulerian
graphs. Pulleyblank [23] later in 1979 proved that determining whether a graph
is supereulerian, even within planar graphs, is NP-complete. Since then, there
have been intensive studies on supereulerian graphs by many authors (see Catlin’s
survey [7], the supplements [12] and [17], among others).

The concept of (s, t)-supereulerian graphs was first raised in [20], as a model
to generalize supereulerian graphs. Given two non-negative integers s and t,
a graph G is (s, t)-supereulerian if for any disjoint subsets X,Y ⊆ E(G) with
|X| ≤ s and |Y | ≤ t, G−Y has a spanning closed trail that containsX. Clearly, G
is supereulerian if and only if G is (0, 0)-supereulerian. Since every supereulerian
graph must be 2-edge-connected, it follows that any (s, t)-supereulerian graph
must be (t + 2)-edge-connected. Locally connected (s, t)-supereulerian graphs
have been studied in [18] and [20], among others. In a recent paper [25], Xiong
et al. showed that while determining if a graph G is (0, 0)-supereulerian is NP-
complete, when t ≥ 3, whether a graphG is (s, t)-supereulerian can be determined
in polynomial time. This motivates our current research.

Throughout this paper, we let s, t be two non-negative integers. We are to
investigate, for all values s and t with s+ t ≤ κ′(G), the structural properties of
an (s, t)-supereulerian graph G may have, and to apply our findings to study the
(s, t)-supereulerianicity of permutation graphs.



Spanning Trails Avoiding and Containing Given Edges 1431

A useful tool to study (s, t)-supereulerian graphs is the elementary subdivi-
sion. An elementary subdivision of a graph G at an edge e = uv is an operation
to obtain a new graph G(e) from G− e by adding a new vertex ve and two new
edges uve and vev. For a subset X ⊆ E(G), we define G(X) to be the graph
obtained from G by elementarily subdividing every edge of X. Thus, G has a
spanning closed trail containing X if and only if G(X) is supereulerian.

Let 2K1 be the edgeless graph on two vertices. For a subset Y ⊆ E(G), the
contraction G/Y is the graph obtained from G by identifying the two ends of
each edge in Y and then by deleting the resulting loops. If H is a subgraph of
G, we often use G/H for G/E(H). If H is connected and vH is the vertex in
G/H onto which H is contracted, then H is the preimage of vertex vH . In [6],
Catlin introduced collapsible graphs as a powerful tool to study supereulerian
graphs. A graph G is collapsible if for any R ⊆ V (G) with |R| ≡ 0 (mod 2), G
has a spanning connected subgraph SR with O(SR) = R. Let H1, H2, . . . , Hc be
all maximal collapsible subgraphs of G. The reduction of G, denoted G′, is the
graph G/(H1 ∪H2 ∪ · · · ∪Hc). A graph G is reduced if G′ = G. Our main results
in this paper are as follows.

Theorem 1.1. Let G be a graph with κ′(G) ≥ 4 and let Y ⊆ E(G). Each of the

following holds.

(i) When |Y | < κ′(G), G−Y is collapsible if and only if Y is not in a minimum

edge-cut of G with |Y | = κ′(G)− 1.

(ii) If |Y | ≤ κ′(G) and G− Y is connected, then either G− Y is supereulerian,

or the reduction of G− Y is a K2 or a K2,p, where p is an odd integer.

We observe that Theorem 1.1(i) and (ii) are generalizations of Theorem 1.5
and Theorem 1.6 in [14], respectively.

Corollary 1.2 (Theorem 1.5 in [14]). Let G be a graph with κ′(G) ≥ 4 and let

Y ⊂ E(G) be an edge subset with |Y | ≤ 3. Then G− Y is collapsible if and only

if Y is not contained in a 4-edge-cut of G when |Y | = 3.

It was mistakingly omitted “when |Y | = 3” in the original statement of
Corollary 1.2 (Theorem 1.5 in [14]) and in the end of argument. In fact, if
G = K5 and Y consists of two adjacent edges in K5, then G − Y is collapsible,
which indicates that Corollary 1.2 is valid only for the case when |Y | = 3.

Corollary 1.3 (Theorem 1.6 in [14]). Let G be a graph with κ′(G) ≥ 4 and let

Y ⊂ E(G) be an edge subset with |Y | ≤ 4. Then G− Y is collapsible if and only

if G− Y is not contractible to any member in {2K1,K2,K2,2,K2,3,K2,4}.

Theorem 1.4. Let G be a graph with κ′(G) ≥ 4. Each of the following holds.

(i) If κ′(G) ≥ s+ t+ 2, then G is (s, t)-supereulerian.
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(ii) Suppose that κ′(G) ≥ s+t+1 and X,Y ⊂ E(G) are two disjoint subsets with

|X| ≤ s and |Y | ≤ t. Then, G − Y has a spanning closed trail containing

all edges in X if and only if Y is not in any minimum edge-cut of G with

|Y | = κ′(G)− 1.

(iii) Suppose that κ′(G) ≥ s+ t. Then G is not (s, t)-supereulerian if and only if

for some disjoint edge subsets X,Y ⊆ E(G) with |X| ≤ s and |Y | ≤ t, one
of the following holds.

(a) Y is in a (|Y |+ 1)-edge-cut of G.

(b) The reduction of G− (X ∪ Y ) is a 2K1, if |X| = s is odd.

(c) The reduction of G − Y is a member in {2K1,K2,K2,p : p is odd}, if
|Y | = κ′(G).

(d) The reduction of (G − Y )(X) is a K2,3, if |X ∪ Y | = 4 = κ′(G) with

1 ≤ |X| ≤ 2.

Let j(s, t) denote the smallest integer such that every graph G with κ′(G) ≥
j(s, t) is (s, t)-supereulerian. The value of j(s, t) was determined in [25] as Theo-
rem 1.2. The original statement missed the case of (s, t) = (4, 0), so we corrected
it as a corollary of Theorem 1.4 as follows.

Corollary 1.5 (Theorem 1.2 in [25]).
(1)

j(s, t) =







max{4, t+ 2}, if 0 ≤ s ≤ 1, or (s, t) ∈ {(2, 0), (2, 1), (3, 0), (4, 0)};
5, if (s, t) ∈ {(2, 2), (3, 1)};

s+ t+ 1−(−1)s

2 , if s ≥ 2 and s+ t ≥ 5.

The arguments to justify Corollary 1.5 also lead to the following corollary.

Corollary 1.6. Let G be a graph with κ′(G) < s + t ≤ |E(G)|. Then, G is

(s, t)-supereulerian if and only if G is eulerian and t = 0.

In this paper, we use Sn to denote the permutation group of degree n. Let G
be a graph with vertices v1, v2, . . . , vn, and let Gx and Gy be two copies of G, with
vertex sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, respectively, such that vi 7−→ xi
and vi 7−→ yi are graph isomorphisms between G and Gx, G and Gy, respectively.
For each permutation α in Sn, we follow [11, 24] to define the α-permutation

graph over G to be the graph α(G) that consists of two vertex disjoint copies
Gx and Gy of G, along with the edges xiyα(i) for each 1 ≤ i ≤ n. For example,
the best known permutation graph is the Petersen graph. In recent years, with
the introduction of computer network wiring problems, studies on permutation
graphs derived from practical problems have attracted the attention of many
graph theory researchers. Prior results on the connectivity, edge connectivity
and minimum degree of permutation graphs can be found in [1, 2, 3, 10, 11, 16,
19, 21, 22], and among others.
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Theorem 1.7. Let G be an (s, t)-supereulerian graph on n vertices with κ′(G) ≥
3. If s+ t ≤ κ′(G) + 1, and κ′(G) 6= δ(G) when s+ t = κ′(G) + 1, then α(G) is

(s, t)-supereulerian for each α ∈ Sn.

Theorem 1.8. Let G be an (s, t)-supereulerian graph on n vertices with κ′(G) =
δ(G) ≥ 3 and let α ∈ Sn. Then, α(G) is (s, t)-supereulerian if and only if

s+ t ≤ κ′(G).

Needed mechanism will be presented and developed in Section 2, together
with some auxiliary results. In Section 3, the main results will be proved. Some
discussions on an application to permutation graphs and future work will be
addressed in the last two sections.

2. Preliminaries

Throughout this paper, for two integers m,n with m < n, we denote [m,n] =
{m,m+1, . . . , n}. For two vertex subsets S, T of a graph G, let EG[S, T ] = {xy :
x ∈ S, y ∈ T} and ∂G(S) = EG[S, V (G) − S]. We denote dG(v) = |∂G({v})|
to be the degree of vertex v ∈ V (G). For two subgraphs H1, H2 of G, we write
EG[H1, H2] for EG[V (H1), V (H2)]. For two graphs G1, G2, let G1∪G2 be a graph
with the vertex set V (G1) ∪ V (G2) and the edge set E(G1) ∪ E(G2).

We will present some of the former results that are needed in our argument.
The first summarizes certain properties of collapsible graphs and reduced graphs.

Theorem 2.1. Let G be a connected graph and H be a collapsible subgraph of

G. Each of the following holds.

(i) (Catlin, Lemma 3 in [6]) Let J be a subgraph of G. If G is collapsible

(respectively, supereulerian), then G/J is collapsible (respectively, sup-

ereulerian).

(ii) (Catlin, Theorem 8 in [6]) G is collapsible if and only if G/H is collapsible.

In particular, G is collapsible if and only if the reduction of G is a K1.

(iii) (Catlin, Theorem 8 in [6]) G is supereulerian if and only if G/H is supereu-

lerian.

(iv) (Catlin et al., Theorem 3 in [9]) If each edge of G is in a cycle of length 2
or 3, then G is collapsible.

The spanning tree packing number of G, denoted τ(G), is the maximum
number of edge-disjoint spanning trees of G. Let F (G) be the minimum number
of extra edges that must be added to G so that the resulting graph has two
edge-disjoint spanning trees. Hence, τ(G) ≥ 2 if and only if F (G) = 0.

Theorem 2.2. Let G be a connected graph and G′ be the reduction of G. Each

of the following holds.
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(i) (Catlin, Theorem 2 in [6]) If κ′(G) ≥ 4, then F (G) = 0, and so G is col-

lapsible.

(ii) (Catlin, Theorem 7 in [6]) If F (G) ≤ 1, then G′ ∈ {K1,K2}.

(iii) (Catlin et al., Theorem 1.3 in [8]) If F (G) ≤ 2, then G′ ∈ {K1,K2,K2,t :
t ≥ 1}.

Theorem 2.3 (Piazza and Ringeisen, Theorem 4.2 in [22]). Let G be a connected

graph on n vertices with κ(G) = δ(G). Then, κ(α(G)) = κ′(α(G)) = δ(α(G)) =
δ(G) + 1 for each α ∈ Sn.

Observation 2.4. Let G be a graph on n vertices with κ′(G) ≥ 2. Then, for

each α ∈ Sn, κ
′(G) = δ(G) if and only if κ′(α(G)) = κ′(G) + 1.

Proof. Suppose that κ′(G) = δ(G). By the definition of α(G), κ′(α(G)) ≥
κ′(G) + 1. Since κ′(α(G)) ≤ δ(α(G)) = δ(G) + 1 = κ′(G) + 1, we have the
equality holds and then we are done.

Conversely, suppose that κ′(α(G)) = κ′(G) + 1. Let W be a minimum edge-
cut of α(G) and let H1, H2 be the two components of α(G) − W . We may
assume that |V (H1)| ≤ |V (H2)|. Let G1 and G2 be the two copies of G in
α(G), and let Ui = V (Gi) ∩ V (H1) and Vi = V (Gi) ∩ V (H2) for each i = 1, 2.
Since G is connected, Eα(G)[Ui, Vi] 6= ∅ for some i = 1, 2. We may assume
that Eα(G)[U1, V1] 6= ∅. Since Eα(G)[U1, V1] is also an edge-cut of G1, κ

′(G) ≤
|Eα(G)[U1, V1]| < |Eα(G)[H1, H2]| = κ′(α(G)) = κ′(G) + 1, which indicates that
|Eα(G)[U1, V1]| = κ′(G) and |V (H1)| = |U1| = 1 as κ′(G) ≥ 2. Then, δ(G) ≤
|∂G1

(U1)| = κ′(G) and so δ(G) = κ′(G).

3. Proofs of the Main Results

3.1. Proofs of Theorems 1.1 and 1.4

Theorems 1.1 and 1.4 will be proved in this subsection. We start with two
corollaries of the following theorem.

Theorem 3.1 (Corollary 2.4 in [25]). Let G be a graph, and ǫ, k, ℓ be integers

with ǫ ∈ {0, 1} and 2 ≤ k ≤ ℓ. The following are equivalent.

(i) κ′(G) ≥ 2ℓ+ ǫ.

(ii) For any X ⊆ E(G) with |X| ≤ 2ℓ− k + ǫ, τ(G−X) ≥ k.

Corollary 3.2. Let G be a graph with κ′(G) ≥ 4 and let ǫ ∈ {0, 1}. If an edge

subset X ⊆ E(G) satisfies |X| ≤ κ′(G)− ǫ, then F (G−X) ≤ 2− ǫ.

Proof. Let X1 ⊆ X with |X1| = min{|X|, 2 − ǫ}. Then |X −X1| ≤ κ′(G) − 2.
As κ′(G) ≥ 4, by Theorem 3.1, τ(G− (X−X1)) ≥ 2. It implies that F (G−X) ≤
|X1| ≤ 2− ǫ.
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Corollary 3.3. Let H1, H2 be two subgraphs of a graph G with |EG[H1, H2]| =
κ′(G) ≥ 4. Then, τ(H1) ≥ 2 and τ(H2) ≥ 2. Consequently, H1 and H2 are both

collapsible.

Proof. Let Z ⊂ EG[H1, H2] with |Z| = 2 and Z ′ = EG[H1, H2] − Z. Then
|Z ′| = κ′(G) − 2. By Theorem 3.1, τ(G − Z ′) ≥ 2. Since Z is the minimum
edge-cut of G − Z ′ and |Z| = 2, it indicates that τ(Hi) ≥ 2 for each i = 1, 2.
Then, each Hi is collapsible by Theorem 2.2(i).

Proof of Theorem 1.1. Suppose that G is a graph with κ′(G) ≥ 4 and Y ⊆
E(G).

(i) (Necessity) Suppose that |Y | < κ′(G) and G − Y is collapsible. This
implies that κ′(G− Y ) ≥ 2. Then Y is not lying in any minimum edge-cut of G
when |Y | = κ′(G)− 1.

(Sufficiency) Conversely, suppose that |Y | < κ′(G) and Y is not in any minimum
edge-cut of G with |Y | = κ′(G) − 1. If |Y | ≤ κ′(G) − 2, then, by Theorem 3.1,
τ(G − Y ) ≥ 2. It implies that G − Y is collapsible by Theorem 2.2(i). Now we
consider that |Y | = κ′(G)− 1. Since there is no edge-cut of G of size κ′(G) that
contains Y , κ′(G− Y ) ≥ 2. As κ′(G) ≥ 4 and |Y | = κ′(G)− 1, by Corollary 3.2,
F (G− Y ) ≤ 1. As κ′(G− Y ) ≥ 2, by Theorem 2.2(ii), G− Y is collapsible.

(ii) Suppose that G − Y is connected and |Y | ≤ κ′(G). By Corollary 3.2,
F (G− Y ) ≤ 2. By Theorem 2.2(iii), either G− Y is collapsible and then G− Y
is supereulerian; or the reduction of G − Y is a K2 or a K2,p, for some integer
p ≥ 1. If p is even, then as K2,p is eulerian, it follows by Theorem 2.1(iii) that
G− Y is supereulerian. Hence if G− Y is not supereulerian, then p is odd. This
completes the proof of Theorem 1.1.

To prove Theorem 1.4, we need some additional lemmas, as shown below.

Lemma 3.4. Let X and Y be two disjoint edge subsets of G. If G− (X ∪ Y ) is
collapsible, then G− Y has a spanning closed trail containing all edges in X.

Proof. Let R = O(G[X]). By the definition of collapsible graphs, G−(X∪Y ) has
a spanning connected subgraph LR with O(LR) = R. Define L = G[E(LR)∪X].
Then O(L) = ∅ and V (L) = V (LR) = V (G). Hence L is a spanning closed trail
of G with X ⊆ E(L), and so the lemma is proved.

Lemma 3.5. Let G be a graph with κ′(G) ≥ 4. For every two disjoint edge

subsets X,Y ⊂ E(G) with |X| ≤ s and |Y | ≤ t, each of the following holds.

(i) If κ′(G) ≥ s+ t+ 2, then G− (X ∪ Y ) is collapsible.

(ii) If κ′(G) ≥ s+ t+ 1, then either G− (X ∪ Y ) is collapsible, or the reduction

of G− (X ∪ Y ) is a K2.
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Proof. Assume that the edge subsets X and Y are given as stated in the hy-
potheses of the lemma.

(i) Since |X ∪ Y | ≤ s + t ≤ κ′(G) − 2, it follows by Theorem 3.1, that
τ(G− (X ∪ Y )) ≥ 2, and so by Theorem 2.2(i), G− (X ∪ Y ) is collapsible.

(ii) By Lemma 3.5(i), it suffices to assume that |X ∪ Y | = κ′(G) − 1. By
Corollary 3.2, F (G − (X ∪ Y )) ≤ 1. By Theorem 2.2(ii), either G − (X ∪ Y ) is
collapsible, or the reduction of G− (X ∪ Y ) is a K2. This proves (ii).

Recall that G(X) is the graph obtained from G by elementarily subdivid-
ing every edge of X. When X = {e1, e2, . . . , es}, we write G(e1, e2, . . . , es) for
G({e1, e2, . . . , es}) and denote VX = {ve : e ∈ X}.

Lemma 3.6. Let G be a graph and let X,Y ⊆ E(G) be two disjoint subsets with

1 ≤ |X| ≤ 2 and 4 ≤ |X ∪ Y | ≤ κ′(G) satisfying

(i) G− (X ∪ Y ) is connected,

(ii) G− Y is collapsible, and

(iii) the reduction of (G− Y )(X) is a K2,p (p ≥ 2).

Then, κ′(G) = |X ∪ Y | = 4 and |X|+ 1 ≤ p ≤ 4. Moreover, (G− Y )(X) has no

nontrivial collapsible subgraph that contains ve for each e ∈ X.

Proof. Assume that X = {e1} or {e1, e2}. Let w1, w2 be the two vertices of
degree p, and let v1, v2, . . . , vp be the vertices of degree two in the reduction of
(G− Y )(X).

Let X ′ = {e ∈ X : (G − Y )(X) has no nontrivial collapsible subgraph that
contains ve}. We claim that X = X ′. If not, for each ei ∈ X − X ′, let Li be
the maximal nontrivial collapsible subgraph of (G − Y )(X) that contains vei .
Note that when |X − X ′| = 2, L1 and L2 may be the same. Let Ni be the
graph obtained from Li by contracting one incident edge of each vei ∈ V (Li),
that is, Ni

∼= (G − Y )[V (Li) − VX ] for each i. As G − Y is collapsible, we have
(G−Y )(X)/(

⋃

i Li) = (G−Y )/(
⋃

iNi) is collapsible by Theorem 2.1(i), As Li is
collapsible, then, applying Theorem 2.1(ii), (G − Y )(X) is collapsible, contrary
to the condition of (iii). Thus, (G−Y )(X) has no nontrivial collapsible subgraph
that contains ve for each e ∈ X.

Then, we may assume that for each 1 ≤ i ≤ |X|, vi = vei . Since G −
(X ∪ Y ) is connected, we have p > |X| and denote Ji to be the preimage of
vi for each i > |X|. Let Hi be the preimage of wi for each i ∈ {1, 2}, and let
J = {H1, H2, J|X|+1, . . . , Jp} (see Figure 1). Since

(2)

2(p− |X|) + 2p+ 2|Y | ≥
∑

J∈J

|∂G(J)| ≥ (2 + p− |X|)κ′(G)

≥ (2 + p− |X|)|X ∪ Y |,
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we have |X ∪ Y | ≤ 4. As |X ∪ Y | ≥ 4, the equalities hold in (2). It shows that
for each J ∈ J ,

(3) |∂G(J)| = κ′(G) = |X ∪ Y | = 4.

When |X| = 1, by (3), each ∂G(Ji) contains at least two edges in Y . It follows
that p ≤ 4. Thus, 2 ≤ p ≤ 4. When |X| = 2, by (3), each ∂G(Ji) contains all
edges in Y , which implies that p ≤ 4. Thus, 3 ≤ p ≤ 4.

H2

H1

v1 v|X|

J|X|+1 Jp

(G− Y )(X)

Figure 1. Illustration of the proof of Lemma 3.6.

Proof of Theorem 1.4.By Lemma 3.4 and Lemma 3.5(i), Theorem 1.4(i) holds.
In the rest of the proofs, we let k = κ′(G).

(ii) (Necessity) Suppose that G−Y has a spanning closed trail containing all
edges in X. If Y is in a k-edge-cut of G with |Y | = k − 1, then κ′(G − Y ) = 1,
which contradicts with our assumption that G − Y has a spanning closed trail.
Thus, Y is not in any k-edge-cut of G with |Y | = k − 1.

(Sufficiency) Suppose that Y is not in a k-edge-cut of G with |Y | = k − 1. If
k ≥ s + t + 2, then by Theorem 1.4(i), we are done. Now, we consider that
|X|+ |Y | = s+ t = k− 1. It follows by Lemma 3.5(ii), G− (X ∪Y ) is collapsible,
or the reduction of G − (X ∪ Y ) is a K2. If G − (X ∪ Y ) is collapsible, then,
by Lemma 3.4, G − Y has a spanning closed trail containing X. Thus, we only
need to consider the situation of the reduction of G − (X ∪ Y ) being a K2. Let
w1w2 be the only edge in the reduction of G − (X ∪ Y ), and let H1, H2 be the
preimages of w1, w2, respectively. As |X|+ |Y | = k − 1, (X ∪ Y ) ⊂ EG[H1, H2].
Since Y is not in any k-edge-cut of G with |Y | = k − 1, it shows that t ≤ k − 2
and X 6= ∅. Let X = {e1, e2, . . . , es} and L = (G − Y )(X). Since every edge
in L/(H1 ∪ H2) = {w1w2} ∪ (

⋃

1≤i≤s{w1vei , w2vei}) lies in a cycle of length 3,
where vei is the new vertex obtained by elementarily subdividing edge ei ∈ X,
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by Theorem 2.1(iv), L/(H1 ∪ H2) is collapsible, and so L is collapsible as well
by Theorem 2.1(ii). Then L is supereulerian, which indicates that G − Y has a
spanning closed trail containing all edges in X.

(iii) (Sufficiency) Suppose that for some disjoint edge subsets X,Y ⊂ E(G)
with |X| ≤ s and |Y | ≤ t, one of Theorem 1.4(iii)(a)–(d) holds. Then, G − Y
does not have a spanning closed trail containing all edges in X. This shows that
G is not (s, t)-supereulerian.

(Necessity) Suppose that G is not (s, t)-supereulerian. Then, there exist two
disjoint edge subsets X,Y ⊂ E(G) with |X| ≤ s and |Y | ≤ t such that

(4) G− Y does not have a spanning closed trail containing all edges in X.

We aim to show that one of Theorem 1.4(iii)(a)-(d) holds. If s + t < k, then
by Theorem 1.4(ii) and (4), Y is in a minimum edge-cut of G with |Y | = k − 1,
which is Theorem 1.4(iii)(a). Now we consider that |X ∪ Y | = s + t = k. Let
X = {e1, e2, . . . , es} and distinguish among the following two cases.

Case 1. G− (X ∪Y ) is disconnected. Let H1 and H2 be the two components
of G − (X ∪ Y ) and so EG[H1, H2] = X ∪ Y . By Corollary 3.3, each Hi is
collapsible. Then, the reduction of G − (X ∪ Y ) is a 2K1. Let w1, w2 be the
two vertices of the reduction of G − (X ∪ Y ). If X 6= ∅ and |X| is even, then
⋃

1≤i≤s{w1vei , w2vei} is eulerian. It follows by Theorem 2.1(ii) that (G− Y )(X)
is supereulerian, which implies that G−Y has a spanning closed trail containing
all edges in X, a contradiction to (4). Thus, either |X| is odd or |Y | = k, that
is, either Theorem 1.4(iii)(b) or (c).

Case 2. G− (X ∪Y ) is connected. As |X ∪Y | = κ′(G) ≥ 4, by Corollary 3.2,
F (G− (X ∪ Y )) ≤ 2. By Theorem 2.2(iii), Lemma 3.4, and (4), the reduction of
G− (X ∪ Y ) is a member of {K2,K2,p : p ≥ 1}.

Subcase 2.1. The reduction of G − (X ∪ Y ) is a K2. Let w1w2 be the only
edge of the reduction of G− (X ∪ Y ). Denote Hi be the preimage of wi for each
i = 1, 2.

We claim that X ∩ EG[H1, H2] = ∅. If X ∩ EG[H1, H2] 6= ∅, let X ∩
EG[H1, H2] = {e1, e2, . . . , es′} where s − 1 ≤ s′ ≤ s. Since every edge in
L = {w1w2} ∪ (

⋃

1≤i≤s′{w1vei , w2vei}) lies in a cycle of length 3, by Theorem
2.1(iv), L is collapsible. Since s+t = κ′(G) ≤ |EG[H1, H2]| ≤ 1+|X∪Y | = 1+s+t,
either |EG[H1, H2]| = κ′(G)+1, or |EG[H1, H2]| = κ′(G) and |(X∪Y )∩E(Hi)| = 1
for exactly one i ∈ {1, 2}, say {e} = (X∪Y )∩E(H1). If |EG[H1, H2]| = κ′(G)+1,
or |EG[H1, H2]| = κ′(G) and e ∈ Y , then (G− Y )(X)/(H1 ∪H2) = L is collapsi-
ble, by whence Theorem 2.1(ii), (G−Y )(X) is collapsible, a contradiction to (4).
If |EG[H1, H2]| = κ′(G) and e ∈ X, then by Corollary 3.3, τ(Hi) ≥ 2 for each
i = 1, 2, and so F (H1(e)) ≤ 1 and κ′(H1(e)) ≥ 2, which implies that H1(e) is



Spanning Trails Avoiding and Containing Given Edges 1439

collapsible by Theorem 2.2(ii). Since (G−Y )(X)/(H1(e)∪H2) = L is collapsible,
by Theorem 2.1(ii), (G− Y )(X) is collapsible, a contradiction to (4).

Then, X ∩EG[H1, H2] = ∅. It shows that if the reduction of G− (X ∪ Y ) is
a K2, then it will be either Theorem 1.4(iii)(a) or (c).

Subcase 2.2. The reduction of G− (X ∪ Y ) is a K2,p (p ≥ 1).

Subcase 2.2.1. |Y | = k. Then X = ∅. If p is even, then (G − (X ∪ Y ))′ =
(G − Y )′ ∼= K2,p is eulerian. By Theorem 2.1(ii) that G − Y is supereulerian,
contrary to (4). Thus in this case, p must be an odd integer, which implies
Theorem 1.4(iii)(c).

Subcase 2.2.2. |Y | = k−1. Then X = {e1}. By Corollary 3.2, F (G−Y ) ≤ 1.
It follows by Theorem 2.2(ii) that either G−Y is collapsible, or (G−Y )′ ∼= K2. If
(G−Y )′ ∼= K2, then, since (G− (X ∪Y ))′ = (G− ({e1}∪Y ))′ ∼= K2,p (p ≥ 1), we
have p = 1 and κ′(G) ≤ 2, which contradicts with the assumption of κ′(G) ≥ 4.

Now, we assume that G − Y is collapsible. As F (G − Y ) ≤ 1, we have
F ((G − Y )(e1)) ≤ 2. Let G1 = (G − Y )(e1). Since κ′(G − Y ) ≥ 2, κ′(G1) ≥ 2.
Then, by Theorem 2.2(iii) and (4), G′

1
∼= K2,q (q ≥ 2). By Lemma 3.6 that

|Y | = 3, κ′(G) = 4 and 2 ≤ q ≤ 4. If q = 2 or 4, then G′
1 is eulerian and

so by Theorem 2.1(ii) that G1 = G(e1) − Y is supereulerian, which means that
G − Y contains a spanning closed trail containing X = {e1}, contrary to (4).
Then, q = 3, and the reduction G′

1 = ((G− Y )(X))′ ∼= K2,3, leading to Theorem
1.4(iii)(d).

Subcase 2.2.3. |Y | ≤ k− 2. In this case, let X1 = {e1, e2} and X2 = X −X1.
As |X2 ∪ Y | = k − 2, by Theorem 3.1, τ(G− (X2 ∪ Y )) ≥ 2. Then, by Theorem
2.2(i), G − (X2 ∪ Y ) is collapsible, and so κ′(G − (X2 ∪ Y )) ≥ 2. Let G2 =
(G − (X2 ∪ Y ))(e1, e2). It follows that κ′(G2) ≥ 2 and F (G2) ≤ 2. Then, by
Theorem 2.2(iii), G′

2 ∈ {K1,K2,q : q ≥ 2}.
If G′

2
∼= K1, which means that G2 = G(e1, e2)− (X2 ∪ Y ) is collapsible, then

by Lemma 3.4, G(e1, e2) − Y contains all edges in X2. It follows that G − Y
contains all edges in X, which contradicts to (4).

If G′
2
∼= K2,q (q ≥ 2), then let w1, w2 be the two vertices of degree q, and

v1, v2, . . . , vq be vertices of degree two in G′
2. Let Hi be the preimage of wi for

each i = 1, 2, and Ji be the preimage of vi for each i ∈ [1, q]. By Lemma 3.6,
|X2 ∪ Y | = 2, κ′(G) = 4 and 3 ≤ q ≤ 4. Let v1 = ve1 and v2 = ve2 .

Subcase 2.2.3.1. q = 3. In this case, there is exactly one edge in X2 ∪ Y
crossing Hi and J3 in G for each i. If |X2| = 0, it is Theorem 1.4(iii)(d). If
|X2| = 1, then we may assume that e3 ∈ EG[J3, H1]. Let L1 be the reduction
of G(X) − Y . Then L1 = G′

2 ∪ {v3ve3 , w1ve3}. As L1 − w2v3 is eulerian, L1 is
supereulerian, which implies that G − Y has a spanning closed trail containing
X = {e1, e2, e3}, contrary to (4). If |X2| = 2, then Y = ∅ and G(X) is collapsible,
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which means thatG has a spanning closed trail containing all edges inX, contrary
to (4).

Subcase 2.2.3.2. q = 4. In this case, G′
2 is eulerian and EG[J3, J4] = X2 ∪ Y .

When |X2| = 0, G′
2 = (G(X) − Y )′ being eulerian implies that G(X) − Y is

supereulerian, which contradicts to (4).

When |X2| = 1, X2 = {e3}. As G2 = (G − Y )(e1, e2, e3) − ve3 , let L2 =
G′

2 ∪ {v3ve3 , v4ve3} (see Figure 2 for an illustration). Note that F (K3,3 − e) = 2,
where e ∈ E(K3,3). It follows by Theorem 2.2(iii) that L2[w1, w2, ve2 , v3, v4, ve3 ]

∼=
K3,3 − e is collapsible. As L2/L2[w1, w2, ve2 , v3, v4, ve3 ] is a cycle of length 2 that
is collapsible, by Theorem 2.1(ii), L2 is collapsible. This implies that G(X)− Y
is supereulerian, which contradicts to (4).

When |X2| = 2, X2 = {e3, e4}. Let L3 = G′
2 ∪ {ve3v3, ve3v4, ve4v3, ve4v4}.

Since L3 is eulerian, G(X)− Y is supereulerian, which contradicts to (4).

w2

w1

ve1 ve2 v3 v4

ve3

Figure 2. Illustration of the proof of Subcase 2.2.3.2 in Theorem 1.4.

3.2. Proofs of Corollaries 1.5 and 1.6

In the subsection, we shall prove Corollary 1.6 and provide a schetch of proof of
Corollary 1.5 applying Theorem 1.4. Let us start with a necessary condition of
(s, t)-supereulerian graphs.

Proposition 3.7. If G is an (s, t)-supereulerian graph, then t ≤ κ′(G)− 2 and

s ≤











|E(G)|, if G is eulerian and t = 0;

2

⌊

κ′(G)− t

2

⌋

, otherwise.

Proof. Let k = κ′(G) and let W be a minimum edge-cut of G. Pick an edge
subset Y ⊆ W with |Y | ≤ t. Since G is (s, t)-supereulerian, G−Y has a spanning
closed trail Γ. Since W is an edge-cut of G, |E(Γ) ∩ W | ≥ 2 and so |Y | ≤
|W − E(Γ)| ≤ k − 2. By arbitrary of Y with |Y | ≤ t, we have t ≤ k − 2.
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If G is eulerian, then G has a spanning closed trail containing all edges in
E(G). This means that G is (|E(G)|, 0)-supereulerian. Now we assume that G is
non-eulerian or t ≥ 1.

We claim that s+ t ≤ k, and when s+ t = k, s ≡ 0 (mod 2). If not, then we
pick an edge subset X ′ ⊆ W satisfying that |X ′| ≤ s, |X ′| ≡ 1 (mod 2) and |X ′| is
maximized. Let Y ′ = W −X ′. Then |Y ′| ≤ 1 ≤ t. Since G is (s, t)-supereulerian,
G − Y ′ has a spanning closed trail Γ′ containing all edges in X ′. Since W is an
edge-cut of G, X ′ = E(Γ′) ∩W 6= ∅ and |X ′| = |E(Γ′) ∩W | ≡ 0 (mod 2), which
contradicts with that |X ′| ≡ 1 (mod 2). Thus, s + t ≤ k, and when s + t = k,
s ≡ 0 (mod 2). This follows that s ≤ 2

⌊

k−t
2

⌋

.

By Proposition 3.7, we verify Corollary 1.6 as follows.

Proof of Corollary 1.6. Suppose that G is eulerian and t = 0. Then for any
non-negative integer s ≤ |E(G)|, G is (s, 0)-supereulerian.

Conversely, suppose that G is (s, t)-supereulerian, and that either G is non-

eulerian or t > 0. By Proposition 3.7, s ≤ 2
⌊

κ′(G)−t

2

⌋

and t ≤ κ′(G) − 2. This

follows that s+t ≤ κ′(G), which contradicts with the assumption of κ′(G) < s+t.
Thus, if G is (s, t)-supereulerian, G is eulerian and t = 0.

Recall that j(s, t) denotes the smallest integer such that every graph G with
κ′(G) ≥ j(s, t) is (s, t)-supereulerian.

Theorem 3.8 (Examples 3.1(iii) and 3.2(iii) in [25]). Each of the following holds.

(i) j(s, t) ≥ 4;

(ii) j(2, 2) ≥ 5.

By Proposition 3.7, Corollary 1.6 and Theorem 3.8(i), we obtain the follow-
ing corollary (Proposition 1.1 in [25]) immediately. If a graph G is eulerian, then
G is (s, 0)-supereulerian where s ≤ |E(G)|. It was mistakingly omitted the con-
dition that G is non-eulerian or t ≥ 1 in the original statement of Corollary 3.9
(Proposition 1.1 in [25]). So we corrected as follows.

Corollary 3.9 (Proposition 1.1 in [25]). Let G be an (s, t)-supereulerian graph.

If G is non-eulerian or t ≥ 1, then

κ′(G) ≥











max {4, t+ 2} , if s = 0;

max

{

4, s+ t+
1− (−1)s

2

}

, if s ≥ 1.

Now, we can provide a schetch of proof of Corollay 1.5 as follows.
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Schetch of proof of Corollary 1.5. Let m be the right hand side of (1). Let
G be a graph with κ′(G) ≥ m. If (s, t) = (4, 0), or 2 ≤ s ≡ 0 (mod 2) and
s + t ≥ 5, then s + t = m, and so G is (s, t)-supereulerian by Theorem 1.4(iii);
otherwise, then s+ t ≤ m− 1, and so G is (s, t)-supereulerian by Theorem 1.4(ii)
as t < m− 1. Thus, by the definition of j(s, t), j(s, t) ≤ m.

Note that every eulerian graph with s edges is (s, 0)-supereulerian. It indi-
cates that to show that j(s, t) ≥ m, it suffices to prove that κ′(G1) ≥ m where
G1 is (s, t)-supereulerian and G1 is non-eulerian when t = 0. Then, by Theorem
3.8(ii) and Corollary 3.9, we have κ′(G1) ≥ m (please see [25] for detailed proof
in this part).

3.3. Proofs of Theorems 1.7 and 1.8

In this subsection, we shall verify Theorems 1.7 and 1.8.

Proof of Theorem 1.7. Suppose that G is (s, t)-supereulerian with κ′(G) ≥ 3.
Let X,Y ⊂ E(α(G)) be two disjoint edge subsets with |X| ≤ s and |Y | ≤ t. Let
k = κ′(α(G)).

If s + t ≤ κ′(G), then, as k ≥ κ′(G) + 1 ≥ 4, s + t ≤ k − 1. Since G is
(s, t)-supereulerian, by Proposition 3.7, |Y | ≤ t ≤ κ′(G) − 2 ≤ k − 3. Thus, by
Theorem 1.4(ii), α(G)− Y has a spanning closed trail containing all edges in X,
which implies that α(G) is (s, t)-supereulerian.

If s + t = κ′(G) + 1 and κ′(G) 6= δ(G), then, as G is (s, t)-supereulerian,
by Corollary 1.6, G is eulerian and t = 0. It shows that s = κ′(G) + 1. As
3 ≤ κ′(G) 6= δ(G), by Observation 2.4, κ′(α(G)) ≥ κ′(G) + 2 ≥ 5. Since s ≤
κ′(α(G))− 1 and t = 0, by Theorem 1.4(ii), α(G)−Y has a spanning closed trail
containing all edges in X, which implies that α(G) is (s, t)-supereulerian.

By Corollary 1.6 and Theorem 1.7, we have the following corollary directly.

Corollary 3.10. Let G be an (s, t)-supereulerian graph on n vertices with κ′(G) ≥
3. If G is non-eulerian or t ≥ 1, then α(G) is (s, t)-supereulerian for each α ∈ Sn.

Proof of Theorem 1.8. Suppose that G is an (s, t)-supereulerian graph with
κ′(G) = δ(G) ≥ 3. By Theorem 1.7, it suffices to show the necessity of Theorem
1.8. Suppose that α(G) is (s, t)-supereulerian. We argue by contradiction and
assume that s+ t > κ′(G). Since G is (s, t)-supereulerian, by Corollary 1.6, G is
eulerian and t = 0. This indicates that α(G) is non-eulerian by the definition of
α(G). Since α(G) is (s, t)-supereulerian and t = 0, by Proposition 3.7, κ′(G) <

s ≤ 2
⌊

κ′(α(G))
2

⌋

. As G is eulerian, κ′(G) is even. It follows that κ′(α(G)) ≥

κ′(G) + 2, which contradicts the assumption of κ′(G) = δ(G) by Observation
2.4.
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4. An Application to Iterated Permutation Graphs

Suppose that G is a wheel, or an n-dimensional hypercube Qn (n ≥ 3), or a
complete graph Kn (n ≥ 4), or a complete bipartite graph Km,n (min{m,n} ≥ 3).
If G is (s, t)-supereulerian, then by Theorem 1.8, for each α ∈ S|V (G)|, α(G) is
(s, t)-supereulerian if and only if s+ t ≤ κ′(G).

Let G be a graph on n vertices and let A = (α0, α1, α2, . . .) be a permu-
tation sequence where αi ∈ S2in. We define G0(A) = G, and the i-th iterated

permutation graph of G with respect to the sequence A is defined recursively as
Gi(A) = αi−1(G

i−1(A)), for each positive integer i. If we do not emphasize the
sequence A, we use Gi for Gi(A). For example, the n-th iterated permutation
graph of K1 is a hypercube variant, a twisted hypercube of dimension n (see
Definition 1.1 in [26]). By the definition of iterated permutation graphs, as well
as Theorem 2.3 and Observation 2.4, we obtain the following observation.

Observation 4.1. Let G be a connected graph. For each integer m ≥ 0, each of

the following holds.

(i) if κ′(G) = δ(G), then κ′(Gm) = δ(Gm) = δ(G) +m;

(ii) if κ(G) = δ(G), then κ(Gm) = κ′(Gm) = δ(Gm) = δ(G) +m.

Given two non-negative integers s, t, a permutation sequence A, and a graph
G. By Theorem 1.4(i), when κ′(Gm) ≥ s + t + 2, Gm is (s, t)-supereulerian. It
follows by Theorem 1.7, Gm+1 is also (s, t)-supereulerian. Therefore, there must
exist a smallest integer m such that Gm is (s, t)-supereulerian. In Table 1, we list
the edge connectivity κ′(Gm), which are constructed by some special graphs.

Table 1. Edge connectivity of α(G) and Gm of some special graphs.

G κ(α(G)) = δ(α(G)) κ′(Gm)

Nontrivial tree 2 m+ 1
n-cycle Cn 3 m+ 2
wheel Wn 4 m+ 3
hypercube Qn n+ 1 n+m
complete graph Kn n n+m− 1
complete bipartite graph Kn1,n2

min{n1, n2}+ 1 min{n1, n2}+m

In general, for given integers s and t, it is an interesting question that how to
find the smallest m such that Gm is (s, t)-supereulerian for a connected graph G.
Let f(G) denote a graphical function and define f(G) to be the maximum value
of f(H) taken over all subgraphs H of G. As indicated in [15], for certain network
reliability measures f , networks G with f(G) = f(G) are important for network
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survivability, and so the study of f(G) is of interest. The following theorem gives
some new and feasible ideas to find the smallest m.

Theorem 4.2. Let G be a connected graph with n vertices. Each of the following

holds.

(i) (Corollary 2.2 in [16]) κ′(α(G) = δ(α(G)), if and only if 2κ′(G) ≥ δ(G) + 1
for any α ∈ Sn.

(ii) (Corollary 2.3 in [16]) If κ′(G) = δ(G), then for any α ∈ Sn, κ
′(α(G)) =

δ(α(G)).

(iii) (Theorem 2.5 in [16]) If κ′(G) = κ′(G) and δ(G) = δ(G), then for any

α ∈ Sn, we have both κ′(α(G)) = κ′(α(G)) and δ(α(G)) = δ(α(G)).

One can start with any graph G which satisfies Theorem 4.2 as the initial
process to construct large survivable networks by repeatedly taking permutation
graphs as Gm. Then for any given non-negative integer s and t, we can apply
Theorem 1.4 and Theorem 4.2 to Gm to find the smallest values of m such that
Gm is (s, t)-supereulerian.

5. Conclusion

In this paper, we characterized the (s, t)-supereulerianicity of a graph G when
s + t ≤ κ′(G). Using this result, for an (s, t)-supereulerian graph G, we also
obtained a relationship between the (s, t)-supereulerianicity of the permutation
graph of G and the edge connectivity of G. It shows that if a graph G has the
property that it has a spanning closed trail traversing some given edge set of size
at most s and avoiding some given edge set of size at most t, then when the edge
connectivity of G is large enough than s + t, the permutation graph of G which
is a bigger structure will remain this property.

There are some questions that might be of interest for the future work.

1. For a given (s, t)-supereuleian graph G and given disjoint subsets X,Y ⊂ E(G)
with |X| ≤ s and |Y | ≤ t, can we find a spanning closed trail T of G − Y such
that X ⊂ E(T ) and |E(T )| is minimized? If such spanning closed trail T visits
every vertex exactly once, then G has a hamiltonian cycle containing all edges
in X and avoiding all edges in Y . As we known, to determine if a graph has a
hamiltonian cycle is a NP-complete problem (Theorem 3.4 in [13]). Thus, this
generalized optimization question is interest of its own.

2. Pulleyblank [23] proved that determining whether a graph is (0, 0)-supereule-
rian, even when restricted to planar graphs, is NP-complete. Lately, it has been
shown that when t ≥ 3, (s, t)-supereulerianicity is polynomially determinable
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in [25]. It is currently not known whether it is polynomially determinable or
NP-complete when t = 1 or 2.

3. For interconnection network models, such as hypercubes and hypercube vari-
ants, for which values of s and t, could they be (s, t)-supereulerian?
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