Discussiones Mathematicae Graph Theory 44 (2024) 1373–1393 https://doi.org/10.7151/dmgt.2501

SEMITOTAL FORCING IN CLAW-FREE CUBIC GRAPHS

YI-PING LIANG, JIE CHEN AND SHOU-JUN XU

School of Mathematics and Statistics Gansu Center for Applied Mathematics, Lanzhou University Lanzhou, Gansu 730000, China

> e-mail: liangyp18@lzu.edu.cn chenjie21@lzu.edu.cn shjxu@lzu.edu.cn

Abstract

For an isolate-free graph G = (V(G), E(G)), a set $S \subseteq V(G)$ is called a semitotal forcing set of G if it is a forcing set (or a zero forcing set) of G and every vertex in S is within distance 2 of another vertex of S. The semitotal forcing number $F_{t2}(G)$ is the minimum cardinality of a semitotal forcing set in G. In this paper, we prove that if $G \neq K_4$ is a connected claw-free cubic graph of order n, then $F_{t2}(G) \leq \frac{3}{8}n + 1$. The graphs achieving equality in this bound are characterized, an infinite set of graphs.

Keywords: semitotal forcing number, claw-free, cubic.

2020 Mathematics Subject Classification: 05C69.

1. INTRODUCTION

In this paper, by a graph we always mean a simple finite undirected graph; if we admit multiple edges, we always talk about a multigraph.

The concept of a (zero) forcing set, along with the related (zero) forcing number, of a simple graph was introduced in [2] to study the maximum nullity/minimum rank of the family of symmetric matrices associated with the graph. Independently, this parameter was introduced by Burgarth *et al.* [4] in conjunction with control of quantum systems; in this context it is known as the graph infection number. In addition, the (zero) forcing number was considered in connection with logic circuits [5] and dynamical systems [22].

For any two-coloring of vertex set V of a graph G, say black and white for two used colors, define a following *color-change rule*: a white vertex v is converted to black if it is the only white neighbor of some black vertex u. In this case, we say u forces v, write $u \to v$ and refer to u as a forcing vertex. Let S be a subset of V. Define a two-coloring of G as coloring S black, the others white. The derived set D(S) of S is the set of black vertices obtained by iteratively applying the color-change rule until no more changes are possible. Moreover, applying the color-change rule iteratively results in forcing chains $v_1 \to v_2 \to \cdots \to v_k$, where v_i forces v_{i+1} for $1 \leq i \leq k-1$. If D(S) = V, then we say S is a forcing set (also called a zero forcing set) of G. The procedure of coloring a graph using the color-change rule applied for S is called a forcing process with respect to S. A minimum forcing set of G is a forcing set of G of minimum cardinality, and the forcing number, denoted by F(G), is the cardinality of a minimum forcing set. In addition, if S is a forcing set of G and G[S] contains no isolated vertex, then S is a total forcing set of G. The total forcing number of G is the cardinality of a minimum total forcing set in G, denoted by $F_t(G)$.

In this paper, we focus on the semitotal forcing, which was first introduced by Chen in [7]. A set S of vertices in G is a semitotal forcing set of G if it is a forcing set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal forcing number, denoted by $F_{t2}(G)$, is the cardinality of a minimum semitotal forcing set of G.

Since every total forcing set is also a semitotal forcing set, and since every semitotal forcing set is a forcing set, we have the following chain of inequalities [7]. For every isolate-free graph G, $F(G) \leq F_{t2}(G) \leq F_t(G)$. We remark that the gap between the semitotal forcing number with forcing number and total forcing number for graphs can be arbitrary large, such as a graph $G \in \mathcal{N}_{cubic}$. Forcing and its variants are heavily studied in graph theory and we refer the reader to [1–3, 6, 8–15, 17–21, 23, 24].

Forcing and total forcing of connected claw-free cubic graphs have been studied in [8, 9, 11]. Let $G \neq K_4$ be a connected claw-free cubic graph of order n. Davila and Henning [8] showed that $F_t(G) \leq \frac{1}{2}n$, with equality if and only if $G \in \mathcal{N}_{cubic}$ or G is the prism $C_3 \Box K_2$; and then these two authors [11] showed that $F(G) \leq \frac{1}{3}n + 1$ unless $G = N_2$. Chen [7] showed that $F_{t2}(G) \leq \frac{1}{2}n$, with equality if and only if G is the diamond-necklace N_2 or the prism $C_3 \Box K_2$. In this paper, we improve this upper bound on the semitotal forcing number of G: $F_{t2}(G) \leq \frac{3}{8}n + 1$, and the graphs achieving equality in this bound are characterized i.e., Theorem 13.

2. Preliminaries

In this section, we give some basic definitions and list or prove some lemmas and theorems as preliminaries, which will be used in the proof of our main results. Let G = (V(G), E(G)) be a graph with vertex set V(G) and edge set E(G). The order of G is the number of its vertices, denote n = |V(G)|, and its size is the number of its edges, denote m = |E(G)|. If $uv \in E(G)$, then we say u, v are adjacent, u is a neighbor of v and vice versa. Let $N_G(v)$ be the set of neighbours of a vertex v in a graph G, and let $d_G(v) = |N_G(v)|$ be the degree of a vertex v in a graph G. A graph is isolate-free if it does not contain an isolated vertex; that is, a vertex of degree 0. A graph is cubic if every vertex has degree three. The distance between u and v is the length of a shortest (u, v)-path in G, denoted by $d_G(u, v)$. If the graph G is clear from the context, we write V, E, N(v), d(G) and d(u, v) shortened. For $k \geq 1$ an integer, we use the standard notation $[k] = \{1, 2, \ldots, k\}$.

A graph H = (V(H), E(H)) is called a *subgraph* of G = (V(G), E(G)) if $V(H) \subseteq V(G)$ and $E(H) \subseteq E(G)$. For a subset X of V(G), the *induced subgraph* by X, denoted by G[X], is the graph with vertex set X, in which two vertices are adjacent if and only if they are adjacent in G. We denote by G - X the induced subgraph $G[V \setminus X]$, if $X = \{x\}$, write G - x for short. A graph is H-free if it does not contain H as an induced subgraph.

We denote a path, a cycle and a complete graph on n vertices by P_n , C_n and K_n , respectively. A complete bipartite graph with parts of sizes a and b is denoted by $K_{a,b}$. A complete graph K_3 is called a *triangle* and a complete bipartite graph $K_{1,3}$ is called a *claw*. The complete graph K_4 minus one edge is called a *diamond*.

Two vertices u and v in a nontrivial connected graph G are *twins* if u and v have the same neighbors in $V(G) \setminus \{u, v\}$.

Observation 1. If u and v are twins of a connected graph G, then every forcing set of G contains at least one vertex of $\{u, v\}$.

Lemma 2. Let G be a connected cubic graph and let T be an induced triangle of G satisfying that there exists a minimum semitotal forcing set S containing only one vertex of T, say u. Then there exists a forcing process with respect to S such that u does not force any other vertex of T.

Proof. Suppose $V(T) = \{u, v, w\}$. Note that $u \in S$ and $v, w \notin S$. Without loss of generality, we may assume that v becomes black before w. Then v can be forced by its neighbor different from u and w, and further $v \to w$. Thus, u does not force v and w.

Lemma 3. Let G be a connected cubic graph containing an induced diamond D, where $V(D) = \{a, b, c, d\}$ and ab is the missing edge in D. Then there exists a minimum semitotal forcing set S such that $c \in S$ and $d \notin S$. In addition, c is not a forcing vertex if $|S \cap \{a, b, c, d\}| \le 2$; c forces d if $|S \cap \{a, b, c, d\}| = 3$. **Proof.** Since c and d are twins of G, a minimum semitotal forcing set S contains at least one vertex of $\{c, d\}$. Without loss of generality, $c \in S$. Note that S contains at most three vertices of D, otherwise $S \setminus \{d\}$ is a semitotal forcing set smaller than S, a contradiction. If $|S \cap \{a, b, c, d\}| = 3$, then $S \cap \{a, b, c, d\} =$ $\{a, b, c\}$ is satisfied. Hence we assume that $|S \cap \{a, b, c, d\}| \in \{1, 2\}$. If $d \notin S$, there is nothing to prove. Now consider $d \in S$. If $a \in S$, then $(S \setminus \{d\}) \cup \{b\}$ is also a minimum semitotal forcing set satisfying the statement of the lemma. Thus, we may assume $a \notin S$ and similarly $b \notin S$. Without loss of generality, assume that a becomes black before b. Hence, a must be forced by its neighbor different from c and d, and $(S \setminus \{d\}) \cup \{b\}$ satisfies the statement of the lemma.

Let S be a minimum semitotal forcing set of G such that $c \in S$ and $d \notin S$. If $|S \cap \{a, b, c, d\}| = 1$, then $a, b, d \notin S$. By Lemma 2, c is not a forcing vertex. If $|S \cap \{a, b, c, d\}| = 2$, without loss of generality, assume that $a \in S$ and $b \notin S$. By Lemma 2, c does not force b and d. Since $a \in S$, c is not a forcing vertex. If $|S \cap \{a, b, c, d\}| = 3$, we let $c \to d$ in the forcing process.

The following property of connected claw-free cubic graphs is established in [16].

Lemma 4 [16]. If $G \neq K_4$ is a connected claw-free cubic graph of order n, then the vertex set V(G) can be uniquely partitioned into sets each of which induces a triangle or a diamond in G.

Following the notation introduced in [16], we refer to such a partition as a triangle-diamond partition of G, abbreviated Δ -D-partition. Further we call every triangle and diamond induced by a set in our Δ -D-partition a unit of the partition. A unit that is a triangle we call a triangle-unit and a unit that is a diamond we call a diamond-unit. (Note that a triangle-unit is a triangle that does not belong to a diamond.) We say that two units in the Δ -D-partition are adjacent if there is an edge joining a vertex in one unit to a vertex in the other unit.

In what follows, we give the definition of a diamond-necklace, diamondbracelet, diamond-chain, double triangle-chain, and triangle-necklace, coined by Henning and Löwenstein [16], Davila and Henning [11], respectively.

Definition [16]. For $k \geq 2$ an integer, let N_k be the connected cubic graph constructed as follows. Take k disjoint copies D_1, D_2, \ldots, D_k of a diamond, where $V(D_i) = \{a_i, b_i, c_i, d_i\}$ and where $a_i b_i$ is the missing edge in D_i . Let N_k be obtained from the disjoint union of these k diamonds by adding the edges $\{a_i b_{i+1} | i \in [k]\}$ with addition taken modulo k (and so $a_k b_{k+1} = a_k b_1$). We call N_k a diamond-necklace with k diamonds. Let $\mathcal{N}_{cubic} = \{N_k | k \geq 2\}$.

A diamond-necklace, N_6 , with six diamonds is shown in Figure 1. By Lemma 4, we note that if G is a connected claw-free cubic graph with no triangle-units,

Figure 1. A diamond-necklace N_6 , where the black vertices form a minimum semitotal forcing set of N_6 .

then $G \in \mathcal{N}_{cubic}$. The semitotal forcing number of a diamond-necklace was determined by Chen in [7].

Theorem 5 [7]. Let $G = N_k \in \mathcal{N}_{cubic}$ have order n = 4k. Then $F_{t2}(G) = \left\lfloor \frac{3k+1}{2} \right\rceil = \left\lfloor \frac{3n}{8} \right\rfloor + 1$.

Figure 2. A diamond-bracelet B_5 , a diamond-chain L_2 , a double triangle-chain DT_2 and a triangle-necklace H_6 .

Definition [16]. For $k \ge 1$ an integer, a *diamond-bracelet* B_k (see Figure 2(a) for example) with k diamonds is defined as follows. Let B_k be obtained from a diamond-necklace N_{k+1} with k + 1 diamonds $D_1, D_2, \ldots, D_{k+1}$ by removing the diamond D_{k+1} and adding a triangle T_1 with $V(T_1) = \{x_1, y_1, z_1\}$, and adding the edges y_1b_1 and z_1a_k .

Definition [16]. For $k \ge 1$ an integer, a diamond-chain L_k (see Figure 2(b) for example) with k diamonds is defined as follows. Let L_k be obtained from a diamond-necklace N_{k+1} with k + 1 diamonds $D_1, D_2, \ldots, D_{k+1}$ by removing the diamond D_{k+1} and adding two disjoint triangles T_1 and T_2 and adding an edge joining b_1 to a vertex of T_1 and adding an edge joining a_k to a vertex of T_2 .

Definition [16]. A double triangle-chain DT_2 (see Figure 2(c) for example) is obtained from a diamond-chain L_2 with two diamonds by replacing the two diamonds with two triangles and adding two edges joining these two triangles.

Definition [11]. For $k \ge 2$ an integer, let H_k (see Figure 2(d) for example) be the graph constructed as follows. Take k disjoint copies T_1, T_2, \ldots, T_k of a triangle, where $V(T_i) = \{x_i, y_i, z_i\}$. Let H_k be obtained from the disjoint union of these k triangles by adding the edges $\{x_iy_{i+1} | i \in [k]\}$ with addition taken modulo k (and so $x_ky_{k+1} = x_ky_1$). We call H_k a triangle-necklace with k triangles.

We next define a diamond-armlet.

Definition. For $k \geq 1$ an integer, a diamond-armlet A_k with k diamonds is defined as follows. Let A_k be obtained from a diamond-necklace N_{k+1} with k + 1 diamonds $D_1, D_2, \ldots, D_{k+1}$ by removing the diamond D_{k+1} and adding two triangles T_1 and T_2 with $V(T_i) = \{x_i, y_i, z_i\}$ for $i \in [2]$, and adding the edges x_1b_1, x_2a_k, y_1y_2 and z_1z_2 . Let $\mathcal{A}_{cubic} = \{A_k | k \geq 1\}$.

Figure 3. Two diamond-armlets A_3 and A_4 , where the black vertices form a minimum semitotal forcing set of their respective graphs.

Two diamond-armlets, A_3 and A_4 , are shown in Figure 3(a) and Figure 3(b), respectively. The semitotal forcing number of a diamond-armlet is determined as follows.

Theorem 6. Let $G = A_k \in \mathcal{A}_{cubic}$ have order n = 4k + 6. Then $F_{t2}(G) = \frac{3n}{8} + \frac{1}{4}$ when k is odd; $F_{t2}(G) = \frac{3n}{8} - \frac{1}{4}$ when k is even.

Proof. Let $G = A_k \in \mathcal{A}_{cubic}$ have order n = 4k + 6. For convenience, we write $A = \{a_i | 1 \le i \le k\}, B = \{b_i | 1 \le i \le k\}, C = \{c_i | 1 \le i \le k\}$, and $D = \{d_i | 1 \le i \le k\}$.

We first show that $F_{t2}(G) \leq \left\lceil \frac{3k}{2} \right\rceil + 2$. Let $S = C \cup \{a_i \mid 1 \leq i \leq k \text{ and } i \text{ is } \text{odd}\} \cup \{b_1, y_1\}$. Then the set S is a semitotal forcing set of G. Thus, $F_{t2}(G) \leq |S| = k + \left\lceil \frac{k}{2} \right\rceil + 2 = \left\lceil \frac{3k}{2} \right\rceil + 2$.

We next show that $F_{t2}(G) \ge \left\lceil \frac{3k}{2} \right\rceil + 2$. Let S' be an arbitrary semitotal forcing set of G. By Observation 1, S' contains at least one vertex of $\{c_i, d_i\}$ for every $i \in [k]$. Renaming vertices if necessary, we may assume that $c_i \in S'$. Moreover, at least one vertex of $\{y_1, y_2, z_1, z_2\}$ belongs to S', otherwise, S' is not a forcing set, a contradiction. Without loss of generality, assume that $y_1 \in S'$. Let S'' be the set of vertices in S' that belong to $A \cup B \cup D \cup \{x_1, x_2, y_2, z_1, z_2\}$. Now we consider two cases. In the case where k is even. Since every vertex in S' is within distance 2 of another vertex of S', $|S''| \ge \left\lceil \frac{k}{2} \right\rceil + 1$. In the case where k is odd. Similarly, in order to guarantee that S' is semitotal, we have $|S''| \ge \left\lceil \frac{k}{2} \right\rceil$. And then every vertex in G[S'] has degree at most 1 if $|S''| = \left\lceil \frac{k}{2} \right\rceil$. Since G is cubic, the first forcing vertex in the forcing process has degree 2 in G[S'], a contradiction. Thus, $|S''| \ge \left\lceil \frac{k}{2} \right\rceil + 1$. In both cases, $|S'| = |C| + 1 + |S''| \ge k + 1 + \left\lceil \frac{k}{2} \right\rceil + 1 = \left\lceil \frac{3k}{2} \right\rceil + 2$.

To conclude, when k is odd, $F_{t2}(G) = \left\lceil \frac{3k}{2} \right\rceil + 2 = \frac{3n}{8} + \frac{1}{4}$; when k is even, $F_{t2}(G) = \left\lceil \frac{3k}{2} \right\rceil + 2 = \frac{3n}{8} - \frac{1}{4}$.

3. Connected Claw-Free Cubic Graphs

In this section, we establish an upper bound on the semitotal forcing number of a connected claw-free cubic graph $G \neq K_4$ in terms of its order.

First, we give the following theorem for the special case where G is diamond-free.

Theorem 7. If $G \neq K_4$ is a connected claw-free and diamond-free cubic graph of order n, then $F_{t2}(G) \leq \frac{1}{3}n + 1$.

Proof. Since $G \neq K_4$ is a connected claw-free cubic graph, there is a unique Δ -D-partition of G by Lemma 4. Further every unit in G is a triangle-unit because G is diamond-free. Now we define the contraction multigraph of G, denoted G', to be the multigraph whose vertices correspond to the triangle-units in G and where two vertices in G' are joined by the number of edges joining the corresponding triangle-units in G. We note that the order of G' is precisely the number of triangle-units in G. Every vertex in G' has degree 3, and so G' is a cubic multigraph. Let $C: v_1v_2 \cdots v_kv_1$ be a shortest cycle in G' where we allow 2-cycles, and so $k \geq 2$. For $i \in [k]$, let T_i be the triangle-unit in G associated

with the vertex v_i , where $V(T_i) = \{x_i, y_i, z_i\}$ and where $x_i y_{i+1}$ is an edge with addition taken modulo k (and so $x_k y_{k+1}$ is the edge $x_k y_1$). Thus, G contains a subgraph as a triangle-necklace, H_k , with k triangles. We note that if k = 2, then either G is the prism $C_3 \Box K_2$ or G contains a H_2 .

Figure 4. Initialization for the proof of Theorem 7.

We construct a semitotal forcing set S of G such that $|S| \leq \frac{1}{3}n + 1$. For this purpose, we set $S = \{y_1, x_1, x_2, \ldots, x_k\}$ and color all vertices in S black and the others white, initially. At any step we let B be the set of vertices that have already been colored black, and W the set of all vertices that remain white. If $G = C_3 \Box K_2$, then $S = \{y_1, x_1, x_k\}$ is a minimum semitotal forcing set of G and $F_{t2}(G) = 3 = \frac{1}{3}n + 1$. (The graph $C_3 \Box K_2$ is shown in Figure 4(a).) Suppose that $G \neq C_3 \Box K_2$. Then the set $\{z_1, \ldots, z_k\}$ is independent. Starting with this initial set S, we play the sequence of vertices $y_1, x_1, y_2, x_2, \ldots, y_k$ in turn which force the vertices $z_1, y_2, z_2, y_3, \ldots, z_k$, respectively, to be colored black. The initialization of the initial set S in the case of k = 6 is shown in Figure 4(b). Now $B = V(H_k)$ and $W \neq \emptyset$. Next, we extend S by Rule 1 and Rule 2, iteratively apply the color-change rule to the current set S, and in each step, we color all vertices in one triangle-unit or two triangle-units black.

Rule 1. There exists a triangle-unit T such that $V(T) \subseteq W$ and T has at least two vertices that are adjacent to vertices of B, then all vertices in this triangle-unit to become black.

Rule 2. There exists a triangle-unit T such that $V(T) = \{x, y, z\} \subseteq W$ and T has only one vertex that is adjacent to a vertex of B. Renaming vertices if necessary, assume that x has a neighbor $v \in B$. Then T is adjacent to a triangle-unit T', where $V(T') = \{x', y', z'\} \subseteq W$. Renaming vertices if necessary, assume that y is adjacent to x'. Now we add $\{y, y'\}$ to S. Thus, $v \to x \to z, y \to x' \to z'$, and all vertices in $V(T) \cup V(T')$ become black. Note that d(y, y') = 2.

Since G is connected, Rule 1 and Rule 2 continue until all vertices become black. And in each step we add at most one vertex of a triangle-unit to S. Thus, S is a forcing set of G with $|S| \leq \frac{1}{3}n + 1$. It is easy to see that S is a semitotal forcing set of G.

Note that the only three connected claw-free cubic graphs that have order n < 10 are K_4 , $C_3 \Box K_2$ and N_2 . If $G \in \mathcal{N}_{cubic}$, the semitotal forcing number of G was determined by Theorem 5. Next we add the restriction that G is not a diamond-necklace and $n \ge 10$.

Theorem 8. If $G \notin \mathcal{N}_{cubic}$ is a connected claw-free cubic graph of order $n \ge 10$, then $F_{t2}(G) \le \frac{3}{8}n + \frac{1}{4}$.

Proof. Since G is cubic, we note that n is even. We proceed by induction on the order $n \ge 10$. If n = 10, then $G = A_1$ and $F_{t2}(A_1) = 4 = \frac{3}{8}n + \frac{1}{4}$. If n = 12, since $G \ne N_3$, G can only be $G_{12,1}$ and $G_{12,2}$, shown in Figure 5, respectively, and $F_{t2}(G) = 4 < \frac{3}{8}n + \frac{1}{4}$. This establishes the base cases. Next, let $n \ge 14$ and assume that for every connected claw-free cubic graph $G' \notin \mathcal{N}_{cubic}$ of order $10 \le n' < n, F_{t2}(G') \le \frac{3}{8}n' + \frac{1}{4}$. Let G be a connected claw-free cubic graph of order n. By Lemma 4, there is a unique Δ -D-partition of G. If every unit in the Δ -D-partition of G is a triangle-unit, i.e., G is diamond-free, we get $n \ge 18$, and then $F_{t2}(G) \le \frac{n}{3} + 1 \le \frac{3}{8}n + \frac{1}{4}$ by Theorem 7. Thus, we may assume that G has at least one diamond-unit. Since $G \notin \mathcal{N}_{cubic}$, G must contain a diamond-chain or a diamond-bracelet.

Figure 5. Two connected claw-free cubic graphs of order 12, where the black vertices form a minimum semitotal forcing set of their respective graphs.

We proceed further with the following series of claims.

Claim 9. If G contains a diamond-chain L_2 , then $F_{t2}(G) \leq \frac{3}{8}n + \frac{1}{4}$.

Proof. Suppose that G contains a diamond-chain L_2 . Using our earlier notation, let D_1, D_2 be two consecutive diamonds in L_2 , where $V(D_i) = \{a_i, b_i, c_i, d_i\}$ and where $a_i b_i$ is the missing edge in D_i for $i \in [2]$ and $a_1 b_2$ is an edge. Let w_1 be the neighbor of b_1 not in D_1 , and let w_2 be the neighbor of a_2 not in D_2 . By the definition of a diamond-chain L_2 , we note that $w_1 \neq w_2$ and w_1w_2 is not an edge; the triangles containing w_1 and w_2 are vertex disjoint. Let G' be the graph obtained from G by removing all vertices in $V(D_1) \cup V(D_2)$ and adding the edge w_1w_2 . Since G is a connected claw-free cubic graph, so also is the graph G'. Let G' have order n'. Then $n' = n - 8 \ge 6$.

If $G' = C_3 \Box K_2$, then $G = A_2$ and $F_{t2}(A_2) = 5 = \frac{3}{8}n - \frac{1}{4}$ is satisfied. If $G' \in \mathcal{N}_{cubic}$, then $G \in \mathcal{N}_{cubic}$, a contradiction. Now assume that $G' \notin \mathcal{N}_{cubic}$ and $n' \geq 10$. Applying the inductive hypothesis to G', $F_{t2}(G') \leq \frac{3}{8}n' + \frac{1}{4}$. Let S' be a minimum semitotal forcing set of G'. If $|S' \cap \{w_1, w_2\}| = 0$, without loss of generality, we may suppose that w_1 becomes black before w_2 . Then, $S = S' \cup \{c_1, c_2, a_1\}$ is a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, the same forcing chains in G' with respect to S' remain valid in G until w_1 becomes black. In this time, two neighbors (different from b_1) of w_1 are both black. Then $w_1 \rightarrow b_1 \rightarrow d_1$, and $a_1 \rightarrow b_2 \rightarrow d_2 \rightarrow d_2$ $a_2 \rightarrow w_2$. Finally, all remaining white vertices in G will become black using the same forcing chains as in G'. The newly added vertices guarantee that Sis semitotal. Now consider $|S' \cap \{w_1, w_2\}| \in \{1, 2\}$. Without loss of generality, assume that $w_1 \in S'$. We claim that $S = S' \cup \{c_1, c_2, a_2\}$ is a semitotal forcing set of G. If w_1 is not a forcing vertex during the forcing process with respect to S' in G', then the same forcing chains in G' with respect to S' can be used in G with respect to S. Thus, all vertices in G' still become black. Finally, $a_2 \to d_2 \to b_2 \to a_1 \to d_1 \to b_1$. It follows that all vertices in G become black. If w_1 is a forcing vertex during the forcing process with respect to S' in G', let $N_{G'}(w_1) = \{w_2, u, v\}$ and divide into two cases. In the case of $w_1 \to w_2$, it will be replaced by two forcing chains in $G: w_1 \to b_1 \to d_1 \to a_1 \to b_2 \to d_2$, $a_2 \to w_2$. In the case of $w_1 \to u$ (or $w_1 \to v$), note that in this time step, w_2 is already black. So the forcing chains in G' with respect to S' remain valid in Guntil w_2 becomes black. Further, $a_2 \rightarrow d_2 \rightarrow b_2 \rightarrow a_1 \rightarrow d_1 \rightarrow b_1$. Finally, all remaining white vertices in G will become black using the same forcing chains as in G'. In either case, S is a semitotal forcing set of G. Therefore, we have $F_{t2}(G) \le F_{t2}(G') + 3 \le \frac{3}{8}n' + \frac{1}{4} + 3 = \frac{3}{8}(n-8) + \frac{1}{4} + 3 = \frac{3}{8}n + \frac{1}{4}.$ \square

We note that if G contains a diamond-chain L_k with $k \ge 2$, then G contains a diamond-chain L_2 . Hence by Claim 9, we may assume that G does not contain a diamond-chain L_k with $k \ge 2$. Moreover, if G contains a diamond-bracelet B_k , then $k \le 2$, otherwise, G contains a diamond-chain L_2 , a contradiction. Therefore, next we will discuss when G contains a diamond-bracelet B_k , where $k \in [2]$, or every diamond-unit is adjacent to two distinct triangle-units to complete our proof. Before this, we give the following claim.

Claim 10. If G contains a double triangle-chain DT_2 , then $F_{t2}(G) \leq \frac{3}{8}n + \frac{1}{4}$.

Proof. Suppose that G contains a double triangle-chain DT_2 , where T_1 and T_2 are the two triangle-units in DT_2 joined by two edges. Let $V(T_i) = \{x_i, y_i, z_i\}$ for $i \in [2]$, where $y_1y_2, z_1z_2 \in E(G)$. Let w_i be the neighbor of x_i not in T_i for $i \in [2]$. By the definition of a double triangle-chain, we note that the triangles containing w_1 and w_2 are vertex disjoint. In particular, w_1 and w_2 are not adjacent. Let G' be the graph obtained from G by removing all vertices in $V(T_1) \cup V(T_2)$ and adding the edge w_1w_2 . Since G is a connected claw-free cubic graph, so also is the graph G'. Let G' have order n'. Then $n' = n - 6 \geq 8$.

If $G' = N_k$ with $k \ge 2$, then $G = A_k \in \mathcal{A}_{cubic}$ and $F_{t2}(G) \le \frac{3}{8}n + \frac{1}{4}$ by Theorem 6. Suppose that $G' \notin \mathcal{N}_{cubic}$ and $n' \ge 10$. Applying the inductive hypothesis to G', $F_{t2}(G') \leq \frac{3}{8}n' + \frac{1}{4}$. Let S' be a minimum semitotal forcing set of G'. If $|S' \cap \{w_1, w_2\}| = 0$, without loss of generality, we may suppose that w_1 becomes black before w_2 . Then, the set $S = S' \cup \{x_1, y_1\}$ is a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, the same forcing chains in G' with respect to S' remain valid in G until w_1 becomes black. Further, $x_1 \to z_1 \to z_2$ and $y_1 \to y_2 \to x_2 \to w_2$. Then all remaining white vertices in G will become black using the same forcing chains as in G'. Now consider $|S' \cap \{w_1, w_2\}| \in \{1, 2\}$. Without loss of generality, assume that $w_1 \in S'$. If w_1 is not a forcing vertex during the forcing process with respect to S' in G', then $S = S' \cup \{x_2, y_1\}$ is a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, the same forcing chains in G' with respect to S' remain valid in G and $w_1 \rightarrow x_1 \rightarrow z_1 \rightarrow z_2 \rightarrow y_2$. The newly added vertices guarantee that S is semitotal. If w_1 is a forcing vertex during the forcing process with respect to S' in G', then we divide into two cases. In the case of $w_1 \to w_2$, $S = S' \cup \{x_2, y_1\}$ is also a semitotal forcing set of G. Applying the color-change rule to S in $G, w_1 \to w_2$ is replaced by two forcing chains: $w_1 \to x_1 \to z_1 \to z_2 \to y_2, x_2 \to w_2$. The newly added vertices guarantee that S is semitotal. In the case of $w_1 \to u$, then $v \in S'$ by Lemma 2, where $\{u, v\} = N_{G'}(w_1) \setminus \{w_2\}$. Note that in this time step, w_2 is already black. One can easily verify that $S = S' \cup \{x_2, y_2\}$ is a semitotal forcing set of G. Therefore, we have $F_{t2}(G) \leq F_{t2}(G') + 2 \leq \frac{3}{8}n' + \frac{1}{4} + 2 = \frac{3}{8}(n-6) + \frac{1}{4} + 2 < \frac{3}{8}n + \frac{1}{4}$. \square

By Claim 10, we may assume that G contains no double triangle-chain DT_2 .

Claim 11. If G contains a diamond-bracelet B_k with $k \in [2]$, then $F_{t2}(G) \leq \frac{3}{8}n + \frac{1}{4}$.

Proof. Suppose that G contains a diamond-bracelet B_k with $k \in [2]$. Using our earlier notation, let D_i be a diamond of B_k for $i \in [k]$, where $V(D_i) = \{a_i, b_i, c_i, d_i\}$ and $a_i b_i$ is the missing edge in D_i . Let T_1 be the only triangle in B_k that $V(T_1) = \{x_1, y_1, z_1\}$ and $y_1 b_1$ and $z_1 a_k$ are edges in B_k . Let U be the unit

Figure 6. The diamond-bracelets B_1 and B_2 .

that is adjacent to T_1 and does not belong to B_k . Now we divide into two cases to discuss according to U.

Case 1. U is a triangle-unit.

Suppose that U is a triangle-unit, say T, where $V(T) = \{x, y, z\}$ and $xx_1 \in E(G)$. Let u and v denote the neighbors of y and z, respectively, not in T. If $uv \in E(G)$, then u and v must be in the same triangle-unit, say T'. Clearly, G has a double triangle-chain DT_2 containing T and T', a contradiction. Hence, $uv \notin E(G)$.

Let G' be the graph obtained from G by removing all vertices in $V(B_k) \cup V(T)$ and adding the edge uv. Since G is a connected claw-free cubic graph, so also is the graph G'. Let G' have order n'. Then $n' = n - 6 - 4k \ge 4$ for $k \in [2]$. If $G' = K_4$, then G is the graph $G_{14.1}$ or $G_{18.1}$, shown in Figure 7(a) and Figure 7(b), respectively. If $G' = C_3 \Box K_2$, then G is the graph $G_{16.1}$ or $G_{20.1}$, shown in Figure 7(c) and Figure 7(d), respectively. If $G' = N_2$, then G is the graph $G_{18.1}$ or $G_{22.1}$, shown in Figure 7(b) and Figure 7(e), respectively. In all cases, $F_{t2}(G) < \frac{3}{8}n + \frac{1}{4}$. If $G' = N_k$ with $k \ge 3$, then G contains a diamond-chain L_2 , a contradiction. Now we assume that $G' \notin \mathcal{N}_{cubic}$ and $n' \ge 10$. Applying the inductive hypothesis to G', $F_{t2}(G') \le \frac{3}{8}n' + \frac{1}{4}$. Let S' be a minimum semitotal forcing set of G'.

Suppose first k = 1 and n' = n - 10. If $|S' \cap \{u, v\}| = 0$, without loss of generality, we may suppose that u becomes black before v. Then, $S = S' \cup \{x, y_1, c_1\}$ is a semitotal forcing set of G. This is because if we apply the colorchange rule to S in G, the same forcing chains in G' with respect to S' remain valid in G until u becomes black. In this time, two neighbors (different from y) of u are black. Then $u \to y \to z \to v$ and $x \to x_1 \to z_1 \to a_1 \to d_1 \to b_1$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G'. The newly added vertices guarantee that S is semitotal. Now consider $|S' \cap \{u, v\}| \in \{1, 2\}$. Without loss of generality, assume that $u \in S'$. If u is not a forcing vertex during the forcing process with respect to S' in G', then $S = S' \cup \{z, y_1, c_1\}$ is a semitotal forcing set of G. This is because if we

Figure 7. Five connected claw-free cubic graphs in the proof of Case 1 in Claim 11, where the black vertices form a semitotal forcing set of their respective graphs.

apply the color-change rule to S in G, the same forcing chains in G' with respect to S' remain valid in G. Further, $u \to y \to x \to x_1 \to z_1 \to a_1 \to d_1 \to b_1$ and all vertices of G will become black. If u is a forcing vertex during the forcing process with respect to S' in G', then we consider two cases. In the case of $u \to v$, $S = S' \cup \{z, y_1, c_1\}$ is also a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, $u \to v$ is replaced by two forcing chains: $u \to y \to x \to x_1 \to z_1 \to a_1 \to d_1 \to b_1$ and then $z \to v$. In the case of $u \to u_1$, then $u_2 \in S'$ by Lemma 2, where $\{u_1, u_2\} = N_{G'}(u) \setminus \{v\}$. Note that in this time step, v is already black. So, $S = (S' \setminus \{u\}) \cup \{y, z, y_1, c_1\}$ is a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, the same forcing chains in G' with respect to S' remain valid in G until v becomes black. Then $z \to x \to x_1 \to z_1 \to a_1 \to d_1 \to b_1$ and further $y \to u \to u_1$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G'. It is not hard to see that S is semitotal. Therefore, we have $F_{t2}(G) \leq F_{t2}(G') + 3 \leq \frac{3}{8}n' + \frac{1}{4} + 3 = \frac{3}{8}(n-10) + \frac{1}{4} + 3 < \frac{3}{8}n + \frac{1}{4}$. Suppose k = 2 and n' = n - 14. If $|S' \cap \{u, v\}| = 0$, without loss of generality,

Suppose k = 2 and n' = n - 14. If $|S' \cap \{u, v\}| = 0$, without loss of generality, we may suppose that u becomes black before v. Then, $S = S' \cup \{a_1, b_2, c_1, c_2\}$ is a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, the same forcing chains in G' with respect to S' remain valid in G until ubecomes black. In this time, two neighbors (different from y) of u are both black. Then $u \to y$, $b_2 \to d_2 \to a_2 \to z_1$, and $a_1 \to d_1 \to b_1 \to y_1 \to x_1 \to x \to z \to v$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G'. Now consider $|S' \cap \{u, v\}| \in \{1, 2\}$. Without loss of generality, assume that $u \in S'$. One can easily verify that $S' \cup \{a_1, b_2, c_1, c_2, z\}$ is a semitotal forcing set of G. Thus, we have $F_{t2}(G) \leq F_{t2}(G') + 5 \leq \frac{3}{8}n' + \frac{1}{4} + 5 = \frac{3}{8}(n-14) + \frac{1}{4} + 5 < \frac{3}{8}n + \frac{1}{4}$.

Case 2. U is a diamond-unit.

Suppose that U is a diamond-unit, say D, where $V(D) = \{a, b, c, d\}$ and ab is the missing edge in the diamond D and $x_1a \in E(G)$. Let U' be the unit that is adjacent to U and does not belong to B_k . Since U is a diamond-unit, U' is not a diamond-unit, otherwise G contains a diamond-chain L_2 , a contradiction. Thus U' is a triangle-unit, say T', where $V(T') = \{x', y', z'\}$ and $bx' \in E(G)$. Let u' and v' denote the neighbors of y' and z', respectively, not in T'. If $u'v' \in E(G)$, then G contains a double triangle-chain DT_2 , a contradiction. Hence, $u'v' \notin E(G)$.

Figure 8. Four connected claw-free cubic graphs in the proof of Case 2 in Claim 11, where the black vertices form a semitotal forcing set of their respective graphs.

Suppose first that k = 1 and let G' be the graph obtained from G by removing

all vertices in $V(B_1) \cup V(D) \cup V(T')$ and adding the edge u'v'. Since G is a connected claw-free cubic graph, so also is the graph G'. Let G' have order n'. Then $n' = n - 14 \ge 4$. If $G' = K_4$, then $G = G_{18.2}$ shown in Figure 8(a), and $F_{t2}(G) \leq 7 = \frac{3}{8}n + \frac{1}{4}$. If $G' = C_3 \Box K_2$, then $G = G_{20.2}$ shown in Figure 8(b), and $F_{t2}(G) \leq 7 < \frac{3}{8}n + \frac{1}{4}$. If $G' = N_2$, then $G = G_{22,2}$ shown in Figure 8(c), and $F_{t2}(G) \leq 8 < \frac{3}{8}n + \frac{1}{4}$. If $G' = N_k$ with $k \geq 3$, then G contains a diamond-chain L_2 , a contradiction. Now assume that $G' \notin \mathcal{N}_{cubic}$ and $n' \geq 10$. Applying the inductive hypothesis to G', $F_{t2}(G') \leq \frac{3}{8}n' + \frac{1}{4}$. Let S' be a minimum semitotal forcing set of G'. Applying the color-change rule to S' in G', without loss of generality, we may assume that u' becomes black no later than v'. We claim that $S = S' \cup \{c_1, y_1, c, x', z'\}$ is a semitotal forcing set of G. If $|S' \cap \{u', v'\}| = 2$, it is clear that S is a semitotal forcing set of G. If $|S' \cap \{u', v'\}| = 0$, then the forcing chains in G' with respect to S' remain valid in G until u' becomes black. In this time, two neighbors (different from y') of u' are both black. Further, $u' \to y'$ and then $x' \to b \to d \to a \to x_1 \to z_1 \to a_1 \to d_1 \to b_1, z' \to v'$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G'. If $|S' \cap \{u', v'\}| = 1$, recall our assumption that u' becomes black no later than v'. Thus, we have $u' \in S'$ and $v' \notin S'$. Next we divide into two cases. In the case of $u' \to v'$ in G', we replace with three forcing chains when we apply the colorchange rule to S in G: $u' \to y', x' \to b \to d \to a \to x_1 \to z_1 \to a_1 \to d_1 \to b_1,$ $z' \to v'$. In the case of u' does not force v' in G', the same forcing chains in G' with respect to S' remain valid in G until v' becomes black. Then, $z' \to y'$ and $x' \to b \to d \to a \to x_1 \to z_1 \to a_1 \to d_1 \to b_1$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G'. Thus, S is a forcing set of G. It is not hard to see that S is semitotal. Therefore, $F_{t2}(G) \leq F_{t2}(G') + 5 \leq \frac{3}{8}n' + \frac{1}{4} + 5 = \frac{3}{8}(n-14) + \frac{1}{4} + 5 < \frac{3}{8}n + \frac{1}{4}.$

Suppose k = 2 and let G' be the graph obtained from G by removing all vertices in $V(B_2) \cup V(D)$, subdividing the edge y'z' and denoting the resulting new vertex by w', and adding the edges x'w'. Since G is a connected claw-free cubic graph, so also is the graph G'. Let G' have order n'. Then $n' = n - 14 \ge 8$. If $G' = N_2$, then $G = G_{22.2}$ shown in Figure 8(c), and $F_{t2}(G) \le 8 < \frac{3}{8}n + \frac{1}{4}$. If $G' = N_3$, then $G = G_{26.1}$ shown in Figure 8(d), and $F_{t2}(G) \le 10 = \frac{3}{8}n + \frac{1}{4}$. If $G' = N_k$ with $k \ge 4$, then G contains a diamond-chain L_2 , a contradiction. Now assume that $G' \notin \mathcal{N}_{cubic}$ and $n' \ge 10$. Applying the inductive hypothesis to G', $F_{t2}(G') \le \frac{3}{8}n' + \frac{1}{4}$. Let S' be a minimum semitotal forcing set of G' with $x' \in S'$ and $w' \notin S'$ as in Lemma 3. Then $S = S' \cup \{a_1, b_2, c_1, c_2, c\}$ is a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, first, $b_2 \to d_2 \to a_2 \to z_1$. Further, $a_1 \to d_1 \to b_1 \to y_1 \to x_1 \to a \to d \to b$. The forcing chains in G' with respect to S' remain valid in G except in the following cases. If $x' \to w'$ occurs in G', then $\{y', z'\} \subset S'$ by Lemma 3. Then $x' \to w'$ will be omitted in G and all remaining forcing chains in G' with respect to S'

will remain valid in G. Thus, S is a semitotal forcing set of G. If $y' \to w'$ occurs in G', then $z' \in S'$ or $w' \to z'$. In this case, either $y' \to w'$ will be omitted in G or $y' \to w' \to z'$ will be replaced by $y' \to z'$ in G. Finally, all remaining forcing chains in G' with respect to S' will remain valid in G and S is a semitotal forcing set. Lastly, if $z' \to w'$, a similar argument to that used above shows that S is a semitotal forcing set. Thus, $F_{t2}(G) \leq F_{t2}(G') + 5 \leq \frac{3}{8}n' + \frac{1}{4} + 5 = \frac{3}{8}(n-14) + \frac{1}{4} + 5 < \frac{3}{8}n + \frac{1}{4}$.

By Claim 9 and Claim 11, we may assume that every diamond-unit is adjacent to two distinct triangle-units. Now G must contain a diamond-chain L_1 . Using our earlier notation, let D_1 be the diamond in L_1 , where $V(D_1) = \{a_1, b_1, c_1, d_1\}$ and where a_1b_1 is the missing edge in D_1 . Let T_1 and T_2 be the two triangles in L_1 , where $V(T_i) = \{x_i, y_i, z_i\}$ for $i \in [2]$ and x_1b_1, x_2a_1 are edges. We note that T_1 and T_2 are two distinct triangle-units of G. If y_1 or z_1 is adjacent to y_2 or z_2 , then G contains an induced subgraph isomorphic to H shown in Figure 9 by $n \geq 14$.

Figure 9. An induced subgraph H of G.

Claim 12. If G contains an induced subgraph H shown in Figure 9, then $F_{t2}(G) < \frac{3}{8}n + \frac{1}{4}$.

Proof. Let G' be the graph obtained from G by removing the vertices in $V(D) \cup \{x_2, y_2\}$ and adding the edges z_2x_1 and z_2y_1 . Since G is a connected claw-free cubic graph, so also is the graph G'. We note that the subgraph of G' induced by $\{x_1, y_1, z_1, z_2\}$ is a diamond-unit where z_1z_2 is the missing edge in this unit. Let G' have order n'. Then $n' = n - 6 \ge 8$.

If $G' = N_2$, then $G = G_{14,2}$ shown in Figure 10(a), and $F_{t2}(G) \leq 5 < \frac{3}{8}n + \frac{1}{4}$. If $G' = N_k$ with $k \geq 3$, then G contains a diamond-chain L_2 , a contradiction. Now assume that $G' \notin \mathcal{N}_{cubic}$ and $n' \geq 10$. Applying the inductive hypothesis to G', $F_{t2}(G') \leq \frac{3}{8}n' + \frac{1}{4}$. Let S' be a minimum semitotal forcing set of G'with $x_1 \in S'$ and $y_1 \notin S'$ as in Lemma 3. If $|S' \cap \{z_1, z_2\}| = 2$, it is clear that $(S' \setminus \{x_1\}) \cup \{a_1, b_1, c_1\}$ is a semitotal forcing set of G. Now consider $|S' \cap \{z_1, z_2\}| \in$ $\{0, 1\}$. We claim that $S = S' \cup \{c_1, x_2\}$ is a semitotal forcing set of G. If $|S' \cap \{z_1, z_2\}| = 0$, without loss of generality, assume that z_1 becomes black before z_2 . Then, the same forcing chains in G' with respect to S' remain valid in G until z_1 becomes black. Further, $z_1 \to y_1 \to y_2 \to z_2$ and $x_1 \to b_1 \to d_1 \to a_1$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G'. If $|S' \cap \{z_1, z_2\}| = 1$, without loss of generality, assume that $z_1 \in S'$ and $z_2 \notin S'$. Then x_1 is not a forcing vertex in G' by Lemma 3. Next we consider two cases. In the case of $z_1 \to y_1 \to z_2$ in G', we replace with two forcing chains when we apply the color-change rule to S in $G: z_1 \to y_1 \to y_2 \to z_2$, $x_1 \to b_1 \to d_1 \to a_1$. In the case of z_2 is forced by its neighbor different from x_1 and y_1 , then the same forcing chains in G' with respect to S' remain valid in G until z_2 becomes black. Further, $z_2 \to y_2 \to y_1$ and $x_1 \to b_1 \to d_1 \to a_1$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G'. Thus, S is a semitotal forcing set of G. Therefore, $F_{t2}(G) \leq F_{t2}(G') + 2 \leq \frac{3}{8}n' + \frac{1}{4} + 2 = \frac{3}{8}(n-6) + \frac{1}{4} + 2 < \frac{3}{8}n + \frac{1}{4}$.

Figure 10. Two connected claw-free cubic graphs $G_{14.2}$ and $G_{18.3}$, where the black vertices form a semitotal forcing set of their respective graphs.

By Claim 12, we assume that G contains no induced subgraph H. Now, G contains a diamond-chain L_1 with two distinct triangle-units T_1 and T_2 , and neither y_1 nor z_1 is adjacent to y_2 or z_2 . Let u and v be the neighbors of y_1 and z_1 , respectively, not in T_1 . If $uv \in E(G)$, then G contains a double triangle-chain DT_2 , a contradiction. Hence, $uv \notin E(G)$.

Let G' be the graph obtained from G by removing all vertices in $V(T_1) \cup V(D_1)$, subdividing the edge y_2z_2 and denoting the resulting new vertex by w, and adding the edges x_2w and uv. Since G is a claw-free cubic graph, so also is the graph G'. Let G' have order n'. Then n' = n - 6. Since G is connected, either G' is connected of order $n' \geq 10$ (note that $\{u, v\} \cap \{y_2, z_2\} = \emptyset$), or G' has two components C_1 and C_2 , where C_1 contains the vertex u and $n_1 = |V(C_1)| \geq 4$, C_2 contains the vertex x_2 and $n_2 = |V(C_2)| \geq 8$, $n' = n_1 + n_2$.

In the case where G' is connected. If $G' = N_3$, then $G = G_{18.3}$ shown in Figure 10(b), and $F_{t2}(G) \le 6 < \frac{3}{8}n + \frac{1}{4}$. If $G' = N_k$ with $k \ge 4$, then G contains

a L_2 , a contradiction. Hence, suppose that $G' \notin \mathcal{N}_{cubic}$ and $n' \geq 10$. Applying the inductive hypothesis to G', $F_{t2}(G') \leq \frac{3}{8}n' + \frac{1}{4}$.

In the case where G' is disconnected. Recall that $n_1 \geq 4$ and $n_2 \geq 8$. If $C_2 = N_k$ with $k \geq 2$, then G may contain a B_1 , or a B_2 , or a L_2 , a contradiction. Hence, suppose that $C_2 \notin \mathcal{N}_{cubic}$ and $n_2 \geq 10$. Applying the inductive hypothesis to C_2 , $F_{t2}(C_2) \leq \frac{3}{8}n_2 + \frac{1}{4}$. If $C_1 = K_4$, then G contains a B_1 , a contradiction. If $C_1 = N_k$ with $k \geq 2$, then G may contain a B_2 or a L_2 , a contradiction. If $C_1 = C_3 \Box K_2$, then C_2 is the graph obtained from G by removing all vertices in $V(C_1) \cup V(T_1) \cup V(D_1)$, subdividing the edge $y_2 z_2$ and denoting the resulting new vertex by w, and adding the edges x_2w and uv. Now $n_2 = n - 12$. Let S_2 be a minimum semitotal forcing set of C_2 with $x_2 \in S_2$ and $w \notin S_2$ as in Lemma 3. We can easily get that $S_2 \cup \{a_1, c_1, y_1, u_1\}$ is a semitotal forcing set of G, where u_1 is a neighbor of u in G different from y_1 . Thus, $F_{t2}(G) \leq F_{t2}(C_2) + 4 \leq \frac{3}{8}n_2 + \frac{1}{4} + 4 = \frac{3}{8}(n - 12) + \frac{1}{4} + 4 < \frac{3}{8}n + \frac{1}{4}$. Hence, suppose that $C_1 \notin \mathcal{N}_{cubic}$ and $n_1 \geq 10$. Applying the inductive hypothesis to C_1 , $F_{t2}(C_1) \leq \frac{3}{8}n_1 + \frac{1}{4}$. Therefore, $F_{t2}(G') = F_{t2}(C_1) + F_{t2}(C_2) \leq \frac{3}{8}n_1 + \frac{1}{4} + \frac{3}{8}n_2 + \frac{1}{4} = \frac{3}{8}n' + \frac{1}{2}$.

Now, we have $F_{t2}(G') \leq \frac{3}{8}n' + \frac{1}{2}$ whether G' is connected or not. Let S' be a minimum semitotal forcing set of G' with $x_2 \in S'$ and $w \notin S'$ as in Lemma 3. Let $G'' = G' - w + y_2 z_2$. Then S' is also a semitotal forcing set of G''. If $|S' \cap \{u, v\}| = 0$, without loss of generality, assume that u becomes black before v. Then, $S = S' \cup \{a_1, c_1\}$ is a semitotal forcing set of G. This is because if we apply the color-change rule to S in G, then the same forcing chains in G''with respect to S' remain valid in G until u becomes black. Further, $u \to y_1$ and $a_1 \rightarrow d_1 \rightarrow b_1 \rightarrow x_1 \rightarrow z_1 \rightarrow v$. Finally, all remaining white vertices in G will eventually become black using the same forcing chains as in G''. If $|S' \cap \{u, v\}| = \{1, 2\}$, without loss of generality, assume $u \in S'$. If u is not a forcing vertex during the forcing process with respect to S' in G'', then $S' \cup \{z_1, c_1\}$ is a semitotal forcing set of G. The same forcing chains in G'' with respect to S'remain valid in G. Finally, $u \to y_1 \to x_1 \to b_1 \to d_1$. It follows that all vertices in G become black. Now assume that u is a forcing vertex during the forcing process with respect to S' in G''. If $u \to v$, then $S' \cup \{z_1, c_1\}$ is also a semitotal forcing set of G. This is because $u \to v$ in G'' will be replaced by two forcing chains in $G: u \to y_1 \to x_1 \to b_1 \to d_1 \to a_1, z_1 \to v$. If $u \to u_1$, then $u_2 \in S'$ by Lemma 2, where $\{u_1, u_2\} = N_G(u) \setminus \{y_1\}$. And in this time step, v is black. One can easily verify that $S = (S' \setminus \{u\}) \cup \{y_1, z_1, c_1\}$ is a semitotal forcing set of G. Therefore, $F_{t2}(G) \leq |S'| + 2 = F_{t2}(G') + 2 \leq \frac{3}{8}n' + \frac{1}{2} + 2 = \frac{3}{8}(n-6) + \frac{1}{2} + 2 = \frac{3}{8}n + \frac{1}{4}$. This completes the proof.

Combining $F_{t2}(C_3 \Box K_2) = 3 < \frac{3}{8}n + 1$ with Theorem 5 and Theorem 8, we get the following theorem immediately.

Theorem 13. If $G \neq K_4$ is a connected claw-free cubic graph of order n, then $F_{t2}(G) \leq \frac{3}{8}n+1$, with equality if and only if $G = N_k$ and k is even.

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grants Nos. 12071194, 11571155).

References

- A. Aazami, Hardness Results and Approximation Algorithms for Some Problems on Graphs, Ph.D. Thesis (University of Waterloo, 2008).
- [2] AIM Minimum Rank-Special Graphs Work Group (F. Barioli, W. Barrett, S. Butler, S.M. Cioabă, D. Cvetković, S.M. Fallat, C. Godsil, W. Haemers, L. Hogben, R. Mikkelson, S. Narayan, O. Pryporova, I. Sciriha, W. So, D. Stevanović, H. van der Holst, K. Vander Meulen and A. Wangsness Wehe), Zero forcing sets and the minimum rank of graphs, Linear Algebra Appl. 428 (2008) 1628–1648. https://doi.org/10.1016/j.laa.2007.10.009
- [3] D. Amos, Y. Caro, R. Davila and R. Pepper, Upper bounds on the k-forcing number of a graph, Discrete Appl. Math. 181 (2015) 1–10. https://doi.org/10.1016/j.dam.2014.08.029
- [4] D. Burgarth and V. Giovannetti, Full control by locally induced relaxation, Phys. Rev. Lett. 99 (2007) 100501. https://doi.org/10.1103/PhysRevLett.99.100501
- [5] D. Burgarth, V. Giovannetti, L. Hogben, S. Severini and M. Young, *Logic circuits from zero forcing*, Nat. Comput. 14 (2015) 485–490. https://doi.org/10.1007/s11047-014-9438-5
- [6] C. Chekuri and N. Korula, A graph reduction step preserving element-connectivity and applications, in: Automata, Languages and Programming, Lecture Notes in Comput. Sci. 5555 (Springer, 2009) 254–265. https://doi.org/10.1007/978-3-642-02927-1_22
- [7] Q. Chen, On the semitotal forcing number of a graph, Bull. Malays. Math. Sci. Soc. 45 (2022) 1409–1424. https://doi.org/10.1007/s40840-021-01236-2
- [8] R. Davila and M.A. Henning, Total forcing and zero forcing in claw-free cubic graphs, Graphs Combin. 34 (2018) 1371–1384. https://doi.org/10.1007/s00373-018-1934-4
- R. Davila and M.A. Henning, Total forcing versus total domination in cubic graphs, Appl. Math. Comput. 354 (2019) 385–395. https://doi.org/10.1016/j.amc.2019.02.060
- R. Davila and M.A. Henning, On the total forcing number of a graph, Discrete Appl. Math. 257 (2019) 115–127. https://doi.org/10.1016/j.dam.2018.09.001

- [11] R. Davila and M.A. Henning, Zero forcing in claw-free cubic graphs, Bull. Malays. Math. Sci. Soc. 43 (2020) 673–688. https://doi.org/10.1007/s40840-018-00705-5
- [12] M. Fürst and D. Rautenbach, A short proof for a lower bound on the zero forcing number, Discuss. Math. Graph Theory 40 (2020) 355–360. https://doi.org/10.7151/dmgt.2117
- [13] M. Gentner, L.D. Penso, D. Rautenbach and U.S. Souza, Extremal values and bounds for the zero forcing number, Discrete Appl. Math. 214 (2016) 196–200. https://doi.org/10.1016/j.dam.2016.06.004
- M. Gentner and D. Rautenbach, Some bounds on the zero forcing number of a graph, Discrete Appl. Math. 236 (2018) 203–213. https://doi.org/10.1016/j.dam.2017.11.015
- [15] M. He and S. Ji, Note on forcing problem of trees, Graphs Combin. 38 (2022) 3. https://doi.org/10.1007/s00373-021-02402-w
- M. Henning and C. Löwenstein, Locating-total domination in claw-free cubic graphs, Discrete Math. **312** (2012) 3107–3116. https://doi.org/10.1016/j.disc.2012.06.024
- [17] H. Jiang, W. Li and J. Zhang, On trees and unicyclic graphs with equal forcing-type numbers, Bull. Malays. Math. Sci. Soc. 45 (2022) 1607–1620. https://doi.org/10.1007/s40840-022-01276-2
- [18] S. Li and W. Sun, On the zero forcing number of a graph involving some classical parameters, J. Comb. Optim. **39** (2020) 365-384. https://doi.org/10.1007/s10878-019-00475-1
- [19] Y.-P. Liang, J. Li and S.-J. Xu, On extremal graphs for zero forcing number, Graphs Combin. 38 (2022) 185. https://doi.org/10.1007/s00373-022-02591-y
- [20] Y.-P. Liang and S.-J. Xu, On graphs maximizing the zero forcing number, Discrete Appl. Math. 334 (2023) 81–90. https://doi.org/10.1016/j.dam.2023.03.011
- [21] L. Lu, B. Wu and Z. Tang, Proof of a conjecture on the zero forcing number of a graph, Discrete Appl. Math. 213 (2016) 223–237. https://doi.org/10.1016/j.dam.2016.05.009
- [22] N. Monshizadeh, S. Zhang and M.K. Camlibel, Zero forcing sets and controllability of dynamical systems defined on graphs, IEEE Trans. Automat. Control 59 (2014) 2562–2567. https://doi.org/10.1109/TAC.2014.2308619
- [23] D.D. Row, A technique for computing the zero forcing number of a graph with a cut-vertex, Linear Algebra Appl. 436 (2012) 4423–4432. https://doi.org/10.1016/j.laa.2011.05.012

[24] X. Wang, D. Wong and Y. Zhang, Zero forcing number of a graph in terms of the number of pendant vertices, Linear Multilinear Algebra 68 (2020) 1424–1433. https://doi.org/10.1080/03081087.2018.1545829

> Received 11 November 2022 Revised 21 May 2023 Accepted 25 May 2023 Available online 19 June 2023

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License https://creativecommons.org/licenses/by-nc-nd/4.0/