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Abstract

For an isolate-free graph G = (V (G), E(G)), a set S ⊆ V (G) is called a
semitotal forcing set of G if it is a forcing set (or a zero forcing set) of G and
every vertex in S is within distance 2 of another vertex of S. The semitotal
forcing number Ft2(G) is the minimum cardinality of a semitotal forcing set
in G. In this paper, we prove that if G 6= K4 is a connected claw-free cubic
graph of order n, then Ft2(G) ≤ 3

8n + 1. The graphs achieving equality in
this bound are characterized, an infinite set of graphs.
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1. Introduction

In this paper, by a graph we always mean a simple finite undirected graph; if we
admit multiple edges, we always talk about a multigraph.

The concept of a (zero) forcing set, along with the related (zero) forcing
number, of a simple graph was introduced in [2] to study the maximum nul-
lity/minimum rank of the family of symmetric matrices associated with the graph.
Independently, this parameter was introduced by Burgarth et al. [4] in conjunc-
tion with control of quantum systems; in this context it is known as the graph
infection number. In addition, the (zero) forcing number was considered in con-
nection with logic circuits [5] and dynamical systems [22].

For any two-coloring of vertex set V of a graph G, say black and white for two
used colors, define a following color-change rule: a white vertex v is converted
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to black if it is the only white neighbor of some black vertex u. In this case, we
say u forces v, write u→ v and refer to u as a forcing vertex. Let S be a subset
of V . Define a two-coloring of G as coloring S black, the others white. The
derived set D(S) of S is the set of black vertices obtained by iteratively applying
the color-change rule until no more changes are possible. Moreover, applying the
color-change rule iteratively results in forcing chains v1 → v2 → · · · → vk, where
vi forces vi+1 for 1 ≤ i ≤ k − 1. If D(S) = V , then we say S is a forcing set
(also called a zero forcing set) of G. The procedure of coloring a graph using the
color-change rule applied for S is called a forcing process with respect to S. A
minimum forcing set of G is a forcing set of G of minimum cardinality, and the
forcing number, denoted by F (G), is the cardinality of a minimum forcing set.
In addition, if S is a forcing set of G and G[S] contains no isolated vertex, then
S is a total forcing set of G. The total forcing number of G is the cardinality of
a minimum total forcing set in G, denoted by Ft(G).

In this paper, we focus on the semitotal forcing, which was first introduced
by Chen in [7]. A set S of vertices in G is a semitotal forcing set of G if it is
a forcing set of G and every vertex in S is within distance 2 of another vertex
of S. The semitotal forcing number, denoted by Ft2(G), is the cardinality of a
minimum semitotal forcing set of G.

Since every total forcing set is also a semitotal forcing set, and since every
semitotal forcing set is a forcing set, we have the following chain of inequalities [7].
For every isolate-free graph G, F (G) ≤ Ft2(G) ≤ Ft(G). We remark that the
gap between the semitotal forcing number with forcing number and total forcing
number for graphs can be arbitrary large, such as a graph G ∈ Ncubic. Forcing
and its variants are heavily studied in graph theory and we refer the reader
to [1–3,6, 8–15,17–21,23,24].

Forcing and total forcing of connected claw-free cubic graphs have been stud-
ied in [8, 9, 11]. Let G 6= K4 be a connected claw-free cubic graph of order n.
Davila and Henning [8] showed that Ft(G) ≤ 1

2n, with equality if and only if
G ∈ Ncubic or G is the prism C3�K2; and then these two authors [11] showed
that F (G) ≤ 1

3n + 1 unless G = N2. Chen [7] showed that Ft2(G) ≤ 1
2n, with

equality if and only if G is the diamond-necklace N2 or the prism C3�K2. In
this paper, we improve this upper bound on the semitotal forcing number of G:
Ft2(G) ≤ 3

8n + 1, and the graphs achieving equality in this bound are character-
ized i.e., Theorem 13.

2. Preliminaries

In this section, we give some basic definitions and list or prove some lemmas and
theorems as preliminaries, which will be used in the proof of our main results.
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Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G).
The order of G is the number of its vertices, denote n = |V (G)|, and its size is
the number of its edges, denote m = |E(G)|. If uv ∈ E(G), then we say u, v are
adjacent, u is a neighbor of v and vice versa. Let NG(v) be the set of neighbours
of a vertex v in a graph G, and let dG(v) = |NG(v)| be the degree of a vertex v in
a graph G. A graph is isolate-free if it does not contain an isolated vertex; that
is, a vertex of degree 0. A graph is cubic if every vertex has degree three. The
distance between u and v is the length of a shortest (u, v)-path in G, denoted
by dG(u, v). If the graph G is clear from the context, we write V , E, N(v),
d(G) and d(u, v) shortened. For k ≥ 1 an integer, we use the standard notation
[k] = {1, 2, . . . , k}.

A graph H = (V (H), E(H)) is called a subgraph of G = (V (G), E(G)) if
V (H) ⊆ V (G) and E(H) ⊆ E(G). For a subset X of V (G), the induced subgraph
by X, denoted by G[X], is the graph with vertex set X, in which two vertices are
adjacent if and only if they are adjacent in G. We denote by G−X the induced
subgraph G[V \ X], if X = {x}, write G − x for short. A graph is H-free if it
does not contain H as an induced subgraph.

We denote a path, a cycle and a complete graph on n vertices by Pn, Cn

and Kn, respectively. A complete bipartite graph with parts of sizes a and b
is denoted by Ka,b. A complete graph K3 is called a triangle and a complete
bipartite graph K1,3 is called a claw. The complete graph K4 minus one edge is
called a diamond.

Two vertices u and v in a nontrivial connected graph G are twins if u and v
have the same neighbors in V (G) \ {u, v}.

Observation 1. If u and v are twins of a connected graph G, then every forcing
set of G contains at least one vertex of {u, v}.

Lemma 2. Let G be a connected cubic graph and let T be an induced triangle of
G satisfying that there exists a minimum semitotal forcing set S containing only
one vertex of T , say u. Then there exists a forcing process with respect to S such
that u does not force any other vertex of T .

Proof. Suppose V (T ) = {u, v, w}. Note that u ∈ S and v, w /∈ S. Without
loss of generality, we may assume that v becomes black before w. Then v can be
forced by its neighbor different from u and w, and further v → w. Thus, u does
not force v and w.

Lemma 3. Let G be a connected cubic graph containing an induced diamond D,
where V (D) = {a, b, c, d} and ab is the missing edge in D. Then there exists a
minimum semitotal forcing set S such that c ∈ S and d /∈ S. In addition, c is
not a forcing vertex if |S ∩ {a, b, c, d}| ≤ 2; c forces d if |S ∩ {a, b, c, d}| = 3.
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Proof. Since c and d are twins of G, a minimum semitotal forcing set S contains
at least one vertex of {c, d}. Without loss of generality, c ∈ S. Note that S
contains at most three vertices of D, otherwise S \ {d} is a semitotal forcing set
smaller than S, a contradiction. If |S ∩ {a, b, c, d}| = 3, then S ∩ {a, b, c, d} =
{a, b, c} is satisfied. Hence we assume that |S ∩ {a, b, c, d}| ∈ {1, 2}. If d /∈ S,
there is nothing to prove. Now consider d ∈ S. If a ∈ S, then (S \ {d}) ∪ {b}
is also a minimum semitotal forcing set satisfying the statement of the lemma.
Thus, we may assume a /∈ S and similarly b /∈ S. Without loss of generality,
assume that a becomes black before b. Hence, a must be forced by its neighbor
different from c and d, and (S \ {d}) ∪ {b} satisfies the statement of the lemma.

Let S be a minimum semitotal forcing set of G such that c ∈ S and d /∈ S.
If |S ∩ {a, b, c, d}| = 1, then a, b, d /∈ S. By Lemma 2, c is not a forcing vertex.
If |S ∩ {a, b, c, d}| = 2, without loss of generality, assume that a ∈ S and b /∈ S.
By Lemma 2, c does not force b and d. Since a ∈ S, c is not a forcing vertex. If
|S ∩ {a, b, c, d}| = 3, we let c→ d in the forcing process.

The following property of connected claw-free cubic graphs is established
in [16].

Lemma 4 [16]. If G 6= K4 is a connected claw-free cubic graph of order n, then
the vertex set V (G) can be uniquely partitioned into sets each of which induces a
triangle or a diamond in G.

Following the notation introduced in [16], we refer to such a partition as
a triangle-diamond partition of G, abbreviated ∆-D-partition. Further we call
every triangle and diamond induced by a set in our ∆-D-partition a unit of the
partition. A unit that is a triangle we call a triangle-unit and a unit that is a
diamond we call a diamond-unit. (Note that a triangle-unit is a triangle that
does not belong to a diamond.) We say that two units in the ∆-D-partition are
adjacent if there is an edge joining a vertex in one unit to a vertex in the other
unit.

In what follows, we give the definition of a diamond-necklace, diamond-
bracelet, diamond-chain, double triangle-chain, and triangle-necklace, coined by
Henning and Löwenstein [16], Davila and Henning [11], respectively.

Definition [16]. For k ≥ 2 an integer, let Nk be the connected cubic graph
constructed as follows. Take k disjoint copies D1, D2, . . . , Dk of a diamond,
where V (Di) = {ai, bi, ci, di} and where aibi is the missing edge in Di. Let
Nk be obtained from the disjoint union of these k diamonds by adding the edges
{aibi+1 | i ∈ [k]} with addition taken modulo k (and so akbk+1 = akb1). We call
Nk a diamond-necklace with k diamonds. Let Ncubic = {Nk | k ≥ 2}.

A diamond-necklace, N6, with six diamonds is shown in Figure 1. By Lemma
4, we note that if G is a connected claw-free cubic graph with no triangle-units,
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N6

Figure 1. A diamond-necklace N6, where the black vertices form a minimum semitotal
forcing set of N6.

then G ∈ Ncubic. The semitotal forcing number of a diamond-necklace was deter-
mined by Chen in [7].

Theorem 5 [7]. Let G = Nk ∈ Ncubic have order n = 4k. Then Ft2(G) =⌈
3k+1
2

⌉
=

⌊
3n
8

⌋
+ 1.

(a) B5 (b) L2 (c) DT2 (d) H6

Figure 2. A diamond-bracelet B5, a diamond-chain L2, a double triangle-chain DT2 and
a triangle-necklace H6.

Definition [16]. For k ≥ 1 an integer, a diamond-bracelet Bk (see Figure 2(a)
for example) with k diamonds is defined as follows. Let Bk be obtained from a
diamond-necklace Nk+1 with k + 1 diamonds D1, D2, . . . , Dk+1 by removing the
diamond Dk+1 and adding a triangle T1 with V (T1) = {x1, y1, z1}, and adding
the edges y1b1 and z1ak.
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Definition [16]. For k ≥ 1 an integer, a diamond-chain Lk (see Figure 2(b)
for example) with k diamonds is defined as follows. Let Lk be obtained from a
diamond-necklace Nk+1 with k + 1 diamonds D1, D2, . . . , Dk+1 by removing the
diamond Dk+1 and adding two disjoint triangles T1 and T2 and adding an edge
joining b1 to a vertex of T1 and adding an edge joining ak to a vertex of T2.

Definition [16]. A double triangle-chain DT2 (see Figure 2(c) for example) is
obtained from a diamond-chain L2 with two diamonds by replacing the two dia-
monds with two triangles and adding two edges joining these two triangles.

Definition [11]. For k ≥ 2 an integer, let Hk (see Figure 2(d) for example) be the
graph constructed as follows. Take k disjoint copies T1, T2, . . . , Tk of a triangle,
where V (Ti) = {xi, yi, zi}. Let Hk be obtained from the disjoint union of these
k triangles by adding the edges {xiyi+1 | i ∈ [k]} with addition taken modulo k
(and so xkyk+1 = xky1). We call Hk a triangle-necklace with k triangles.

We next define a diamond-armlet.

Definition. For k ≥ 1 an integer, a diamond-armlet Ak with k diamonds is
defined as follows. Let Ak be obtained from a diamond-necklace Nk+1 with
k + 1 diamonds D1, D2, . . . , Dk+1 by removing the diamond Dk+1 and adding
two triangles T1 and T2 with V (Ti) = {xi, yi, zi} for i ∈ [2], and adding the edges
x1b1, x2ak, y1y2 and z1z2. Let Acubic = {Ak|k ≥ 1}.

(a) A3 (b) A4

Figure 3. Two diamond-armlets A3 and A4, where the black vertices form a minimum
semitotal forcing set of their respective graphs.

Two diamond-armlets, A3 and A4, are shown in Figure 3(a) and Figure 3(b),
respectively. The semitotal forcing number of a diamond-armlet is determined as
follows.

Theorem 6. Let G = Ak ∈ Acubic have order n = 4k+ 6. Then Ft2(G) = 3n
8 + 1

4
when k is odd; Ft2(G) = 3n

8 −
1
4 when k is even.
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Proof. Let G = Ak ∈ Acubic have order n = 4k + 6. For convenience, we
write A = {ai | 1 ≤ i ≤ k}, B = {bi | 1 ≤ i ≤ k}, C = {ci | 1 ≤ i ≤ k}, and
D = {di | 1 ≤ i ≤ k}.

We first show that Ft2(G) ≤
⌈
3k
2

⌉
+ 2. Let S = C ∪ {ai | 1 ≤ i ≤ k and i is

odd}∪ {b1, y1}. Then the set S is a semitotal forcing set of G. Thus, Ft2(G) ≤
|S| = k +

⌈
k
2

⌉
+ 2 =

⌈
3k
2

⌉
+ 2.

We next show that Ft2(G) ≥
⌈
3k
2

⌉
+2. Let S′ be an arbitrary semitotal forcing

set of G. By Observation 1, S′ contains at least one vertex of {ci, di} for every
i ∈ [k]. Renaming vertices if necessary, we may assume that ci ∈ S′. Moreover, at
least one vertex of {y1, y2, z1, z2} belongs to S′, otherwise, S′ is not a forcing set,
a contradiction. Without loss of generality, assume that y1 ∈ S′. Let S′′ be the
set of vertices in S′ that belong to A∪B∪D∪{x1, x2, y2, z1, z2}. Now we consider
two cases. In the case where k is even. Since every vertex in S′ is within distance
2 of another vertex of S′, |S′′| ≥

⌈
k
2

⌉
+ 1. In the case where k is odd. Similarly,

in order to guarantee that S′ is semitotal, we have |S′′| ≥
⌈
k
2

⌉
. And then every

vertex in G[S′] has degree at most 1 if |S′′| =
⌈
k
2

⌉
. Since G is cubic, the first

forcing vertex in the forcing process has degree 2 in G[S′], a contradiction. Thus,
|S′′| ≥

⌈
k
2

⌉
+ 1. In both cases, |S′| = |C|+ 1 + |S′′| ≥ k + 1 +

⌈
k
2

⌉
+ 1 =

⌈
3k
2

⌉
+ 2.

This implies that Ft2(G) ≥
⌈
3k
2

⌉
+ 2.

To conclude, when k is odd, Ft2(G) =
⌈
3k
2

⌉
+ 2 = 3n

8 + 1
4 ; when k is even,

Ft2(G) =
⌈
3k
2

⌉
+ 2 = 3n

8 −
1
4 .

3. Connected Claw-Free Cubic Graphs

In this section, we establish an upper bound on the semitotal forcing number of
a connected claw-free cubic graph G 6= K4 in terms of its order.

First, we give the following theorem for the special case where G is diamond-
free.

Theorem 7. If G 6= K4 is a connected claw-free and diamond-free cubic graph
of order n, then Ft2(G) ≤ 1

3n + 1.

Proof. Since G 6= K4 is a connected claw-free cubic graph, there is a unique
∆-D-partition of G by Lemma 4. Further every unit in G is a triangle-unit
because G is diamond-free. Now we define the contraction multigraph of G,
denoted G′, to be the multigraph whose vertices correspond to the triangle-units
in G and where two vertices in G′ are joined by the number of edges joining the
corresponding triangle-units in G. We note that the order of G′ is precisely the
number of triangle-units in G. Every vertex in G′ has degree 3, and so G′ is a
cubic multigraph. Let C : v1v2 · · · vkv1 be a shortest cycle in G′ where we allow
2-cycles, and so k ≥ 2. For i ∈ [k], let Ti be the triangle-unit in G associated



8 Y.-P. Liang, J. Chen and S.-J. Xu

with the vertex vi, where V (Ti) = {xi, yi, zi} and where xiyi+1 is an edge with
addition taken modulo k (and so xkyk+1 is the edge xky1). Thus, G contains a
subgraph as a triangle-necklace, Hk, with k triangles. We note that if k = 2,
then either G is the prism C3�K2 or G contains a H2.

(a) C3�K2 (b) H6

z1z2

y1x2

y2 x1

x1

y1

z1z4

y4

x4

y6

y2

z2z3

x3

x2y3

y5 x6

z6z5
x5

Figure 4. Initialization for the proof of Theorem 7.

We construct a semitotal forcing set S of G such that |S| ≤ 1
3n + 1. For

this purpose, we set S = {y1, x1, x2, . . . , xk} and color all vertices in S black and
the others white, initially. At any step we let B be the set of vertices that have
already been colored black, and W the set of all vertices that remain white. If
G = C3�K2, then S = {y1, x1, xk} is a minimum semitotal forcing set of G and
Ft2(G) = 3 = 1

3n+ 1. (The graph C3�K2 is shown in Figure 4(a).) Suppose that
G 6= C3�K2. Then the set {z1, . . . , zk} is independent. Starting with this initial
set S, we play the sequence of vertices y1, x1, y2, x2, . . . , yk in turn which force the
vertices z1, y2, z2, y3, . . . , zk, respectively, to be colored black. The initialization
of the initial set S in the case of k = 6 is shown in Figure 4(b). Now B = V (Hk)
and W 6= ∅. Next, we extend S by Rule 1 and Rule 2, iteratively apply the
color-change rule to the current set S, and in each step, we color all vertices in
one triangle-unit or two triangle-units black.

Rule 1. There exists a triangle-unit T such that V (T ) ⊆ W and T has at least
two vertices that are adjacent to vertices of B, then all vertices in this triangle-
unit to become black.

Rule 2. There exists a triangle-unit T such that V (T ) = {x, y, z} ⊆ W and
T has only one vertex that is adjacent to a vertex of B. Renaming vertices if
necessary, assume that x has a neighbor v ∈ B. Then T is adjacent to a triangle-
unit T ′, where V (T ′) = {x′, y′, z′} ⊆ W . Renaming vertices if necessary, assume
that y is adjacent to x′. Now we add {y, y′} to S. Thus, v → x→ z, y → x′ → z′,
and all vertices in V (T ) ∪ V (T ′) become black. Note that d(y, y′) = 2.
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Since G is connected, Rule 1 and Rule 2 continue until all vertices become
black. And in each step we add at most one vertex of a triangle-unit to S. Thus,
S is a forcing set of G with |S| ≤ 1

3n + 1. It is easy to see that S is a semitotal
forcing set of G.

Note that the only three connected claw-free cubic graphs that have order
n < 10 are K4, C3�K2 and N2. If G ∈ Ncubic, the semitotal forcing number of
G was determined by Theorem 5. Next we add the restriction that G is not a
diamond-necklace and n ≥ 10.

Theorem 8. If G /∈ Ncubic is a connected claw-free cubic graph of order n ≥ 10,
then Ft2(G) ≤ 3

8n + 1
4 .

Proof. Since G is cubic, we note that n is even. We proceed by induction on
the order n ≥ 10. If n = 10, then G = A1 and Ft2(A1) = 4 = 3

8n + 1
4 . If n = 12,

since G 6= N3, G can only be G12.1 and G12.2, shown in Figure 5, respectively,
and Ft2(G) = 4 < 3

8n + 1
4 . This establishes the base cases. Next, let n ≥ 14

and assume that for every connected claw-free cubic graph G′ /∈ Ncubic of order
10 ≤ n′ < n, Ft2(G

′) ≤ 3
8n

′ + 1
4 . Let G be a connected claw-free cubic graph of

order n. By Lemma 4, there is a unique ∆-D-partition of G. If every unit in the
∆-D-partition of G is a triangle-unit, i.e., G is diamond-free, we get n ≥ 18, and
then Ft2(G) ≤ n

3 + 1 ≤ 3
8n + 1

4 by Theorem 7. Thus, we may assume that G has
at least one diamond-unit. Since G /∈ Ncubic, G must contain a diamond-chain or
a diamond-bracelet.

(a) G12.1 (b) G12.2

Figure 5. Two connected claw-free cubic graphs of order 12, where the black vertices
form a minimum semitotal forcing set of their respective graphs.

We proceed further with the following series of claims.

Claim 9. If G contains a diamond-chain L2, then Ft2(G) ≤ 3
8n + 1

4 .

Proof. Suppose that G contains a diamond-chain L2. Using our earlier notation,
let D1, D2 be two consecutive diamonds in L2, where V (Di) = {ai, bi, ci, di} and
where aibi is the missing edge in Di for i ∈ [2] and a1b2 is an edge. Let w1 be
the neighbor of b1 not in D1, and let w2 be the neighbor of a2 not in D2. By
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the definition of a diamond-chain L2, we note that w1 6= w2 and w1w2 is not an
edge; the triangles containing w1 and w2 are vertex disjoint. Let G′ be the graph
obtained from G by removing all vertices in V (D1)∪V (D2) and adding the edge
w1w2. Since G is a connected claw-free cubic graph, so also is the graph G′. Let
G′ have order n′. Then n′ = n− 8 ≥ 6.

If G′ = C3�K2, then G = A2 and Ft2(A2) = 5 = 3
8n −

1
4 is satisfied. If

G′ ∈ Ncubic, then G ∈ Ncubic, a contradiction. Now assume that G′ /∈ Ncubic

and n′ ≥ 10. Applying the inductive hypothesis to G′, Ft2(G
′) ≤ 3

8n
′ + 1

4 . Let
S′ be a minimum semitotal forcing set of G′. If |S′ ∩ {w1, w2}| = 0, without
loss of generality, we may suppose that w1 becomes black before w2. Then,
S = S′ ∪ {c1, c2, a1} is a semitotal forcing set of G. This is because if we apply
the color-change rule to S in G, the same forcing chains in G′ with respect to S′

remain valid in G until w1 becomes black. In this time, two neighbors (different
from b1) of w1 are both black. Then w1 → b1 → d1, and a1 → b2 → d2 →
a2 → w2. Finally, all remaining white vertices in G will become black using
the same forcing chains as in G′. The newly added vertices guarantee that S
is semitotal. Now consider |S′ ∩ {w1, w2}| ∈ {1, 2}. Without loss of generality,
assume that w1 ∈ S′. We claim that S = S′ ∪ {c1, c2, a2} is a semitotal forcing
set of G. If w1 is not a forcing vertex during the forcing process with respect
to S′ in G′, then the same forcing chains in G′ with respect to S′ can be used
in G with respect to S. Thus, all vertices in G′ still become black. Finally,
a2 → d2 → b2 → a1 → d1 → b1. It follows that all vertices in G become black.
If w1 is a forcing vertex during the forcing process with respect to S′ in G′, let
NG′(w1) = {w2, u, v} and divide into two cases. In the case of w1 → w2, it
will be replaced by two forcing chains in G: w1 → b1 → d1 → a1 → b2 → d2,
a2 → w2. In the case of w1 → u (or w1 → v), note that in this time step, w2 is
already black. So the forcing chains in G′ with respect to S′ remain valid in G
until w2 becomes black. Further, a2 → d2 → b2 → a1 → d1 → b1. Finally, all
remaining white vertices in G will become black using the same forcing chains
as in G′. In either case, S is a semitotal forcing set of G. Therefore, we have
Ft2(G) ≤ Ft2(G

′) + 3 ≤ 3
8n

′ + 1
4 + 3 = 3

8(n− 8) + 1
4 + 3 = 3

8n + 1
4 .

We note that if G contains a diamond-chain Lk with k ≥ 2, then G contains
a diamond-chain L2. Hence by Claim 9, we may assume that G does not contain
a diamond-chain Lk with k ≥ 2. Moreover, if G contains a diamond-bracelet Bk,
then k ≤ 2, otherwise, G contains a diamond-chain L2, a contradiction. There-
fore, next we will discuss when G contains a diamond-bracelet Bk, where k ∈ [2],
or every diamond-unit is adjacent to two distinct triangle-units to complete our
proof. Before this, we give the following claim.

Claim 10. If G contains a double triangle-chain DT2, then Ft2(G) ≤ 3
8n + 1

4 .
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Proof. Suppose that G contains a double triangle-chain DT2, where T1 and T2

are the two triangle-units in DT2 joined by two edges. Let V (Ti) = {xi, yi, zi} for
i ∈ [2], where y1y2, z1z2 ∈ E(G). Let wi be the neighbor of xi not in Ti for i ∈ [2].
By the definition of a double triangle-chain, we note that the triangles containing
w1 and w2 are vertex disjoint. In particular, w1 and w2 are not adjacent. Let
G′ be the graph obtained from G by removing all vertices in V (T1) ∪ V (T2) and
adding the edge w1w2. Since G is a connected claw-free cubic graph, so also is
the graph G′. Let G′ have order n′. Then n′ = n− 6 ≥ 8.

If G′ = Nk with k ≥ 2, then G = Ak ∈ Acubic and Ft2(G) ≤ 3
8n + 1

4 by
Theorem 6. Suppose that G′ /∈ Ncubic and n′ ≥ 10. Applying the inductive
hypothesis to G′, Ft2(G

′) ≤ 3
8n

′ + 1
4 . Let S′ be a minimum semitotal forcing

set of G′. If |S′ ∩ {w1, w2}| = 0, without loss of generality, we may suppose
that w1 becomes black before w2. Then, the set S = S′ ∪ {x1, y1} is a semitotal
forcing set of G. This is because if we apply the color-change rule to S in G, the
same forcing chains in G′ with respect to S′ remain valid in G until w1 becomes
black. Further, x1 → z1 → z2 and y1 → y2 → x2 → w2. Then all remaining
white vertices in G will become black using the same forcing chains as in G′.
Now consider |S′ ∩ {w1, w2}| ∈ {1, 2}. Without loss of generality, assume that
w1 ∈ S′. If w1 is not a forcing vertex during the forcing process with respect to
S′ in G′, then S = S′ ∪ {x2, y1} is a semitotal forcing set of G. This is because
if we apply the color-change rule to S in G, the same forcing chains in G′ with
respect to S′ remain valid in G and w1 → x1 → z1 → z2 → y2. The newly
added vertices guarantee that S is semitotal. If w1 is a forcing vertex during
the forcing process with respect to S′ in G′, then we divide into two cases. In
the case of w1 → w2, S = S′ ∪ {x2, y1} is also a semitotal forcing set of G.
Applying the color-change rule to S in G, w1 → w2 is replaced by two forcing
chains: w1 → x1 → z1 → z2 → y2, x2 → w2. The newly added vertices guarantee
that S is semitotal. In the case of w1 → u, then v ∈ S′ by Lemma 2, where
{u, v} = NG′(w1) \ {w2}. Note that in this time step, w2 is already black. One
can easily verify that S = S′ ∪{x2, y2} is a semitotal forcing set of G. Therefore,
we have Ft2(G) ≤ Ft2(G

′) + 2 ≤ 3
8n

′ + 1
4 + 2 = 3

8(n− 6) + 1
4 + 2 < 3

8n + 1
4 .

By Claim 10, we may assume that G contains no double triangle-chain DT2.

Claim 11. If G contains a diamond-bracelet Bk with k ∈ [2], then Ft2(G) ≤
3
8n + 1

4 .

Proof. Suppose that G contains a diamond-bracelet Bk with k ∈ [2]. Using
our earlier notation, let Di be a diamond of Bk for i ∈ [k], where V (Di) =
{ai, bi, ci, di} and aibi is the missing edge in Di. Let T1 be the only triangle in Bk

that V (T1) = {x1, y1, z1} and y1b1 and z1ak are edges in Bk. Let U be the unit
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(a) B1 (b) B2

Figure 6. The diamond-bracelets B1 and B2.

that is adjacent to T1 and does not belong to Bk. Now we divide into two cases
to discuss according to U .

Case 1. U is a triangle-unit.

Suppose that U is a triangle-unit, say T , where V (T ) = {x, y, z} and xx1 ∈
E(G). Let u and v denote the neighbors of y and z, respectively, not in T . If
uv ∈ E(G), then u and v must be in the same triangle-unit, say T ′. Clearly, G
has a double triangle-chain DT2 containing T and T ′, a contradiction. Hence,
uv /∈ E(G).

Let G′ be the graph obtained from G by removing all vertices in V (Bk)∪V (T )
and adding the edge uv. Since G is a connected claw-free cubic graph, so also is
the graph G′. Let G′ have order n′. Then n′ = n − 6 − 4k ≥ 4 for k ∈ [2]. If
G′ = K4, then G is the graph G14.1 or G18.1, shown in Figure 7(a) and Figure
7(b), respectively. If G′ = C3�K2, then G is the graph G16.1 or G20.1, shown
in Figure 7(c) and Figure 7(d), respectively. If G′ = N2, then G is the graph
G18.1 or G22.1, shown in Figure 7(b) and Figure 7(e), respectively. In all cases,
Ft2(G) < 3

8n + 1
4 . If G′ = Nk with k ≥ 3, then G contains a diamond-chain L2,

a contradiction. Now we assume that G′ /∈ Ncubic and n′ ≥ 10. Applying the
inductive hypothesis to G′, Ft2(G

′) ≤ 3
8n

′ + 1
4 . Let S′ be a minimum semitotal

forcing set of G′.

Suppose first k = 1 and n′ = n − 10. If |S′ ∩ {u, v}| = 0, without loss of
generality, we may suppose that u becomes black before v. Then, S = S′ ∪
{x, y1, c1} is a semitotal forcing set of G. This is because if we apply the color-
change rule to S in G, the same forcing chains in G′ with respect to S′ remain
valid in G until u becomes black. In this time, two neighbors (different from y)
of u are black. Then u→ y → z → v and x→ x1 → z1 → a1 → d1 → b1. Finally,
all remaining white vertices in G will eventually become black using the same
forcing chains as in G′. The newly added vertices guarantee that S is semitotal.
Now consider |S′∩{u, v}| ∈ {1, 2}. Without loss of generality, assume that u ∈ S′.
If u is not a forcing vertex during the forcing process with respect to S′ in G′,
then S = S′ ∪ {z, y1, c1} is a semitotal forcing set of G. This is because if we
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(a) G14.1 (b) G18.1

(c) G16.1 (d) G20.1

(e) G22.1

Figure 7. Five connected claw-free cubic graphs in the proof of Case 1 in Claim 11, where
the black vertices form a semitotal forcing set of their respective graphs.

apply the color-change rule to S in G, the same forcing chains in G′ with respect
to S′ remain valid in G. Further, u→ y → x→ x1 → z1 → a1 → d1 → b1 and all
vertices of G will become black. If u is a forcing vertex during the forcing process
with respect to S′ in G′, then we consider two cases. In the case of u → v,
S = S′ ∪ {z, y1, c1} is also a semitotal forcing set of G. This is because if we
apply the color-change rule to S in G, u → v is replaced by two forcing chains:
u→ y → x→ x1 → z1 → a1 → d1 → b1 and then z → v. In the case of u→ u1,
then u2 ∈ S′ by Lemma 2, where {u1, u2} = NG′(u) \ {v}. Note that in this time
step, v is already black. So, S = (S′ \ {u}) ∪ {y, z, y1, c1} is a semitotal forcing
set of G. This is because if we apply the color-change rule to S in G, the same
forcing chains in G′ with respect to S′ remain valid in G until v becomes black.
Then z → x → x1 → z1 → a1 → d1 → b1 and further y → u → u1. Finally,
all remaining white vertices in G will eventually become black using the same
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forcing chains as in G′. It is not hard to see that S is semitotal. Therefore, we
have Ft2(G) ≤ Ft2(G

′) + 3 ≤ 3
8n

′ + 1
4 + 3 = 3

8(n− 10) + 1
4 + 3 < 3

8n + 1
4 .

Suppose k = 2 and n′ = n−14. If |S′∩{u, v}| = 0, without loss of generality,
we may suppose that u becomes black before v. Then, S = S′ ∪ {a1, b2, c1, c2} is
a semitotal forcing set of G. This is because if we apply the color-change rule to
S in G, the same forcing chains in G′ with respect to S′ remain valid in G until u
becomes black. In this time, two neighbors (different from y) of u are both black.
Then u → y, b2 → d2 → a2 → z1, and a1 → d1 → b1 → y1 → x1 → x → z → v.
Finally, all remaining white vertices in G will eventually become black using the
same forcing chains as in G′. Now consider |S′ ∩{u, v}| ∈ {1, 2}. Without loss of
generality, assume that u ∈ S′. One can easily verify that S′ ∪{a1, b2, c1, c2, z} is
a semitotal forcing set of G. Thus, we have Ft2(G) ≤ Ft2(G

′) + 5 ≤ 3
8n

′ + 1
4 + 5 =

3
8(n− 14) + 1

4 + 5 < 3
8n + 1

4 .

Case 2. U is a diamond-unit.

Suppose that U is a diamond-unit, say D, where V (D) = {a, b, c, d} and ab
is the missing edge in the diamond D and x1a ∈ E(G). Let U ′ be the unit that is
adjacent to U and does not belong to Bk. Since U is a diamond-unit, U ′ is not a
diamond-unit, otherwise G contains a diamond-chain L2, a contradiction. Thus
U ′ is a triangle-unit, say T ′, where V (T ′) = {x′, y′, z′} and bx′ ∈ E(G). Let u′ and
v′ denote the neighbors of y′ and z′, respectively, not in T ′. If u′v′ ∈ E(G), then
G contains a double triangle-chain DT2, a contradiction. Hence, u′v′ /∈ E(G).

(a) G18.2

(c) G22.2 (d) G26.1

(b) G20.2

Figure 8. Four connected claw-free cubic graphs in the proof of Case 2 in Claim 11, where
the black vertices form a semitotal forcing set of their respective graphs.

Suppose first that k = 1 and let G′ be the graph obtained from G by removing
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all vertices in V (B1) ∪ V (D) ∪ V (T ′) and adding the edge u′v′. Since G is a
connected claw-free cubic graph, so also is the graph G′. Let G′ have order n′.
Then n′ = n − 14 ≥ 4. If G′ = K4, then G = G18.2 shown in Figure 8(a), and
Ft2(G) ≤ 7 = 3

8n + 1
4 . If G′ = C3�K2, then G = G20.2 shown in Figure 8(b),

and Ft2(G) ≤ 7 < 3
8n + 1

4 . If G′ = N2, then G = G22.2 shown in Figure 8(c), and
Ft2(G) ≤ 8 < 3

8n + 1
4 . If G′ = Nk with k ≥ 3, then G contains a diamond-chain

L2, a contradiction. Now assume that G′ /∈ Ncubic and n′ ≥ 10. Applying the
inductive hypothesis to G′, Ft2(G

′) ≤ 3
8n

′ + 1
4 . Let S′ be a minimum semitotal

forcing set of G′. Applying the color-change rule to S′ in G′, without loss of
generality, we may assume that u′ becomes black no later than v′. We claim that
S = S′ ∪ {c1, y1, c, x′, z′} is a semitotal forcing set of G. If |S′ ∩ {u′, v′}| = 2, it is
clear that S is a semitotal forcing set of G. If |S′ ∩ {u′, v′}| = 0, then the forcing
chains in G′ with respect to S′ remain valid in G until u′ becomes black. In this
time, two neighbors (different from y′) of u′ are both black. Further, u′ → y′ and
then x′ → b→ d→ a→ x1 → z1 → a1 → d1 → b1, z

′ → v′. Finally, all remaining
white vertices in G will eventually become black using the same forcing chains as
in G′. If |S′ ∩ {u′, v′}| = 1, recall our assumption that u′ becomes black no later
than v′. Thus, we have u′ ∈ S′ and v′ /∈ S′. Next we divide into two cases. In the
case of u′ → v′ in G′, we replace with three forcing chains when we apply the color-
change rule to S in G: u′ → y′, x′ → b → d → a → x1 → z1 → a1 → d1 → b1,
z′ → v′. In the case of u′ does not force v′ in G′, the same forcing chains in G′

with respect to S′ remain valid in G until v′ becomes black. Then, z′ → y′ and
x′ → b → d → a → x1 → z1 → a1 → d1 → b1. Finally, all remaining white
vertices in G will eventually become black using the same forcing chains as in G′.
Thus, S is a forcing set of G. It is not hard to see that S is semitotal. Therefore,
Ft2(G) ≤ Ft2(G

′) + 5 ≤ 3
8n

′ + 1
4 + 5 = 3

8(n− 14) + 1
4 + 5 < 3

8n + 1
4 .

Suppose k = 2 and let G′ be the graph obtained from G by removing all
vertices in V (B2) ∪ V (D), subdividing the edge y′z′ and denoting the resulting
new vertex by w′, and adding the edges x′w′. Since G is a connected claw-free
cubic graph, so also is the graph G′. Let G′ have order n′. Then n′ = n−14 ≥ 8.
If G′ = N2, then G = G22.2 shown in Figure 8(c), and Ft2(G) ≤ 8 < 3

8n + 1
4 .

If G′ = N3, then G = G26.1 shown in Figure 8(d), and Ft2(G) ≤ 10 = 3
8n + 1

4 .
If G′ = Nk with k ≥ 4, then G contains a diamond-chain L2, a contradiction.
Now assume that G′ /∈ Ncubic and n′ ≥ 10. Applying the inductive hypothesis
to G′, Ft2(G

′) ≤ 3
8n

′ + 1
4 . Let S′ be a minimum semitotal forcing set of G′ with

x′ ∈ S′ and w′ /∈ S′ as in Lemma 3. Then S = S′ ∪{a1, b2, c1, c2, c} is a semitotal
forcing set of G. This is because if we apply the color-change rule to S in G,
first, b2 → d2 → a2 → z1. Further, a1 → d1 → b1 → y1 → x1 → a→ d→ b. The
forcing chains in G′ with respect to S′ remain valid in G except in the following
cases. If x′ → w′ occurs in G′, then {y′, z′} ⊂ S′ by Lemma 3. Then x′ → w′

will be omitted in G and all remaining forcing chains in G′ with respect to S′
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will remain valid in G. Thus, S is a semitotal forcing set of G. If y′ → w′ occurs
in G′, then z′ ∈ S′ or w′ → z′. In this case, either y′ → w′ will be omitted
in G or y′ → w′ → z′ will be replaced by y′ → z′ in G. Finally, all remaining
forcing chains in G′ with respect to S′ will remain valid in G and S is a semitotal
forcing set. Lastly, if z′ → w′, a similar argument to that used above shows
that S is a semitotal forcing set. Thus, Ft2(G) ≤ Ft2(G

′) + 5 ≤ 3
8n

′ + 1
4 + 5 =

3
8(n− 14) + 1

4 + 5 < 3
8n + 1

4 .

By Claim 9 and Claim 11, we may assume that every diamond-unit is adjacent
to two distinct triangle-units. Now G must contain a diamond-chain L1. Using
our earlier notation, let D1 be the diamond in L1, where V (D1) = {a1, b1, c1, d1}
and where a1b1 is the missing edge in D1. Let T1 and T2 be the two triangles in
L1, where V (Ti) = {xi, yi, zi} for i ∈ [2] and x1b1, x2a1 are edges. We note that
T1 and T2 are two distinct triangle-units of G. If y1 or z1 is adjacent to y2 or
z2, then G contains an induced subgraph isomorphic to H shown in Figure 9 by
n ≥ 14.

H

a1b1
d1

c1

x2x1

y2y1

z2z1

Figure 9. An induced subgraph H of G.

Claim 12. If G contains an induced subgraph H shown in Figure 9, then Ft2(G)
< 3

8n + 1
4 .

Proof. Let G′ be the graph obtained from G by removing the vertices in V (D)∪
{x2, y2} and adding the edges z2x1 and z2y1. Since G is a connected claw-free
cubic graph, so also is the graph G′. We note that the subgraph of G′ induced
by {x1, y1, z1, z2} is a diamond-unit where z1z2 is the missing edge in this unit.
Let G′ have order n′. Then n′ = n− 6 ≥ 8.

If G′ = N2, then G = G14.2 shown in Figure 10(a), and Ft2(G) ≤ 5 < 3
8n+ 1

4 .
If G′ = Nk with k ≥ 3, then G contains a diamond-chain L2, a contradiction.
Now assume that G′ /∈ Ncubic and n′ ≥ 10. Applying the inductive hypothesis
to G′, Ft2(G

′) ≤ 3
8n

′ + 1
4 . Let S′ be a minimum semitotal forcing set of G′

with x1 ∈ S′ and y1 /∈ S′ as in Lemma 3. If |S′ ∩ {z1, z2}| = 2, it is clear that
(S′\{x1})∪{a1, b1, c1} is a semitotal forcing set of G. Now consider |S′∩{z1, z2}| ∈
{0, 1}. We claim that S = S′ ∪ {c1, x2} is a semitotal forcing set of G. If
|S′∩{z1, z2}| = 0, without loss of generality, assume that z1 becomes black before
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z2. Then, the same forcing chains in G′ with respect to S′ remain valid in G until
z1 becomes black. Further, z1 → y1 → y2 → z2 and x1 → b1 → d1 → a1. Finally,
all remaining white vertices in G will eventually become black using the same
forcing chains as in G′. If |S′ ∩ {z1, z2}| = 1, without loss of generality, assume
that z1 ∈ S′ and z2 /∈ S′. Then x1 is not a forcing vertex in G′ by Lemma 3. Next
we consider two cases. In the case of z1 → y1 → z2 in G′, we replace with two
forcing chains when we apply the color-change rule to S in G: z1 → y1 → y2 → z2,
x1 → b1 → d1 → a1. In the case of z2 is forced by its neighbor different from
x1 and y1, then the same forcing chains in G′ with respect to S′ remain valid
in G until z2 becomes black. Further, z2 → y2 → y1 and x1 → b1 → d1 → a1.
Finally, all remaining white vertices in G will eventually become black using the
same forcing chains as in G′. Thus, S is a semitotal forcing set of G. Therefore,
Ft2(G) ≤ Ft2(G

′) + 2 ≤ 3
8n

′ + 1
4 + 2 = 3

8(n− 6) + 1
4 + 2 < 3

8n + 1
4 .

(a) G14.2 (b) G18.3

Figure 10. Two connected claw-free cubic graphs G14.2 and G18.3, where the black vertices
form a semitotal forcing set of their respective graphs.

By Claim 12, we assume that G contains no induced subgraph H. Now,
G contains a diamond-chain L1 with two distinct triangle-units T1 and T2, and
neither y1 nor z1 is adjacent to y2 or z2. Let u and v be the neighbors of y1 and
z1, respectively, not in T1. If uv ∈ E(G), then G contains a double triangle-chain
DT2, a contradiction. Hence, uv /∈ E(G).

Let G′ be the graph obtained from G by removing all vertices in V (T1) ∪
V (D1), subdividing the edge y2z2 and denoting the resulting new vertex by w,
and adding the edges x2w and uv. Since G is a claw-free cubic graph, so also is
the graph G′. Let G′ have order n′. Then n′ = n−6. Since G is connected, either
G′ is connected of order n′ ≥ 10 (note that {u, v} ∩ {y2, z2} = ∅), or G′ has two
components C1 and C2, where C1 contains the vertex u and n1 = |V (C1)| ≥ 4,
C2 contains the vertex x2 and n2 = |V (C2)| ≥ 8, n′ = n1 + n2.

In the case where G′ is connected. If G′ = N3, then G = G18.3 shown in
Figure 10(b), and Ft2(G) ≤ 6 < 3

8n + 1
4 . If G′ = Nk with k ≥ 4, then G contains
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a L2, a contradiction. Hence, suppose that G′ /∈ Ncubic and n′ ≥ 10. Applying
the inductive hypothesis to G′, Ft2(G

′) ≤ 3
8n

′ + 1
4 .

In the case where G′ is disconnected. Recall that n1 ≥ 4 and n2 ≥ 8. If
C2 = Nk with k ≥ 2, then G may contain a B1, or a B2, or a L2, a contradiction.
Hence, suppose that C2 /∈ Ncubic and n2 ≥ 10. Applying the inductive hypothesis
to C2, Ft2(C2) ≤ 3

8n2 + 1
4 . If C1 = K4, then G contains a B1, a contradiction.

If C1 = Nk with k ≥ 2, then G may contain a B2 or a L2, a contradiction. If
C1 = C3�K2, then C2 is the graph obtained from G by removing all vertices in
V (C1) ∪ V (T1) ∪ V (D1), subdividing the edge y2z2 and denoting the resulting
new vertex by w, and adding the edges x2w and uv. Now n2 = n − 12. Let S2

be a minimum semitotal forcing set of C2 with x2 ∈ S2 and w /∈ S2 as in Lemma
3. We can easily get that S2 ∪ {a1, c1, y1, u1} is a semitotal forcing set of G,
where u1 is a neighbor of u in G different from y1. Thus, Ft2(G) ≤ Ft2(C2) + 4 ≤
3
8n2 + 1

4 + 4 = 3
8(n− 12) + 1

4 + 4 < 3
8n + 1

4 . Hence, suppose that C1 /∈ Ncubic and
n1 ≥ 10. Applying the inductive hypothesis to C1, Ft2(C1) ≤ 3

8n1+ 1
4 . Therefore,

Ft2(G
′) = Ft2(C1) + Ft2(C2) ≤ 3

8n1 + 1
4 + 3

8n2 + 1
4 = 3

8n
′ + 1

2 .

Now, we have Ft2(G
′) ≤ 3

8n
′ + 1

2 whether G′ is connected or not. Let S′ be
a minimum semitotal forcing set of G′ with x2 ∈ S′ and w /∈ S′ as in Lemma
3. Let G′′ = G′ − w + y2z2. Then S′ is also a semitotal forcing set of G′′. If
|S′ ∩ {u, v}| = 0, without loss of generality, assume that u becomes black before
v. Then, S = S′ ∪ {a1, c1} is a semitotal forcing set of G. This is because if
we apply the color-change rule to S in G, then the same forcing chains in G′′

with respect to S′ remain valid in G until u becomes black. Further, u → y1
and a1 → d1 → b1 → x1 → z1 → v. Finally, all remaining white vertices
in G will eventually become black using the same forcing chains as in G′′. If
|S′∩{u, v}| = {1, 2}, without loss of generality, assume u ∈ S′. If u is not a forcing
vertex during the forcing process with respect to S′ in G′′, then S′ ∪ {z1, c1} is
a semitotal forcing set of G. The same forcing chains in G′′ with respect to S′

remain valid in G. Finally, u→ y1 → x1 → b1 → d1. It follows that all vertices in
G become black. Now assume that u is a forcing vertex during the forcing process
with respect to S′ in G′′. If u → v, then S′ ∪ {z1, c1} is also a semitotal forcing
set of G. This is because u → v in G′′ will be replaced by two forcing chains in
G: u→ y1 → x1 → b1 → d1 → a1, z1 → v. If u→ u1, then u2 ∈ S′ by Lemma 2,
where {u1, u2} = NG(u) \ {y1}. And in this time step, v is black. One can easily
verify that S = (S′ \ {u})∪ {y1, z1, c1} is a semitotal forcing set of G. Therefore,
Ft2(G) ≤ |S′|+ 2 = Ft2(G

′) + 2 ≤ 3
8n

′ + 1
2 + 2 = 3

8(n− 6) + 1
2 + 2 = 3

8n+ 1
4 . This

completes the proof.

Combining Ft2(C3�K2) = 3 < 3
8n + 1 with Theorem 5 and Theorem 8, we

get the following theorem immediately.
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Theorem 13. If G 6= K4 is a connected claw-free cubic graph of order n, then
Ft2(G) ≤ 3

8n + 1, with equality if and only if G = Nk and k is even.
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